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Introduction: Wire-electric discharge machining (WEDM) possesses multiple
benefits over traditional production approaches; it allows for the precise
processing of complex and rigid particulate-reinforced composite materials.
Aluminium alloys have found widespread applications in surgical components,
shipbuilding, aircraft, automobiles, and inhaling gas cylinders for scuba diving,
due to its good strength, and light weight properties.

Methods: The main aim of this investigation is to optimize different process
variables for LM6/B4C/Fly ash particle reinforced hybrid composites using
WEDM to attain performance metrics such as maximum material removal rate
(MRR) and minimal surface roughness (SR). Taguchi’s L27 orthogonal array (OA)
matrix and Grey Relational Analysis (GRA) were used.

Results and Discussion: According to ANOVA, the two variables with the
most significant impact on MRR and SR are gap voltage and reinforcement
percentage, with respective impacts of 29.59% and 20.69%.When the composite
is machined, the following process variables work best: GV of 30 V, Ton of 10 µs,
Toff of 2 µs, WF of 4 m/min, and R of 6%. A low gap voltage causes the erosion to
rise and theMRR to increase. However, SRwill also increasewhich is undesirable,
so optimum gap voltage values are required for WEDM.

KEYWORDS

hybrid composites, stir casting, Taguchi’s DOE, WEDM, ceramic particles

1 Introduction

Composites are composed of two different phases; the principal constituent is the
continuous phase (matrix) and involved, which is the dispersion of the discrete component
(reinforcement particles). The geometrical shapes and forms of the two phases differ, and
the interface features determine the composite’s characteristics. Mechanical characteristics
like hardness, rigidity, and abrasiveness, among others, are imparted by the reinforcement
particles. The continuous phase and reinforcement particles have intrinsically superior
characteristics to any parent elements (Juliyana et al., 2022a). The most widely employed
MMC in the industry is aluminum matrix composites or AMCs. Aluminum is widely

Frontiers in Mechanical Engineering 01 frontiersin.org

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://doi.org/10.3389/fmech.2024.1526344
https://crossmark.crossref.org/dialog/?doi=10.3389/fmech.2024.1526344&domain=pdf&date_stamp=2025-01-21
mailto:sachinsalunkhe@gazi.edu.tr
mailto:sachinsalunkhe@gazi.edu.tr
https://doi.org/10.3389/fmech.2024.1526344
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmech.2024.1526344/full
https://www.frontiersin.org/articles/10.3389/fmech.2024.1526344/full
https://www.frontiersin.org/articles/10.3389/fmech.2024.1526344/full
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org


Udaya Prakash et al. 10.3389/fmech.2024.1526344

employed in today’s market because of its many advantageous
features, which include excellent strength, low weight, and good
resistance to corrosion. Generally, abrasive ceramic particles such
as SiC, Al2O3, ZrO2, and others strengthen aluminum alloys of
various proportions and grades (Prakash et al., 2023a). MMC
design aims to combine the best qualities of metal and ceramic
particles. When ductile metal is mixed with refractory particles, a
material with mechanical characteristics is created halfway between
the matrix and ceramics (Jayaseelan et al., 2023). Metals have
unique qualities, including robustness, ductility, and tolerance
to high temperatures but also low stiffness. Conversely, ceramic
particles are robust and stiff yet easily broken (Prakash et al., 2018).
Because of their poor surface finish and high tool degradation rate,
particle-reinforced hybrid MMCs are typically highly difficult and
challenging to machine using traditional machining techniques
(Laghari et al., 2023). Since WEDM is comparatively devoid
of the challenges typically encountered when machining using
conventional machining techniques, it may be a viable substitute
for the professional machining of such substances (Fanani et al.,
2021). Using a dielectric foil between the specimen and the tool and
a pulsing direct-current power source, theWEDMtechnique rapidly
and repeatedly discharges sparks to remove thematerial (Bains et al.,
2016). Each discharge melts or evaporates a tiny portion of the
specimen’s surface. After cooling in the dielectric fluid, the melted
metal solidifies into tiny spherical fragments. However, the narrower
kerf and higher spark frequency cause the particles to remain in the
machining zone rather than being evacuated (Qudeiri et al., 2020).
On the outer surface of the specimen, the remaining components
usually solidify again and form a very brittle layer known as the
recast layer (Sarala Rubi et al., 2024). Furthermore, it has also
been documented that creating a heat-affected zone results in
microcracks, which typically cause the machined components to
become damaged early in their functional lifespan (Lee and Tai,
2003). Depending on the parameter used for cutting, the recast layer
seen during the machining of a thermally inefficient material such
as pure titanium thickness ranges from 6 to 58 µm (Kumar et al.,
2013). Peak current and Ton have been found to increase the
recast layer generally (Omole et al., 2022). WEDM is excellent for
creating complicated or elaborate structures that are challenging to
manufacture with a regular technique. WEDM is widely used in
several areas, such as tool and die manufacturing companies, space
applications, and the automotive industry (Goyal et al., 2022). All
conductive materials have been machined using this method for the
past 10 years. As time has passed, electrically conductive materials
can now be cut without concern about their range owing to the
Electrical Discharge Machining technique (Prakash et al., 2021).
Techniques like ANN, fuzzy logic, and evolutionary algorithms have
drawnmore interest toWEDM from researchers in the past 10 years
(Juliyana et al., 2022b). In addition to sophisticated algorithms,
fundamental component analysis and Taguchi optimization
methodologies have become popular mathematical approaches
(Prakash et al., 2023b). There are numerous methods to define
the goal function in the EDM and WEDM procedures in order
to provide remedies to multi-response optimization challenges
(Ananth et al., 2021; Srinivasa Rao et al., 2016). Brass, tungsten, and
copper wires with a width of 0.005–0.3 mm are the wires that are
used inWEDM, and the deionizedwater acts as a dielectricmedium.
When a wire comes into contact with a de-ionized water molecule,

