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Lane-keeping systems are a major part of advanced driver assistance systems
(ADAS). Existing lane detection algorithms are based on either Computer Vision
(CV) models or deep learning techniques which are often vulnerable to unfamiliar
routes, lane marking conditions, night-time driving, weather conditions, etc. To
improve lane detection accuracy under various challenging conditions, we
propose a framework that utilizes several lane detection models with different
features to obtain a robust algorithm. The proposed Multiple Model Adaptive
Estimation (MMAE) algorithmworks with two cameras, one front camera and one
rear camera. The front camera is used for lane offset estimates whereas the rear
camera serves as a time-delayed reference for the estimated lane offsets. The
offsets from front camera CV models (two) are used as inputs to the MMAE
algorithm which compares the offset computed by the rear camera CV model
(time-delayed) as the reference. The proposed MMAE algorithm then estimates
the probability of lane offsets to match the time-delayed reference model lane
offset and selects the offset with higher probability of matching with reference
model. The offset from the time-delayed referencemodel cannot be used for the
real-time lane keeping control system since it would produce erroneous steering
output due to the time lag in offset estimated by the real cameramodel. Thus, the
MMAE estimated offset offers amore accurate lane offset and hence used in a PID
steering controller for the lane keeping system. The proposed algorithm is then
deployed in an AirSim simulation environment for performance evaluation. The
simulation results show that the proposed MMAE algorithm performed robustly
even when one of the models performed poorly. The proposed lane detection
algorithm was able to identify the poorly performing model and switch to the
other model to ensure better lane detection performance.
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1 Introduction

The lane-keeping assist systems (LKAS) are an integral part of advanced driver
assistance systems (ADAS) as well as autonomous vehicles (AV). LKAS actively
controls the steering to keep the vehicle in lane with appropriate amount of steering.
On the other hand, the passive system, called lane departure systems (LDS), do not actively
control the steering, rather it only alerts the driver when the vehicle veers away from the
current lane with no active turn signal (Liu et al., 2007).
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The LKAS system is generally made up of two units, a lane
detection unit, and a steering controller unit. As the steering-assist
technology is mature and widely used, this unit is less likely to fail.
The lane detection unit in a LKAS uses cameras and is subject to
failure due to inadequate identification of lane markings due to
fading, a portion of the lane marking lines being covered with dirt/
debris or snow, etc. A significant amount of research has been
carried out into developing robust algorithms for LKAS to improve
its performance. In addition to the failure mode of the lane detection
unit as stated earlier, other challenging road conditions such as rain/
snow or wet roadways, and interference of camera views due to other
road vehicles and lead to poor performance of the LKAS. To develop
solutions addressing these failure conditions, it is important to
understand how the lane detection algorithm estimates the offset
between vehicle and lane centers. It uses a single camera or multiple
cameras that capture the images of the road ahead and then locates
the lane marker positions as well as their curvatures through
computer vision/machine learning (ML) based algorithms (Muril
et al., 2020). Figure 1 shows an overall schematic of a LKAS using the
camera images as an input to a CV or ML based algorithm to first
detect the offset between vehicle center and lane center and then
control the steering.

Computer vision and machine learning are two important
methodologies adopted in self-driving technology. However, these
methodologies are subject to poor performance when unseen or
noisy situations arise, resulting in erroneous lane detection with
potentially catastrophic consequences. Because of such limitations,
self-driving vehicles require the driver to always be ready to take
back control as the situations may demand. Thus, an efficient and
accurate lane detection unit is required in an AV that can handle any
uncertainty or fault in the subsystems.

Zakaria et al. (2023) published a systematic review on lane
detection in Autonomous vehicles. In their study, they mentioned
that ADAS systems heavily rely on accurate lane detection to ensure
safety. The article reviewed 102 publications from 2018 to 2021 to
analyze the most effective methods for detecting road lanes. The
research identifies the use of both traditional geometric modeling
and modern Artificial Intelligence (AI) techniques, particularly deep
learning, which has gained increasing attention in recent years.
Some studies have combined deep learning with machine learning
or classical methods, showing promising results. The paper also

examines the datasets and equipment used in training detection
systems and suggests that future research should focus on improving
accuracy, speed, and performance under challenging conditions.

Zhang et al. (2009) presented a methodology to identify road
boundaries. They used two distinct methodologies: the first method
utilized image segmentation, while the second used the Hough
transform and vanishing point methodologies. The paper claimed
to achieve reasonably good performance in identifying the road
boundaries. Li J. et al. (2016) presented a deep neural network based
lane detectionmethodology that utilized both a convolutional neural
network (CNN) and a recurrent neural network (RNN) for
improved performance in the absence of lane markings. In a
more recent study, Haque et al. (2019) presented a lane detection
methodology based on computer vision. Their methodology
included calibration, cropping, combined thresholding,
perspective transformation, and sliding window search to find the
lane markers. Kim et al. (2021) presented an LKAS based on a
convolutional mixture density network (CMDN) that could handle
parameter uncertainty. The system’s main outputs, namely the
vehicle’s lateral position error and the yaw error included
uncertainties that were estimated. These uncertainties were used
by the control system to generate a steering command based on the
reliability of the lateral position and yaw angle errors. Although this
methodology offered better performance over the conventional lane
keeping controller (without reinforcement learning), the algorithm
was tested only for the scenarios of rain and fog.

