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Precision assembly error analysis
of parts based on
multi-constraint surface
matching

Wenbin Tang*, Tong Yan, Jinshan Sun and Yadong Li

School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, Xi’an, China

Existing assembly analysis methods often fail to accurately capture the
complexities involved in the precision assembly of real-world parts. This paper
introduces an advanced precision assembly error analysis method based on
multi-constraint surface matching, aimed at overcoming these limitations.
The proposed approach incorporates interference-free constraints and force
stability constraints to develop an assembly positioning model that better
reflects the realistic assembly process. To solve the model, Spatial Pyramid
Matchingwith chaoticmapping is employed for population initialization, thereby
enhancing population diversity. A nonlinear control mechanism is further
introduced to dynamically adjust inertia weight, and a simulated annealing
mechanism is integrated into the particle swarm optimization algorithm to
enhance the efficiency of the surface matching process. The method ultimately
achieves high-precision multi-constraint surface matching and completes
a comprehensive assembly error analysis. The effectiveness and enhanced
performance of the proposed methodology are validated through the precision
assembly of a vibratory bowl feeder, demonstrating its potential to significantly
improve assembly accuracy in precision manufacturing contexts.

KEYWORDS

surfacematching, error analysis, assembly positioning, precision assembly, SPM chaotic
mapping, particle swarm optimization

1 Introduction

In aerospace, precision instruments, and high-end equipment manufacturing, precision
assembly of parts is a critical factor in ensuring product quality and performance
(Yi et al., 2024). Precision assembly involves assembling multiple finely machined parts
according to specific technological procedures to form a complete unit. Its success
depends on establishing precise fitting relationships between the surfaces of different
components (Liu et al., 2023). However, due to machining errors, part surfaces often
exhibit uneven geometric features at the micro-scale, leading to deviations from the
ideal condition when two mating surfaces are joined, which results in assembly errors.
Furthermore, these assembly errors can propagate and accumulate through multiple
mating constraints within the assembly, posing significant challenges to overall assembly
quality (Zhang et al., 2019). If the assembly quality is unqualified, it will result in
higher costs and time losses (Vashishtha et al., 2025a; Chauhan et al., 2024). Thus,
investigating the matching issues between imperfect part surfaces is a crucial aspect

Frontiers in Mechanical Engineering 01 frontiersin.org

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://doi.org/10.3389/fmech.2024.1519646
https://crossmark.crossref.org/dialog/?doi=10.3389/fmech.2024.1519646&domain=pdf&date_stamp=2025-01-18
mailto:tangwb@xpu.edu.cn
mailto:tangwb@xpu.edu.cn
https://doi.org/10.3389/fmech.2024.1519646
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmech.2024.1519646/full
https://www.frontiersin.org/articles/10.3389/fmech.2024.1519646/full
https://www.frontiersin.org/articles/10.3389/fmech.2024.1519646/full
https://www.frontiersin.org/articles/10.3389/fmech.2024.1519646/full
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org


Tang et al. 10.3389/fmech.2024.1519646

of assembly analysis, offering valuable insights into the impact of
machining errors on assembly quality.