it produces more electrons.This process proceeds in the direction of
the anode since the electrons’ kinetic energy is converted into heat
energy, which produces a spark. Electric discharges caused by this
action cause the material to melt and vaporize, and dielectric fluid
drives the particles out and away from them. This is continuously
maintained by a positioning system controlled by a computer.

Thus, the most important objectives are to maximize MRR
and minimize SR (Calvo and Daniel, 2019; Rubi et al., 2022).
Using Taguchi’s L16 OA, GRA, and ANOVA, Durairaj et al. (2013)
examined SS304 to optimize the factors such as GV, WF, Ton, and
Toff, along with specific fixed parameters for achieving the lowest kw
and SR in WEDM. Similarly, a study by Lodhi and Agarwal (2014)
used wire feed and criteria, including Ton, Toff, and IP, to examine
the SR of AlSl D3 steel in WEDM. Taguchi’s L9 OA and ANOVA
were employed to maximize the outcomes. It is discovered that the
discharge current influences SR most significantly. Furthermore,
Singh and Pradhan (2014) andManjaiah et al. (2016) used Taguchi’s
OA technique and ANOVA in combination with RSM to examine
the machining variables. The Ton and servo voltage are the most
significant variables for the findings.

Additionally, Goswami and Kumar (2014) examined the
Nimonic 80-A alloy by considering WEDM input variables
and using a multi-response optimization approach to investigate
how this affected the machined surface’s features. Additionally,
Kumar et al. (2018) used RSM, GRA, and ANOVA to optimize
the MRR, SR, and kerf width responses by examining the WEDM
parameters on HSS M2 grade. However, Marelli et al. (2019) used
Taguchi’s OA, GRA, ANN, and PCA to examine the multiple
input variables involved in WEDM on superalloys to improve
responses likeMRR and SR. Titanium alloys have been the subject of
numerous investigations. Using Taguchi’s L18 OA, Nourbakhsh et al.
(Nourbakhsh et al., 2013) analyzed the impacts of several WEDM
input variables to ascertain the machining efficiency. Likewise,
Silambarasan and Prabhakaran (2019) selected L18 OA and Genetic
Algorithm (GA) techniques for optimum SR andMRR by analyzing
the different WEDM input variables for titanium grade 5 alloys.
Furthermore, Magabe et al. (2019) used L16 DoE, ANOVA, and GA
methods to analyze the effectiveness of WEDM process parameters
on Ni55.8Ti alloy for the outputs MRR and SR. In addition, using
Taguchi DoE and ANOVA, Pramanik et al. (2019) analyzed the
errors produced in the shape of holes by incorporating process
parameters like WT and Ton in WEDM for Ti6Al4V alloy. In
contrast, Thangaraj et al. (2020) used the Taguchi–GRA-based
strategy to examine the surface features of the micro-titanium alloy.
Paulson et al. (2023) used Taguchi’s L18 OA to assess the various
WEDM parameters for titanium superalloy to achieve the best SR
and MRR. The findings demonstrate that Toff and IP impact how
well the process performs. The complex and demanding process of
micro WEDM and its impact on the aluminum was analyzed by
Somashekhar et al. (2012). Study conducted by Ramanan on Al7075
alloy using active charcoal as second phase material using Grey -
Fuzzy approach.The goal was to increase theMRRwhileminimizing
the SR and overcut. For WEDM, samples with significant weight
levels, hardness impact resistance, and final breaking strength are
chosen for evaluation. Fuzzy GRA is utilized to increase MRR
and decrease SR for the optimal machining variables based on the
outcome of these variables (Ramanan and Edwin Raja Dhas, 2017).
Singh and Misra (2018) used RSM to determine the impact of
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TABLE 1 Chemical composition of aluminum alloy (LM6).