Deng et al. (2023) proposed an adaptive cross-scale ROI fusion
network (ACSNet), which improves feature extraction by adaptively
selecting important anchors and fusing them across scales. This
allowed for better detection of lanes in challenging conditions by
integrating diverse features. Additionally, a Three-dimensional
Coordinate Attention Mechanism (TDCA) was introduced to
enhance feature extraction by exploring relationships across rows,
columns, and spatial dimensions. Experimental results show that
ACSNet performs well on public datasets, CULane and Tusimple,
demonstrating improved lane detection capabilities.

In a study, Bisht et al. (2022) proposed a method for lane
detection and tracking based on integration of Hough transform
and inter-frame clustering. In this research, they showed how
using a Kalman filter and integration of a model with the
detection system can add inertia to avoid drastic failures in
lane detection algorithm. Their algorithm resulted in 84.17%
correct rate on Caltech-dataset which is a substantial
improvement compared to previous studies.

Al Noman et al. (2023) investigated computer vision-based lane
detection using gradient and hue lightness saturation (HLS)
thresholding. They used a sliding window searching method to
find the lane markers and the final algorithm has a 96% accuracy
with a 0.64% false positive rate on a dataset of 975 frames.

Sultana et al. (2023) proposed a real-time lane detection and
tracking method to detect lane marking in challenging conditions.
They utilized comprehensive intensity threshold range (CITR),
angle-based geometric constraint (AGC) and length-based
geometric constraint (LGC) followed by Hough Transform, and
range of horizontal lane position (RHLP) to identify the lane
markings. Existing datasets were used to evaluate the
performance of their proposed algorithm which showed higher
accuracy of detection.

FIGURE 1
Schematic of a typical active lane-keeping system.
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Ye et al. (2024) proposed a lane detection model, which unlike
traditional lane detections, focuses on simpler road markings,
PortLaneNet addresses complexities such as intricate ground
markings, tire crane lane lines, and diverse regional lines. The
model introduces the Scene Prior Perception Module, which uses
pre-training and prior knowledge from similar scenes in container
terminals to improve accuracy.

Maddiralla and Subramanian (2024) presented the Lane
Detection with Convolutional Attention Mechanism (LD-CAM)
model, aimed at improving lane detection in autonomous
vehicles (AVs) under challenging conditions such as poor roads,
curves, damaged lanes, and extreme weather. While existing deep
learning models perform well on well-maintained roads and in
favorable weather, they struggle with these extreme conditions.
The LD-CAM model includes an encoder to extract features, an
enhanced convolution block attention module (E-CBAM) to refine
feature quality, and a decoder that ensures no information loss in
the output.

Dahl et at (2023) showed that using prediction uncertainty in
advanced driver assistance systems improves the system’s
robustness and accuracy in detecting potential driving errors. In
their study, they implemented four threat detection methods where
each method uses different strategies for leveraging uncertainty
information, where the goal is to ensure that the intervention
decision is based on trustworthy predictions.

Sang and Norris (2024) proposed a fuzzy logic-based adaptive
self-tuned algorithm with high generalizability across diverse
weather conditions for robust lane detection. The algorithm
included edge identification and line detection modules, enabling
image adjustments in response to challenging weather conditions.
The proposed tracking function utilizes previous detection results to
fine-tune the selected Range of Interest (ROI), optimizing both
accuracy and processing time. By incorporating these adaptive
features into common geometric-based frameworks, the
algorithm achieves higher detection rates compared to previous
studies during challenging weather conditions. As can be seen from
the most recent literature, classical algorithms based on image
processing are the most used and well-researched algorithms for
lane detection due to their computational advantages over the AI/
ML based algorithms. However, classical CV based algorithms may
not perform well in challenging and uncertain road conditions.

In some studies, researchers have used some baseline models to
estimate the uncertainty of machine learning based models, but they
have not utilized these uncertainties to integrate multiple models in
MMAE, filtering or any model integration framework. On the other
hand, the experiments in this study will show that different
detections models have different weaknesses and strengths which
makes MMAE a suitable approach for integration of them.

The purpose of this study is to improve the robustness of the LKAS
system by limiting the effects of the uncertainties due to road marking
degradations as well as weather conditions. In this work, we present an
MMAE based lane detection algorithm that uses two computer vision-
based models, the output of which is used in a PID controller to
implement the LKAS on the vehicle. Here, the implemented models are
evaluated by an observer to estimate any uncertainties and the
probability of each model matching an uncertainty threshold at each
time step is computed. Thus, only the output for the model that offered
the least amount of uncertainty is passed on to the steering controller.

