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Editorial on the Research Topic
Recent developments in aerodynamics
s

This editorial paper examines the cutting-edge advancements in aerodynamics, a
critical field within fluid mechanics, with wide-ranging applications in aviation, automotive
engineering, wind energy, and beyond. As aerodynamics evolves, it influences the design
of aircraft, turbines, vehicles, and energy systems, necessitating specialized tools and
methods for in-depth research and application. Recent advancements in experimental
techniques, computational methods, material science, and flow control technologies are
driving significant changes in aerodynamic design and performance. Figure 1 presents a
detailed chart illustrating the recent advancements in aerodynamic tools, methodologies,
technologies, and applications.

Experimental aerodynamics, particularly through sub-scale and full-scale testing and
flight experiments, will make significant strides with the development of advanced sensors,
instruments, and measurement systems. For example, the future of time-resolved PIV is
expected to be shaped by technological advancements in imaging, data processing, and
integration with emerging techniques. Future developments could allow researchers to
observe flows over multiple scales simultaneously, helping to link small-scale turbulent
dynamics with large-scale flow structures and improve our understanding of turbulence
at all scales. The combination of higher resolution, real-time analysis, multi-dimensional
measurements, and the use of machine learning will make PIV an even more powerful
tool for studying aerodynamics. Wind tunnel testing will remain a crucial method for
assessing aircraft performance, particularly in different flight phases (Taleghani et al.,
2020; Zhang et al., 2024; Arthur, 2024). Simultaneously, computational tools, such as
CFD, will progress. More accurate simulations of airflow around complex geometries
are now possible, with techniques like LES (Tonicello et al., 2022) and DNS (Chiarini
and Quadrio, 2021) offering higher resolution but at the increased computational cost.
Machine learning and artificial intelligence are also gaining importance in aerodynamics,
enabling the optimization of designs, improving CFD accuracy, and developing new
turbulence models (Sabater et al., 2022). CFD is anticipated to undergo a paradigm shift
with the integration of artificial intelligence and machine learning, enabling faster, more
accurate simulations of complex flows, including turbulent and hypersonic regimes.
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FIGURE 1
Chart of the key research domains in recent developments in aerodynamics.

Flow control technologies, which optimize aerodynamic
performance by manipulating natural airflow around
structures, have evolved considerably. Advances in actuators,
including modulated pulse jets (Abdolahipour et al., 2022a;
Abdolahipour et al., 2022b), plasma actuators (Taleghani et al.,
2018), model-free closed-loop systems (Ren et al., 2024), and
hybrid methods (Azadi et al., 2024), aim to enhance control,
reduce energy consumption, and improve robustness. These
technologies will become particularly useful in applications where
efficient aerodynamic performance is critical under varying
conditions. These innovations are expected to enhance both
the performance and sustainability of next-generation aircraft.
Material science will continue to play a pivotal role in improving
aerodynamic performance. Lightweight composites, shape-
memory alloys, and advanced materials like polymeric gyroid
structures (Overbeck et al., 2024) are being developed to reduce
weight, enhance structural integrity, and lower drag. Finally,
smart materials with adaptive surface properties will enable real-
time optimization of drag and lift, ushering in a new era of
dynamic, responsive aerodynamic systems. These advancements,
underpinned by computational, material, and environmental
innovations, will redefine the role of aerodynamics in addressing
global challenges and driving technological progress. Additionally,
the rise of 3D printing technology has revolutionized the production
of complex aerodynamic components, enabling the creation of
intricate shapes previously difficult to manufacture. This capability

will open new avenues for optimizing designs in aerospace and
automotive applications.