Constituent Si Cu Fe Mg Mn Ti Ni Zn Al

Weight % 11.48 0.013 0.52 0.02 0.01 0.02 0.01 0.01 Remainder

several machining variables, including Ton, Toff, IP, and SV, on the
machining of Nimonic C263 superalloy. According to the authors,
the most significant machining variable affecting the CS was Ton,
which IP followed. It became apparent that the servo voltage and Toff
were less efficient. It was also discovered that the process variables
impacted the CS. A study using brass wire cryogenically processed
during the machining of Nimonic 80A revealed that a rise in IP
causes the MRR to increase and the SR to decrease. However, the
FR significantly impacted neither the MRR nor the SR (Goyal et al.,
2017). In order to arrive at the best responses with the least
amount of tool wear, Vishwakarma et al. (2012) examined a variety
of advanced modern materials, including nanoparticles, ceramic
particles, super alloys, and MMCs, on a variety of unconventional
machining processes. Karthik et al. (2019) used Taguchi’s L18 OA to
optimize the WEDM variables to achieve improved surface finish,
MRR, and decreased Kw. In addition, Kumar et al. (2022) used
EDS and SEM analysis to investigate the machining parameters in
WEDM for aluminum hybrid composites to optimize results like
MRR, SR, and spark gap.

It is clear from the literature that the WEDM has been used
for making complex shapes with various materials. Thus, to achieve
affordable and high-quality machining, the optimum process
parameters must be used. Finding the optimized machining settings
for WEDM of fabricated hybrid composite plates (LM6/B4C/Fly
Ash) is the main aim of this research work. Grey relational analysis
has been utilized to identify the optimum process parameters.

2 Materials and methods

The materials used in this investigation were selected based
on cost, use, and quality. Stir casting is a liquid-state fabrication
method that combines particle reinforcement with a melted
LM6 alloy (Parikh et al., 2021). Three plates measuring 100 mm by
100 mm by 10 mm with reinforcement weight percentages of 3, 6,
and 9 were fabricated accordingly.

2.1 Materials

2.1.1 LM6 alloy
Aluminum alloys, such as LM6 alloy, are challenging to

process because of their propensity to drag and high Si
content, which accelerates tool wear. The LM6 alloy has
remarkable resistance to corrosion in both typical marine
and atmospheric environments. Table 1 displays the chemical
composition of the aluminum alloy.

2.1.2 Boron carbide (B4C)
For this investigation, 63-micron-sized B4C particles were

employed as one type of reinforcement material. B4C is widely

FIGURE 1
Morphology of boron carbide particles.

employed as cermets and armor materials due to its many desirable
qualities (Udaya Prakash et al., 2021). Components containing
materials with a high neutron absorption cross-section in a nuclear
reactor are used as control rods. Therefore, boron carbide is very
well suited. Figure 1 depicts the morphology of the B4C particles.

2.1.3 Fly ash
Fly ash is another reinforcement material with a particle

size of 12-micron. CaO, SiO2, Al2O3, and Fe2O3 are the main
components of fly ash. The resistance to wear, damping qualities,
hardness, stiffness, and density of LM6 alloys are all improved
by including fly ash. Given their low cost and low density,
fine-grained fly ash particles—a waste byproduct of thermal
power plants—can be discrete fragments utilized in metal matrix
composites (Sadhana et al., 2020). Fly ash is readily available
in large quantities. Figure 2 depicts the morphology of fly
ash particles.