1.1 Contribution and aim of this research

• There is no study in the literature which integrates multiple
detection models in an integration framework to get the most
out of each model.

• In this research, we investigated a Multiple Model Adaptive
Estimation (MMAE) framework to further improve the
accuracy and robustness of lane detection by integrating
multiple classical algorithms in order to get the best out of
these algorithms.

• The focus of this work is not to improve the individual base
algorithms selected for this research. Rather, the focus is on
how the MMAE framework can help multiple lane detection
algorithms to cover each one’s weaknesses under various
driving and environmental conditions and thus improve
the overall lane detection accuracy.

The remainer of the paper is organized as follows: Section 2
describes the MMAE based lane detection algorithm which is the
main contribution in this paper. Section 3 shows the simulation
results for several challenging road conditions. It is followed by
Section 4 capturing the findings of the paper (concluding remarks).
Section 5 captures the improvements that are planned as
future work.

2MMAE based lane detection algorithm

As mentioned earlier, two different computer vision-based
models are integrated in a MMAE framework (Multiple Model
Adaptive Estimation) in this work. MMAE technique is a
probabilistic methodology that utilizes multiple estimation
models and tries to match the system with a model that best fits
the real-time data output from the system. It has been successfully
applied in many estimation and detection applications. Barrios et al.
(2006) applied Multiple Model Adaptive Estimation System
(MMAE) algorithms to integrate GPS measurements to improve
efficiency and performance. Quinlan and Middleton (2010)
presented a multi-modal Kalman filter involving multiple models.
They compared their results with those obtained using a particle
filter approach which showed improvements in the presence of
ambiguous information. Takens’ data-driven modeling
methodology was combined with Kalman filtering by Hamilton
et al. (2016) which reconstructed themodel dynamics from observed
system delays. Kalman filtering was used to update the model with
new observations. They claimed that their approach might have
performed better in the presence of modeling errors. Rahman et al.
(2017) utilized an MMAE framework to detect Li-Ion battery fault
conditions and showed that this methodology was able to
successfully detect various battery conditions such as
overcharging, over-discharging, etc.

This work was inspired based on the successful application of
MMAE in fault condition detection which can be leveraged to detect
a poorly performing lane detection model under certain road/
environmental/lighting conditions and then replace that model
with a better model from a set of models stored in this
framework. Thus, this work proposes an MMAE-based lane
detection system for different driving scenarios including
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uncertain road/environmental/lighting conditions for possible
improvements in predicting vehicle location with respect to the
lane markings.

A high-level schematic of the proposed algorithm is illustrated in
Figure 2 which shows how the MMAE based lane detection
algorithm works as a part of the LKAS system. Here the front
camera images are fed to both computer vision models which
generates the offsets between the vehicle center and lane center.
These offsets are then used by the MMAE algorithm along with the
rear camera reference model to determine which front camera
model matches better with the reference model. A more detailed
illustration of the lane detection models (model #1 and #2) used in
this research is shown in Figure 3. Here Model 1 is similar to the one

presented in Pagale et al. (2023) while Model 2 is similar to model
shown in Gaskey (2023). Sobel edge detector algorithm is described
in Ozgunalp (2017).

To evaluate how these two models perform, they were tested in
different driving scenarios. It was observed that one model
performed better than the other under these driving conditions/
scenarios, mainly due to the uncertainties in road or weather
conditions (e.g., the estimated lane offset error was greater than
the allowable threshold). These performance issues can be attributed
to: (i) the unresolvable issues, e.g., lane marking covered by snow; (ii)
the resolvable issues that can be addressed by adjustments in the
models, e.g., missing parts of a lane marking line, a sharp change in
lane curvature, a highly contrasting shadow of a building on the
street, or a rain-soaked wet road. It should be noted that this study
only considered a few challenging experiments to outline the
weaknesses and strengths of the presented models to show how
MMAE based algorithms can improve the overall detection accuracy
if a single model fails. However, in a scenario where both models fail
to measure the lane offset accurately, the MMAE algorithm will
likely not perform well either. Additional lane detection models
integrated in the MMAE framework may offer a solution in such a
case as discussed further in the future work section. In this study, we
considered resolvable model failures only. Figure 4A shows the
performance of two lane detection models considered in this work
on a sample image with a wet street. It shows that the second model
offered a better result with relatively more accurate lane detection. It
is likely that the first model was unable to identify the lane probably
due to the light reflections on the street.

Figure 4B shows the case where the vehicle is making a sharp
turn. The second model, having a smaller region of interest (ROI),
was not able to detect the lane completely. On the other hand, the
first model exhibited a robust performance. Further comparison of
these two models showed each model had some advantages and
disadvantages based on the driving scenarios. Thus, it makes a good
case to integrate these two models via MMAE framework in order to
achieve a more robust detection by leveraging their advantages in
different driving scenarios. Here MMAE methodology will be used
to combine these two models.