Nature has long been a source of inspiration for aerodynamic
design. Bio-inspired aerodynamics (De Manabendra et al., 2024),
which studies natural flight patterns and fluid dynamics in
animals, is expected to become an even more prominent field
in engineering solutions. For example, the study of owl wings
(Harbi Monfared et al., 2022) has led to the development of
quieter flight mechanisms, which are particularly beneficial for
urban air mobility applications. By mimicking the aerodynamic
features of birds and fish, engineers are developing more efficient
designs for both aircraft and wind energy systems. Biomimetic
approaches inspired by natural systems, such as bird flight and
marine locomotion, are expected to revolutionize aerodynamic
design, enhancing energy efficiency and adaptability. Applied
aerodynamics bridges theoretical fluid dynamics with practical
engineering challenges. Researchers are increasingly focusing their
efforts on the design of vehicles (including aircraft, spacecraft,
drones, and cars) to withstand extreme weather conditions such
as turbulence, crosswinds, and heavy rain. For aircraft, this
involves developing systems to predict and manage weather-
related disturbances. In automotive design, the focus is on
optimizing aerodynamics for all-weather conditions, improving
both safety and efficiency. Hypersonic vehicles, which face
extreme aerodynamic and thermal stresses, will benefit from new
materials and models designed to maintain stability at high speeds.
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Hypersonic aerodynamics will see significant breakthroughs in
thermal management and flow control, facilitating safer, more
stable designs for high-speed vehicles. Recent innovations in
wind energy, such as optimized blade aerodynamics and turbine
layout, have made wind power generation more efficient and
sustainable (Torabi, 2022). Renewable energy systems, particularly
wind turbines, will benefit from refined blade aerodynamics to
maximize energy capture while minimizing environmental impacts.
These advancements will reduce the number of turbines needed,
minimizing the environmental footprint of wind farms while
increasing power output. Aerodynamics will also play a pivotal
role in the optimization of fuel efficiency and stability for both
ground vehicles and rail systems. Effective aerodynamic design is
essential for minimizing air resistance, improving handling, and
maximizing energy efficiency in vehicles such as trucks, buses, and
electric cars.

Regulations and policies significantly influence aerodynamic
design. Safety standards established by agencies like the
FAA and EASA will drive innovations in structural integrity
and aerodynamic efficiency. As concerns regarding climate
change intensify, policies designed to reduce emissions and
fuel consumption, such as the ICAO’s Carbon Offsetting and
Reduction Scheme for International Aviation (CORSIA), are
likely to encourage the development of aircraft with enhanced
aerodynamic efficiency (Taleghani et al., 2024). Regulations
targeting noise pollution at urban airports will also lead to
quieter aircraft designs, fostering advancements in technology
and methodology. Additionally, policies supporting sustainable
aviation technologies, including electric and hybrid propulsion
systems, will encourage the development of novel aerodynamic
solutions tailored to these emerging systems. In aviation, sustainable
technologies will lead to ultra-efficient airframes optimized
for electric and hydrogen propulsion, complemented by noise-
reduction techniques critical for urban air mobility. Aerodynamics
is also essential for understanding environmental phenomena
such as air pollution, weather patterns, and climate change. By
studying airflow and atmospheric dynamics, researchers can
better predict and mitigate the impact of human activities on
the environment (Christia et al., 2022). For example, urban
airflow studies can inform city planning and improve pollution
control strategies. The interdisciplinary field of environmental
aerodynamics combines fluid dynamics, meteorology, and
environmental science to address real-world challenges and enhance
sustainability.

Innovative designs such as the blended wing-body concept
(Gray and Zingg, 2024), which integrates the wings and fuselage into
a single structure, will continue to improve aerodynamic efficiency
by reducing drag andminimizing turbulence at the junction ofwings
and fuselage. This design is expected to allow for better lift-to-drag
ratios, leading to reduced fuel consumption and increased efficiency.
The exploration of electric and hybrid propulsion systems will drive
further aerodynamic advancements. As electric aircraft become
more viable, optimizing their aerodynamic performance will be
essential for maximizing range and efficiency. Researchers will focus
on designs that take into account the unique characteristics of
electric motors and batteries, allowing for more efficient electric

aircraft. Looking forward, several key areas are poised to shape
the future of aerodynamics. One such area is the development
of autonomous aircraft, which require innovative aerodynamic
designs to ensure stability and control in real-time (Deniz et al.,
2024). Advanced control surfaces and wing configurations are
being studied to adapt to changing flight conditions autonomously.
Another promising direction is the integration of renewable
energy sources, such as solar-powered aircraft, which would
require specialized aerodynamic designs to maximize energy
efficiency and reduce reliance on fossil fuels. The growth of
urban air mobility solutions, such as eVTOL aircraft (Simmons
and Busan, 2024), presents unique aerodynamic challenges. The
design of these vehicles must prioritize efficiency in urban
environments, where concerns regarding noise and safety are
particularly salient. Aerodynamic innovations will play a key
role in ensuring the success of these emerging transportation
solutions.

In conclusion, the field of aerodynamics continues to advance,
driven by innovations in experimental methods, computational
techniques, materials, and regulatory frameworks. As new
challenges emerge in the design of autonomous, electric, and
sustainable aircraft, aerodynamic research will remain central to
addressing these issues and shaping the future of transportation
and energy systems. The future evolution of aerodynamics
is poised to be shaped by interdisciplinary innovation and
sustainability imperatives, driving advancements across aviation,
automotive, renewable energy, and space exploration.This Research
Topic encompasses the latest developments in flow control,
simulation methods, applied aerodynamics, and propulsion design,
reflecting the multi-disciplinary nature of modern aerodynamic
research.
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