2.2 Fabrication of hybrid composite
materials

The LM6 alloy ingots were placed in a graphite crucible and
gradually heated to 850°C. The melt had been degassed at 800°C
using hexa chloro ethane. Fly ash and B4C particles heated to 250°C
were added to the molten metal after it had been agitated to form
a vortex. The slurry was agitated at 600 rpm for 10 min. In order
to increase the wettability and interfacial bonding, Potassium hexa
fluro titanate (K2TiF6, 1% wt) was added to the Al/B4C composite
casting process to generate a reaction layer on an interface. Mg
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FIGURE 2
Morphology of fly ash particles.

FIGURE 3
Stir casting setup with furnace.

was added to enhance the ability to wet fly ash particles (Rubi and
Prakash, 2020). After being agitated and distributed, the molten
metal was poured into a 650°C preheated mold and cooled. Three
hybrid composites at weight percentages of 3, 6 and 9% were
produced by adding boron carbide (1.5, 3, and 4.5 wt%) and fly
ash (1.5, 3, and 4.5 wt%) with LM6 Al alloy. Figure 3 displays
the stir-casting equipment utilized during the manufacturing
technique.

2.3 Design of experiments

The Design of Experiments (DoE) technique is used to specify
what information, in what amount, and under what conditions
needs to be gathered during an experiment to meet two primary
objectives: lower costs and improved statistical accuracy of the
response parameters (JebaroseJuliyana et al., 2023a). Five distinct
process parameters were chosen for the current investigation:
wire feed (WF), reinforcement percentage (R), gap voltage (GV),

pulse on time (Ton), and pulse off time (Toff). The responses
are SR and MRR. The L27 array is chosen for this inquiry
based on the chosen parameters. The unique feature of the
L27 array is that it partially confounds two-way interactions
between several factors with different columns, which reduce their
impact on estimating the main effects of the different parameters.
There are three levels for each of the five parameters. As a
result, the complete factorial design must be used in 35 = 243
experiments; however, DoE was only used in 27 experiments.
Thus, 216 trials were trimmed down. 1 out of 9 experiments
were carried out, saving 88% of the time and materials. For every
experimental condition, three repetitions of the experiment have
been conducted. Table 2 shows the machining variables together
with their respective levels.

2.4 WEDM of hybrid composites

WEDM is an innovative machining technique that efficiently
uses electricity to cut any material that transmits electricity.
In the WEDM process, the work piece carries the positive
electrical charge, while the wire carries the negative. As the
wire approaches the element, the magnetism of electrical
charges causes a controlled spark to form, melting and
utilizing it to vaporize tiny particles. The spark removes a
tiny amount of the wire because it only goes through the
specimen once (JebaroseJuliyana et al., 2023b).

The method generates thousands of sparks every second,
but the wire never contacts the specimen. A dielectric solution
called de-ionized water cleanses and cools the cutting area.
The fluid also functions as an electrically inert shield in the
machining region to prevent the development of electrically
conducting channels. An electrical spark results from a current
passing between the wire and the specimen when the wire
approaches the material, and the force of the electric field
overcomes the barrier (Juliyana et al., 2022c). Machined composites
are shown in Figure 4.

2.5 Grey relational analysis (GRA)

Using GRA, machining variables can be optimized multi-
objectively. Discrete data, various inputs, and enhanced uncertainty
management are all offered by the Grey Relational Theory.
Grey may be used to forecast the approximate sequence
correlation and provide a good assessment of the exact degree
of data variance among sequences (Peter et al., 2014). The
following procedures could be taken in order to optimize
process variables:

i. Normalizing the responses of the investigation.
ii. Figure out the variance’s order.
iii. Computing the grey relational coefficient (GRC).
iv. Determining the Grey relational grade (GRG).
v. Using ANOVA and GRG, the experimental data was analyzed.
vi. Determining the optimum process variables.
vii. Conducting confirmation experiments to verify the optimal

variables.
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TABLE 2 Machining input parameters and their levels.

Level Machining parameters

Gap voltage (V) Pulse on time (µs) Pulse off time (µs) Wire feed (m/min) Reinforcement %

1 30 2 2 4 3

2 50 6 6 6 6

3 70 10 10 8 9

FIGURE 4
Photograph of machined hybrid composites.