Both the front and rear cameras are used in implementing the
proposed lane detection algorithm. The front camera is used to
provide the input video feed for bothmodels while the rear camera is
used as a reference. As illustrated in Figure 3, two different models
for lane detection using front camera images are based on computer
vision techniques. The first model is more straightforward than the
second model, but its ROI is larger and has a better performance in
long-distance detection. The second model is more advanced;
however, it has a smaller ROI and offers more robust lane
detection in shorter range.

2.1 Simulation environment

To evaluate computer vision models and implement the
proposed MMAE based lane detection algorithm in simulation,
AirSim (Shah et al., 2018) simulation environment has been used
in this study. The City release of AirSim has a limited number of
roads and buildings in a virtual urban area. We placed two cameras
on the vehicle, the first camera being located on the front middle of

FIGURE 2
A high-level schematic of the proposed lane-keeping system.

FIGURE 3
Flowchart illustration of the proposed lane detection models
1 and 2.
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the vehicle’s roof while the second one is located at the bottom of the
rear windshield of the vehicle. The selected vehicle in the simulation
was an SUV called PhysXCar. Figure 5 shows the location of the
front and back cameras on the vehicle.

The setting.json file of AirSim contains the configuration of the
environment. This file, as well as the other codes, are stored in a
GitHub repo (Fakhari, 2023). The configuration of the cameras
provided in Table 1. The field of view (FOV) for the front camera
was 120° while that of the back camera was selected as 150°. The
pitch of the front camera was set at 10° while that of the back camera
was −20°. In AirSim, the vehicle coordinates are fixed at the center of
the vehicle and follows NED coordinate convention where X-axis is
always pointing toward the front of the vehicle. The selected camera
FOV and pitch angles of the cameras are obtained via trial and error
to ensure the best possible results in terms of lane detection. Figure 6

shows the street views in the AirSim simulation environment as
captured by the front and rear cameras.

2.2 Lane detection models

As indicated earlier, two different lane detection algorithms
based on computer vision have been used here. The lane detection
results on sample roads for these two models are shown in Figures 7,
8. In model #1, the camera image is first cropped with ROI
extraction, the image binarization if performed next, and a birds-
eye view of the image is then obtained. Hough transform is then used

FIGURE 4
(A) The performance of two different lane detection models on a wet street. (B) The performance of two different lane detection models in a
sharp turn.

FIGURE 5
The location of the front and rear cameras on the vehicle
in AirSim.

TABLE 1 Camera configuration for front and rear cameras.

Front camera Rear camera

X (m) 1 −2

Y (m) 0 0

Z (m) −1.5 −1.5

Pitch (degrees) 10 −20

Roll 0 0

Yaw 0 180

FOV 120 150

Image Width 1280 1280

Image Height 720 720
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on the image to locate the line markings. Finally, the center point of
the lane nearest to the vehicle center (first row of the image) is used
to compute the offset or error. Figure 7 shows the simulation results
of the lane detection performance using model #1, showing high
level of accuracy.

In model #2, once the camera calibration is done, the image is
cropped, and ROI is extracted. For making the binary, the
thresholding is done using Sobel, Saturation, and Hue
thresholding. Then the binary image is used in a sliding windows
algorithm to detect the lines in each row of sliding windows. The
lane marking lines are then found by fitting a second-order curve to
these lines. Finally, the offset of the vehicle and lane centers was
calculated. Figure 8 illustrates the performance of the lane detection
using this model which exhibits good accuracy.

As stated earlier, the rear camera is used to estimate the lane
offset in the back of the vehicle and is considered as a reference
model in the MMAE algorithm to evaluate the two models that used
the front camera images. The rear camera images were fed into yet a
third algorithm to detect the lane-offset in the back of the vehicle.
This third algorithm is an implementation of a well-known and
tested CLRNet based algorithm by Zheng et al. (2022) on a rear
short-range camera. Tests on this trained network show a very
accurate result on the offset detection for the rear camera when
compared to the ground truth.

2.3 Multiple model adaptive estimation

As mentioned in the previous sections, a modified MMAE
algorithm is developed in this study to evaluate two computer
vision models that use the front camera images as inputs. The
estimated offsets from model #1 and model #2 are used as inputs to
the proposed MMAE algorithm. Unlike the conventional MMAE
algorithms, in this study there are no mathematical observers
available to evaluate the performance of front camera models.
Thus, the estimated offset using the rear camera images is used
as the reference for calculating the probabilities of failure of each of
the models that used front camera images. It is noted that the third
model (that used rear camera images) showed very good lane
detection performance in a wide range of road and weather

FIGURE 6
The perspective views of the cameras in the simulation environment. (A) Front camera view; (B) Rear camera view.

FIGURE 7
Original frame and the resulting frame with lane overlay for
model #1.