3 Results and discussion

3.1 Microstructural analysis

The main objective of microstructural analysis is to confirm
the uniform distribution of reinforcement particles in the matrix.
An optical microscope was utilized to analyze the composite
materials’ microstructure. The optical photomicrographs show the
homogeneous distribution of reinforcement particles within the
continuous phase—Figure 5 displays micrographs of LM6 alloy
and hybrid composites. The Al-Si eutectic particles in these alloys
resemble spikes and scripts, respectively. However, LM6 alloys have
higher silicon content; more Al-Si particles are in them. The Al-
Si in LM6 (Figure 5A) has a more extended acicular arm.

The dispersion of the 3% hybrid (fly ash and B4C particles)
in the aluminum matrix composites is depicted in Figure 5B. The
photomicrographs of the LM6 alloy’s hybrid MMC with a 6%
inclusion of hybrid particulate materials are displayed in Figure 5C.
Al-Si is finer, and the dispersion of composites is even. The
microstructure of the 9% hybrid AMCs is shown in Figure 5D.
The pattern of dispersion is uniform in LM6 alloys. The greater

silicon content in LM6 alloys preserves this unique, evenly
distributed pattern.

3.2 Experimental results

Multi-objective optimization was used to simultaneously
achieve the highest MRR and smallest SR values. The 27 rows of
the L27 orthogonal array, which corresponds to the number of trials
with 13 columns and three levels, were selected. Table 3 lists the
input process parameters, investigation’s outcomes such as MRR,
SR, Grey Relational Grades and their ranks.

3.3 Analysis and discussion

Plots were created to show the main effects of the process
factors on the GRG data. Response graphs, sometimes called the
main effects plot, are used to analyze the parametric effects on the
response features.TheGRGdata undergoesANOVA to ascertain the
significance of each variable and its effect on the response features.

Theoptimumvalues of themachining parameter are determined
by examining the response graphs and the response table. Figure 6
shows that the GRG rises with the rise of Ton and decrease of GV,
Toff, wire feed, and reinforcement. A larger MRR results from more
discharges occurring in a particular period when the Toff drops.
The standard discharge gap widens as gap voltage rises, producing
minimal SR values. Reinforcement of hard particles decreases the
MRR. The wire feed is not significant.

3.4 Selection of optimal levels

Table 4 displays themean value of each response feature for each
variable level. The order of significance shows how important each
factor is in the response. According to the ranks and delta values,
GV, reinforcement, Toff, WF, and Ton are the variables that have
the most impact on achieving maximum GRG. Figure 6 illustrates
how the first level of wire feed, the second level of reinforcement,
the third level of Ton, the first level of Toff, and the first level of
GV produce the optimal values. The significance of the process
parameters in connection to GRG was investigated using ANOVA.
The F-values from the table are F0.05, 2,12 = 3.89 and F 0.05,4,12 = 3.26 at
the 5% significance level. ANOVA Table 5 suggests that the GV and
percentage reinforcement were significant.
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FIGURE 5
(A–D) Micrographs of B4C/Fly Ash reinforced hybrid AMCs.

3.5 Confirmation experiments

Analyzing the experimental data determines the most effective
responses. The variables at levels A1, B3, C1, D1, and E2, which
are GV 30 V, Ton 10 µs, Toff 2 µs, WF 4 m/min, and R 6%, are
the optimum values for attaining the largest MRR and minimal
SR. The experimental value of GRG is 0.733, while the predicted
value is 0.711.

3.6 The effect of WEDM process variables
on the GRG

3.6.1 Effect of gap voltage on GRG
A low voltage causes the erosion to rise and the machining rate

to increase. However, undesirable SR will also result in increased
MRR. As a result, relatively modest voltage values are required
for WEDM. The findings indicate that as the GV drops, the GRG
rises. Figure 7 illustrates that the optimum GV to attain a larger
GRG is 30 V. The dielectric particles around it may melt at a
lower voltage (Udaya Prakash et al., 2023). As the GV rises, the GRG
decreases right away.

3.6.2 Effect of Ton on GRG
MRR is directly proportional to the energy produced during

this pulse on time. The craters from extended spark timings will

be deeper and wider, giving them an irregular finish. Conversely, a
lesser spark duration aids in achieving a smooth surface finish.