FIGURE 8
The result of lane detection by model #2.
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conditions in a priori simulations. The residuals of each of the
models (i.e., model #1 or #2) are the subtraction of the model offset
from the reference model offset. We note that the reference model is
one step behind since it uses rear camera images. Therefore, the
residual was defined as the difference between the offsets of the front
camera models at step n-1 and the offsets of the rear cameramodel at
step n. Let’s denote the offset of the vehicle and lane centers as z.
Similar to the state estimation, the purpose here is to estimate the
offset using multiple models. The offset z can be calculated as shown
in Equation 1:

z � f inputImage( ) (1)
where f is the lane detection function which can be any of the
proposed models or the reference (rear camera) model, and z is the
measured offset. The residual (offset error) for calculation of
conditional probability can be defined using Equation 2 below:

rn � zrefk − zmodel,n
k−1 (2)

where rn is the residual for the nth model, zrefk is the reference model
offset at kth step and z

model,n
k−1 is the offset for the nth model at step k-1.

Since there are only two models being considered here, namely,
Model 1 and Model 2, n = 1, 2. Thus the probability of each of the
two models matching the reference model can be defined as p1 and
p2 where:

p1 + p2 � 1 (3)

Equation 3 merely illustrated that the sum of all probabilities
equals to unity. The above probabilities can be computed using
Equation 4 for the nth model at the sample time k (Rahman
et al., 2017):

pn,k � fz k( ) a,z k−1( )| zk|an, zk−1( )pn k − 1( )
∑n
j�1
fz k( ) a,z k−1( )| zk

∣∣∣∣aj, zk−1( )pj k − 1( )
(4)

where fz(k)|a,z(k−1)(zk|an, zk−1) is the conditional probability density
function of the nth model at time step k-1 considering the history of
all measurements, z(k) which is the output of models (the offset),
pn(k − 1) is the conditional probability at time step (k-1) and the
denominator is the sum of all the conditional probabilities, with
assumed model failure status a1 . . . an. The conditional density
function of the measurement z(k) is obtained using the Kalman filter
model (based on one of k possible values of a vector of parameters
indicative of the failure status, i.e., r ∈ {r1,r2, . . . ,rk}). Accordingly
(Rahman et al., 2017), Equations 5–7 describes the conditional
probability density function as follows:

fz k( ) a,z k−1( )| zk|an, zk−1( ) � βn exp o( ) (5)
βn �

1

2π( ) l
2

∣∣∣∣∣ψn k( )∣∣∣∣ 12 (6)

where l is the measurement dimension, which is 1 here and,

o( ) � 1
2
rTn,kψ

−1
n,krn,k (7)

where rn,k is the residual offset for the nth model at a time step of k,
and ψ−1

n,k is the reverse of covariance of the residuals as shown in
Equation 8 below:

ψn,k � Cn,kPn,kC
T
n,k + R (8)

where C is the output vector [1 0] and P is state covariance matrix of
white dynamics noise which is assumed to be an identity matrix at
the initial step, and R is the covariance of the measurement noise
which is considered to be 10−6 by trial and error. This should be
noted that the higher the R goes, the slower the system responds to
measurement changes and relies more on estimated state other than
the measurements coming from algorithms. The final values of P for
both models were tuned via trial and error for optimal
convergence as:

P1 � 6.25 × 10−13 −4.16 × 10−10

−4.19 × 10−10 1.98 × 10−11
( )

P2 � 8.14 × 10−13 −2.53 × 10−10

−1.94 × 10−10 1.67 × 10−11
( )

2.4 PID controller

Let’s assume that ek as the offset of the vehicle and lane centers as
outputted by the proposed MMAE algorithm at each time step k,
and the output of the controller is the steering command at time step
k is sk which is the input to the vehicle model in the simulation
environment. The discrete PID formulation for time step k can be
written as in Equation 9 below:

sk � KPek +KI∑
k

i�1
ei +KD ek − ek−1( ) (9)

where k is the current time step; KP, KI, and KD are the Proportional,
Integral and Derivative (PID) gains, respectively. The test simulation
runs indicated that two different sets of gains, one for straight roads
and one for curvy roads offered better lane keeping performance.
Table 2 shows the tuned PID gains for this controller, which were
obtained by trial and error.

2.5 Overview of the MMAE-Based lane
keeping assist system

Figure 9 shows the developed control system for the proposed
MMAE based LKAS. As illustrated here, the simulation
environment at each time-step provides front and rear camera
images. The front camera images are used in models #1 and #2 for
lane detection and offset calculation while the rear camera image
is used in the third model for estimating the reference offset. The
output offsets from both front camera models and the reference
offset are used in the MMAE algorithm to compute the

TABLE 2 Tuned PID gains for the proposed controller.

Gains Straight road Curvy road

Kp 0.001 0.002

Ki 0 0.0001

Kd 0.001 0.001
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probability of each model to match with the reference model
(Likelihood Function) using Equation 4, considering one step
delay for the offset of models since the reference model (looking
back) can only evaluate the past offset. The likelihood function
outputs the probabilities of the two lane detection models
matching the reference model, p1 and p2, respectively. Then a
decision-making unit outputs the model offset with higher
probability. It is to be noted that since the reference model
(offset output from the rear camera MMAE model) works
better than the two main models due to its proximity and
direct view of the road behind the car and therefore has much
fewer possible failures. However, it cannot be used for direct
steering control since the lane keeping steering command should
be based on future offset (ahead of the ego vehicle) not the past
offset as computed by the rear camera CV model. The output
offset from the decision block is then subtracted from the target
offset (which is zero) and sent as the input to the PID controller
to generate a proper steering command for the next time
step. The simulated vehicle uses this steering command to
steer the car to ensure zero offset error. The vehicle’s throttle
is set at the maximum value until the vehicle reaches 15 m/s
which is the maximum allowed speed in the simulation.