Deep surface craters are left on the workpiece, and a stronger
explosion is produced by a more extended Ton’s high discharge
energy. Deep craters suggest a low quality of the surface and a
large MRR. Larger Ton values should be used to provide a superior
GRG, as Figure 8 illustrates (Soni et al., 2018). For a higher GRG,
10 µs is an appropriate Ton. According to the findings, a higher Ton
causes a more excellent thermal energy transfer from the wire to the
specimen, which in turn causes a higher cutting velocity. The MRR
increases with the discharge energy, but the SR and kerf decrease,
increasing the GRG. This is because more discharge energy causes
an enormous crater, which raises the GRG, and the released energy
increases with the Ton (Dereje et al., 2023; Sahu et al., 2022).

3.6.3 Effect of pulse off time on GRG
The total duration of the rest or gap needed for the dielectric

to reionize is known as the Toff. This duration permits the molten
liquid substance to exit the spark gap. An excessively short Toff may
make sparks uncertain, leading to increased short-circuiting. There
aremore discharges in a given length of timewhen the Toff is shorter.
As a result, there are more discharges, which lowers surface quality
but increases machining speed. Conversely, longer machining times
are produced by longer Toff. The operation will be slowed when the
advancing servomotors retract, and the Toff needs to be longer than
the Ton (Juliyana and Prakash, 2022).
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TABLE 3 Experimental results.

Ex. No. A B C D E MRR
(mm3/min)

SR (µm) GRG Rank

Gap
voltage

(V)

Pulse
on time
(µs)

Pulse
off time
(µs)

Wire
feed

(m/min)

Reinforcement
(wt%)

1 30 2 2 4 3 25.514 3.38 0.587 7

2 30 2 6 6 6 21.423 3.06 0.733 1

3 30 2 10 8 9 17.262 3.57 0.472 21

4 30 6 2 6 9 33.112 3.97 0.553 11

5 30 6 6 8 3 26.104 3.3 0.624 5

6 30 6 10 4 6 25.705 3.51 0.548 12

7 30 10 2 8 6 39.086 3.98 0.693 3

8 30 10 6 4 9 31.122 3.74 0.559 10

9 30 10 10 6 3 25.689 3.59 0.527 14

10 50 2 2 4 3 21.058 3.3 0.583 8

11 50 2 6 6 6 16.457 3.43 0.506 16

12 50 2 10 8 9 13.54 4.02 0.375 26

13 50 6 2 6 9 26.772 3.4 0.592 6

14 50 6 6 8 3 20.165 3.66 0.469 22

15 50 6 10 4 6 19.543 3.07 0.711 2

16 50 10 2 8 6 31.742 3.45 0.637 4

17 50 10 6 4 9 22.764 3.57 0.507 15

18 50 10 10 6 3 20.549 3.59 0.487 19

19 70 2 2 4 3 12.321 3.24 0.563 9

20 70 2 6 6 6 9.995 3.86 0.382 25

21 70 2 10 8 9 8.378 4.21 0.333 27

22 70 6 2 6 9 16.365 3.97 0.395 24

23 70 6 6 8 3 12.339 3.4 0.497 18

24 70 6 10 4 6 11.429 3.45 0.477 20

25 70 10 2 8 6 18.475 3.49 0.500 17

26 70 10 6 4 9 14.489 3.65 0.439 23

27 70 10 10 6 3 12.719 3.29 0.541 13

The experiment’s results demonstrate that the GRG value
decreases with increase in pulse off time. Because of the more
extended non-cutting period, a greater Toff causes a decrease in
cutting velocity. A prolonged Toff narrows the gap but also gives the

debris particles in the gap more time to be flushed out. The ideal
Toff is always employed to stop the aberrant process or avoid wire
rupture (Çakıroğlu and Günay, 2020). The cutting rate increased
during machining with a shorter Toff and more discharges in
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FIGURE 6
Response graphs for GRG.

TABLE 4 Response table for GRG (LM6/B4C/Fly Ash).

Level Gap voltage Pulse on Pulse off Wire feed Reinforcement

1 0.588 0.504 0.567 0.553 0.542

2 0.541 0.541 0.524 0.524 0.576

3 0.459 0.543 0.497 0.511 0.469

Delta 0.129 0.039 0.070 0.042 0.107

Rank 1 5 3 4 2

The bold values are the optimum levels.

a given period, leaving giant craters and surface micro-damage.
Figure 9 illustrates that the ideal Toff to attain a greater GRG
is 2 µs (Yan et al., 2021).