3 Results and discussion

As illustrated in Section 2, model #1 does not work well in cases
with sharp contrast shadows on the street. Figure 10 shows the
simulation view of a test to show this weakness of model #1.
However, it should be noted that model #1 showed a good
performance on curvy roads with good lighting. Figure 11 shows
the calculated offset (distance between the center of the lane and
vehicle) by model #1 which has a significant noise. The shadow on
the street can be attributed to this noise.

The evaluation of the second model illustrated that the model
failed for the cases with sharp turns. However, the resulting noise for
this model in the shadow scenario was acceptable and this model
was sufficiently accurate in this scenario. Thus, we have designed
different case studies to evaluate the performance of the proposed
MMAE-based algorithm. Figure 12 shows the model matching
probabilities of the proposed lane detection algorithm for case
study #1, having a sharp contrast shadow on the street. The
shadow extends to the first quarter of the street, and in the
corresponding time-steps (0–25), the proposed algorithm reveals
that model #1 is not working properly and decided to switch to
model #2 since the probability of this model output matching the
reference model output is much higher. After the vehicle passed
through the shadow (timesteps 30–80), both models showed robust
performance. As a result, the algorithm had several switches between
these two models.

Figure 13 illustrates the performance of the proposed MMAE in
case study #2 (a sharp turn). As mentioned earlier, model #2 does
not work well in sharp turns. As expected, the proposed algorithm
detected this behavior and switched to model #1 between time step
10 and 70 (when the road curvature ends). Thus, for the above two
cases, the proposed MMAE based LKAS was able to detect failure in
each model under varying road scenarios and switch to the better
performing model to attain robust lane detection.

Enhancements to the reference (rear camera) model were made
to further improve its robustness. The reference model, which uses
rear camera images to compute the offsets to be compared with each
of the other models via MMAE, could encounter diminished
performance during the lane detections. If the reference model
fails to produce the correct value of the offset for evaluating the

FIGURE 9
Block diagram representation of the proposed lane-keeping system.

FIGURE 10
The view of a path with high contrast shadows for evaluating
model #1.
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front camera models, the calculated probabilities would have
significant errors. To mitigate this issue, first, the failure of the
reference model is defined. If the output offset of the reference model
changes suddenly by more than a certain threshold, it would be
concluded that the reference model has failed. The value of this
threshold is found by trial-and-error methods. Once such a failure is
detected, the reference model offset value can be corrected by
averaging the calculated value with an extrapolation of previous

FIGURE 11
The result of evaluation for model #1 in a path with high contrast shadow.

FIGURE 12
The probabilities of the proposed model for case study #1 (Blue–Model 1 and Orange–Model 2).

FIGURE 13
The probabilities of the proposed model for case study #2
(Blue–Model 1 and Orange–Model 2).

FIGURE 14
The proposed MMAEmodel results with conditional probabilities
and corrected estimator.
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values. A threshold of 20 cm is found to be optimal. Figure 14 shows
the results of the proposed MMAE based lane detection algorithm
with a corrected reference model output offset having a jump
threshold of 20 cm. The failures of the reference model (the red
jumps) are detected by the algorithm and corrected. The lane-
keeping result of this case study (a turn with wet ground) was
robust, and the vehicle was controlled effectively to stay within the
lane. As seen from the figures, the first model exhibited large errors
(failures) between time steps 9 and 15, and the proposed MMAE
algorithm was able to detect this failure and switch to better
performing model #2.

Table 3 shows the results of models and observer offsets against
the ground truth offset and their errors as well for case study #2.
Accordingly, model #1 had a root mean square error (RMSE) of
21.12 cm, and model #2 had an RMSE of 47.29 cm which shows
model #1 is more desirable in a sharp turn scenario. In addition, the
error of final offset as the output of MMAE had an RMSE of
20.40 cm which has a lower RMSE than both models. This
shows that the proposed algorithm based on two models could
attain better performance than each model with a correct switch
between models based on their uncertainties. The reported steering
command is calculated based on the final offset error using a PID
controller which is fed to the simulation environment as a number
between −1 and 1. The observer offset which is used for finding the
probability of each model had an RMSE of 13.87 cm and showed a
reliable performance with a maximum error of 25.16 cm.