3.6.4 Effect of WF on GRG
A neutral input variable is the wire feed. It is essential to

select the wire feed so that the wire is not damaged. As wire
velocity rises, the GRG grows, as Figure 10 illustrates. The ideal
wire feed setting is 4 m/min (Kumar et al., 2024) to attain
the highest GRG and avoid wire failure. The outcomes of this

research remained unchanged even though it was done on various
materials.

3.6.5 Effect of reinforcement % on GRG
One unaffected input variable is the percentage of

reinforcement. Figure 11 noted that the GRG for 6% hybrid
composites is maximum. In summary, the investigation’s findings
were consistent with those reported in the literature. The outcomes
were constant even though this study was done on various
materials.
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TABLE 5 ANOVA for GRG (LM6/B4C/Fly Ash).

Source of variation DOF Sum of squares Mean sum of squares F0 Contribution (%)

A 2 0.078 0.039 9.75 29.89%

C 2 0.023 0.012 2.88 8.81%

E 2 0.054 0.027 6.75 20.69%

AC 4 0.025 0.006 1.56 9.57%

AE 4 0.031 0.008 1.94 11.88%

Error (Pooled) 12 0.050 0.004 19.16%

Total 26 0.261 100%

FIGURE 7
Effect of GV on GRG.

FIGURE 8
Effect of pulse on time on GRG.

3.7 Discussion on responses

3.7.1 Material removal rate
Longer pulse on time provide more energy and produce

more heat at that moment, which is useful for obtaining more
MRR, but the surface finish decreases (Pramanik and Basak,
2019). Reducing Toff increases cutting speed. The GV regulates

FIGURE 9
Effect of Pulse off time on GRG.

FIGURE 10
Effect of Wire feed on GRG.

the advance and retracts of the wire and acts as a reference
voltage. The number of sparks is limited, the electric discharge
is stabilized, and the cutting rate decreases when the GV
rises because the space between the specimen and the wire
widens (Lingadurai et al., 2012). When the GV is lowered,
the average gap gets smaller, raising the number of electric
sparks and machining rate and enhancing the wire breakage
probability. Peak current, measured in amps, is the phrase used
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FIGURE 11
Effect of reinforcement % on GRG.

to describe the quantity of power used in discharge machining
(Rashedul et al., 2021). Reducing the time between pulses will
improve cutting speed. Peak current directly correlates with an
increase in MRR (Nair et al., 2024).

3.7.2 Surface roughness
The amount of electric discharge is determined by the gap

voltage, peak current increases with the gap voltage, leading to a
higher SR. The dielectric flow rate is the frequency at which the
dielectric fluid is pumped during effective machining. The wire
feed rate will increase the amount of wire used and the machining
cost. Wire breaks when cutting at an elevated current with a
low wire speed. Within a specific range, increasing the tension
of the wire significantly increases cutting speed and accuracy.
The most substantial impact of discharge current on SR has been
determined to be (Sivaprakasam et al., 2022; Aldrin Raj et al.,
2020), with pulse duration. WEDM report states that as Ton,
GV, and I rise, the SR increases, and the SR decreases as
Toff rises (Saini et al., 2013).

4 Conclusion

The following conclusions can be drawn from the
Optimization of WEDM Process Parameters for Machining
Hybrid Composites (LM6/B4C/Fly Ash) using Grey relational
analysis.

1) Hybrid composites in three different weight percentages were
produced using the low cost stir casting method.

2) Optical micrographs confirmed that the reinforcement was
distributed uniformly throughout the matrix.

3) Gap voltage (29.89%) and Pulse off time (20.69%) are the most
significant variables, affecting the GRG.

4) The optimum machining parameters for achieving higher
MRR and lower SR are GV 30 V, Ton “10”µs, “Toff” 2 µs, “WF”
4 m/min, and “R” 6%.

5) The predicted value of GRG is 0.711; however the experimental
GRG value is 0.733. The error is 2.2% which is acceptable, so
the optimization holds good.

6) The hybrid composite produced is new and many new
combinations may be produced and various optimization
techniques may be used in future.
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