The updated MMAE based LKAS algorithm was validated in
three more case studies. The first one (case study #3) is in a mild turn
with high contrast shades as well as speed bumpers. Figure 15 shows
a view of this test environment and Figure 16 shows the result of the
updatedMMAE LKAS for this case study. As can be seen, the system
was able to keep the vehicle inside the lane. In the first 10 timesteps
of this scenario, there are two challenges facing the system: the first
one is the high contrast shadow in front of the front camera and the
second one is the speed bump seen by the rear camera. The speed
bump failed the observer/estimator model. The high contrast
shadow also resulted in a failure for model #1 in timestep
5–7 which was handled by the MMAE with switching to model
#2. The calculated offset for model #1 at timestep 5 had a huge jump
and the probability of this model reduced close to zero. This failure
in model #1 was predictable since model #1 is vulnerable to barriers
as was mentioned earlier and the simulation result validated the
improved performance of proposed MMAE in such situations.

Case study #4 is in a straight street with high-contrast shadows.
Figure 17 shows a view of this test environment in AirSim where half of

TABLE 3 The results of models and observer offsets and their corresponding errors against ground truth for case #2.

Model #1 offset (cm) Model #2 offset (cm) Final offset error (cm) Observer error (cm)

RMSE 21.12 47.29 20.40 13.87

FIGURE 15
The view of case study #3 for validation of the
proposed algorithm.

FIGURE 16
The proposed MMAE model results for Case Study #3.

FIGURE 17
The view of case study #4 for validation of the
proposed algorithm.
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the roadway is in the shade and the second half is under sunlight.
Figure 18 shows the result of MMAE LKAS for this case study which
has a stable result. Again, the proposed LKAS system was able to keep
the vehicle inside the lane in this test and perform robustly. The
observer worked well in this scenario: model #1 worked with a
higher probability for the first half of the test and had a lower
residual; however, in the second half this model acted noisily and
the MMAE LKAS decided to switch to model #2 and the probability of
this model remained higher except for the last few seconds. Table 4
presents the ground truth evaluation of case study #4. According to this
table, the RMSE error of model #1 is 48.62 cm and the RMSE of model
#2 is 45.33 cmduring 80 timesteps. The final offset whichwas calculated
by the proposed MMAE has a RMSE of 41.43 cm which has a 14.8%
better performance than model #1 only system and 8.3% better
performance than model #2 only system. The observer also had an
RMSE of 23.35 cm. Themaximum ground truth offset [Left, Right] pair
of the vehicle from the center of the lane for this case is [13.45, 25.82];
however, models #1, #2, and the final model found this pair as [−66.06,
42.43], [−57.70, 19.30] and [−51.06, 42.43], respectively. For the errors,
models #1, #2, and the final model have the maximum error of 83.7,
79.88, and 70.06 cmwhich shows that theMMAE could also reduce the
global error as well as the RSME for the final model.

Case study #5 is in a turn with wet ground and rainy weather as
shown in Figure 19. Figure 20 shows the results of MMAE LKAS for
this case study. As illustrated, the proposed system performed
robustly, and the vehicle was kept in the lane by the controller.
Here, the observer had a failure at timestep 5, but it was resolved
quickly, and the vehicle remained in the lane. The video of the result

FIGURE 18
The proposed MMAE model result for Case Study #4.

TABLE 4 The results of models and observer offsets and their corresponding errors against ground truth for case #4.

Model #1 offset (cm) Model #2 offset (cm) Final offset error (cm) Observer error (cm)

RMSE 48.62 45.33 41.43 23.35

FIGURE 19
The view of case study #5 for validation.
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of this case study is available and attached to the
supplementary materials.

3.1 Comparison with other studies

In this research, two computer vision-based lane detection
models are utilized in a multiple-model adaptive estimation
framework to improve their performance. The proposed system
is investigated against multiple case studies in a simulation
environment to validate the robustness and the performance of
the framework. This study investigated the improvements by an
uncertainty-aware adaptive model combination in various case
studies, which can be considered as an enhancement over Li C.
et al. (2016) and former studies on the fusion of data using multiple
cameras. It should be noted that compared to sensor fusion, MMAE
does not use an extra sensor modality for enhancing the result and
stabilizing the estimation, rather it improves the robustness in the
algorithm level with adding no extra information in the sensor level.
Case study #1 is used for fundamental tests and improvements to the
MMAE framework. In case study #2, the results showed that the
proposed MMAE could significantly improve the performance of
the first and second models. In fact, these two models that were
designed and investigated in previous studies could reach an RMSE
of 21.12 cm and 47.29 cm in this case study. However, the proposed
MMAE could attain an RMSE of 20.4 cm by an optimum
combination of these two models. On the other hand, the
proposed MMAE reduced the maximum offset error from
145.19 cm (which resulted in the failure of model #2 in this case
study) to 55.02 cm. Similar to the result of Li et al. (2019) study that
investigated a multi-sensor fusion approach, in the current study the
utilization of multiple models could help the final MMAE controller
to switch from a failing model to the more accurate model based on
calculated uncertainties. In fact, Li et al. (2019) study showed that
the fusion of IMU and GPS sensors into the camera could cover the
camera failures. It should be noted that in the current study, only

cameras are used as sensors, and the focus is on improvements by
the combination of lane detection algorithms (models). Case study
#3 which was designed to evaluate the performance of the observer
itself showed that the observer could have some failures at a few
timesteps. However, these failures did not result in a test failure and
the proposed MMAE LKAS was able to keep the vehicle in the lane
due to the short duration of observer failure. However, the
weaknesses of the observer are detected in case studies #3 and
#5 and they are discussed in the section for future improvements. In
case study #4, the proposed framework could reduce the RMSE by
14.8% compared to a single model detection system which was
investigated in previous studies. Besides, the RMSE maximum error
(which could result in a lane departure) was reduced by 12.94 cm.
This improvement is significant compared to similar studies. In
Xiong et al. (2020) study, a multiple camera fusion for a similar
scenario (ordinary urban roads) resulted in a 5%–50% accuracy
improvement compared to a single camera lane detection system.
They also used a similar lane detection model as model #2 in this
study. This comparison shows that employing multiple lane
detection models/algorithms not only could be as beneficial as
having multiple sensors (cameras, IMUs, GPS) but it is also less
computationally expensive.

Case study #5 which is the most challenging scenario with wet
ground, curvy road, and low light path, resulted in the same way and
despite a single model system that failed to keep the vehicle in the
lane for this scenario the proposed MMAE LKAS was able to keep
the vehicle in the lane using the exact same models. In fact, the
proposedMMAE based model is validated via the case studies which
show the fact that each lane detection model could have some
failures under challenging situations, and the redundancy of
multiple models and a robust likelihood function was able to
select the better performing model where one of the models
failed temporarily.

As Figure 21 illustrates, the final model (the gray line) was
calculated by model #1 (the blue line) until step 36 since it had a be
performance; however, after this step, the residual error of model

FIGURE 20
The proposed MMAE LKAS results for Case Study #5.
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#1 increases, and the final model switched to model #2 (the orange
line). In fact, except for step 40 (the final offset which is calculated by
MMAE), in all the other steps the gray line is below the two blue and
orange lines which show the final model of MMAE worked always
better than a single model performance. In summary, the proposed
MMAE results compared to former studies show that each lane
detection system has potential improvements. In fact, the system can
be improved by adding new sensors such as IMU or GPS or it can be
improved by adding more cameras and CV models, as well as a
fusion of the output data from added sensors. The results of this
study showed that employing multiple lane detection models
together in the MMAE framework could improve the overall
performance of the system up to 15% without any computational
overhead. The proposed MMAE framework can also be integrated
with multiple sensor fusion that were investigated in
previous studies.

4 Conclusion

In this paper, we proposed a novel MMAE based LKAS system that
leverages two computer vision-based models with distinctive features
for lane detection using the front camera images. These two models
were investigated in several case studies, and the diverse sources of
failure were detected. A third model based on the rear camera with
superior lane detection accuracy and reliability was used as a reference
model for the two front camera-based CV models. The proposed
MMAE based algorithm estimated the conditional probabilities of
each model and selected the correct model for the best possible lane
detection performance. The lane offset value from the selected model
was then used as the input error for the PID controller to control the
steering angle in the AirSim simulation environment. The simulation
results show that the proposed MMAE-based LKAS system performed
better than each of the base models. Overall, the results for all case
studies show that the proposed algorithm performed robustly in
correctly estimating the lane offset and was able to improve lane
detection in sharp turns, lanes with missing lane markers, wet road,
and streets with high contrast shadows. A comparison of results with
other studies that used sensor fusion for enhancements showed that the
proposed MMAE-based algorithm can improve the accuracy and
robustness of the lane detection system to the level similar to or
better than these sensor fusion-based algorithms.

5 Future work

In this research, comprehensive road/environmental conditions
in AirSim simulation environment were not made. Hence, the
inclusion of additional CV models that deal with more
comprehensive scenarios would enhance the MMAE LKAS
performance in future studies. Additionally, the PID controller
could be replaced with an MPC based controller to provide
improved lane keeping performance. Furthermore, it could be
worth investigating an RNN to develop a prediction-based model
for detecting the center line in case of failure in the observers.

Also, this work is a proof-of-concept for the proposed MMAE-
based lane detection algorithm which was validated using computer
simulation. It is highly desirable to implement the proposed algorithm
in a real vehicle and perform validation testing under different road/
environmental/lighting conditions. It should be noted that the proposed
LKAS would fail when both lane detection algorithms included in the
MMAE framework fail to estimate lane offset simultaneously. This
would be a case of multi-point failure (as opposed to single point failure
which is a common assumption in fault tolerant control literature)
which is less likely to occur. As future work, the proposedMMAE based
framework can be further enhanced by including several other models
that would work in conjunction with the two models considered here
and thus would significantly reduce the chances of simultaneous failure,
thus improving overall lane detection reliability and accuracy. In
addition, the full framework can be designed uncertainty aware such
that when all models fail to attain a reasonable reliability, the detection
system would send a fault code to the control system.
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FIGURE 21
The result of models and observer offset errors against ground
truth offset value.
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