Converting the assembly error analysis problem into a surface
matching problem has gained significant attention from researchers
both domestically and internationally, becoming a promising
research direction. Currently, surface matching studies in the field
of assembly error analysis can be broadly categorized into two
types: unconstrained surface matching and constrained matching.
Han et al. (2016), Wu et al. (2020), and Jingyu et al. (2023) have
used unconstrained surfacematchingmethods to solve the assembly
error analysis problem. Their core idea is to transform the surfaces
of two mating parts into point sets and then use the Iterative Closest
Point (ICP) to determine the correspondence and transformation
matrix between the point sets (Pottmann et al., 2006). While the
proposed surface matching model is simple and highly general, it
oversimplifies the surfacematching process during assembly, leaving
room for improvement in computational accuracy (HAN et al.,
2016). Cheng et al. (2024), Zhang et al. (2024), and Tian et al.
(2023) have addressed the shortcomings of the ICP algorithm by
replacing the point-to-point nearest distance with a point-to-surface
nearest distance method, thereby improving calculation accuracy.
These unconstrained surface matching algorithms only consider
the Euclidean distance between two surfaces, which involves overly
idealized assumptions and neglects engineering constraints present
during the assembly process. To address these limitations, Yan
and Ballu, (2018) and Schleich and Wartzack, (2018) used skin
models to represent surfaces of parts with errors, integrating
interference-free constraints into the surface matching process.
Zhang et al. (2018) replaced the original surfaces of parts with
two substitute surfaces and introduced a surface constraint-based
matching algorithm. To demonstrate its effectiveness, an example
involving the assembly of two cylindrical workpieces was used
to show that this method can better reflect the actual contact
state. Results indicate that considering interference-free constraints
more accurately reflects real-world scenarios. Sun et al. (2019)
and Zhang, (2016) further incorporated force stability constraints
in three-point contact alongside interference-free constraints,
calculating the optimal contact state of the part surfaces. They
used the relative error between the substitute surface formed
by contact points and the ideal surface to represent assembly
error. Furthermore, Sun Q and his team employed the processing
characteristics of a certain gyroscope and conducted strategic
experimental validation. The experimental results demonstrated
that this method is effective in improving assembly accuracy.
This approach extends the engineering constraints required for
surface matching but is limited to matching between a curved
surface and a plane, as well as three-point contact between the two
surfaces. In conclusion, comprehensively considering engineering
constraints during the surface matching process is crucial to
enhancing the accuracy of assembly error analysis. However, current
research is still insufficient, mainly reflected in the following
aspects: many researchers focus only on minimizing the closest
distance between surfaces, leading to results inconsistent with the
actual physical assembly process. While some researchers have
considered either interference-free constraints or force stability
constraints—or both—their methods are not yet applicable to
broader and more complex surface-to-surface matching situations.
Therefore, exploring advanced technologies and methodologies is

crucial for effectively addressing this issue (Vashishtha et al., 2025b).
In view of this, this paper takes into account non-interference
constraints and force stability constraints, aiming to reflect a more
realistic part assembly process and improve assembly accuracy. At
the same time, this method is also applicable to the matching
between curved surfaces.

Surface matching is a crucial research area in assembly error
analysis, aiming to establish a quantitative relationship between
machining errors and assembly errors.The least squaresmethod and
intelligent optimization algorithms are two prominent approaches
for solving these models, both of which have made significant
progress in the field.Wen et al. (2009) and Chen et al. (2023) utilized
the least squares method to calculate the optimal transformation
matrix between point sets, achieving assembly positioning for two
surfaces and determining part assembly errors, with experimental
results demonstrating good performance. Wei W (Wv et al., 2024)
applied the least squares method to determine the actual fitting
clearance of mating surfaces, constructed an error model for planar
and cylindrical features based on error characterization methods,
and verified its effectiveness using a servo system. Although the least
squares method has shown good performance in model solving,
it requires gradient information, which makes it challenging for
complex models. Additionally, this method is not suitable for
solving constrained problems. In contrast, intelligent optimization
algorithms have broader applications in assembly error analysis.
Zhang et al. (2007) employed particle swarm optimization (PSO)
to evaluate errors and conducted comparative experiments with
the least squares method, genetic algorithms, and other techniques,
demonstrating superior accuracy. Yongsheng et al. (2023) combined
genetic algorithms with simulated annealing to measure the
matching between tooth surfaces and theoretical tooth surfaces,
with experiments indicating that the algorithm could compensate
for over 55% ofmeasurement errors. However, the genetic algorithm
used in that study involved complex encoding structures and
multiple steps such as crossover and mutation. Guokai et al. (2022)
utilized PSO to solve the assembly positioning model for 3D
point cloud data, with experimental results showing significant
improvement in accuracy.Thismethod is straightforward, flexible in
parameter adjustment, and achieves high accuracy inmodel solving,
making it advantageous for assembly error analysis. Therefore, this
paper adopts PSO as the solution algorithm for the surfacematching
model. Considering that this study focuses on matching between
two complex surfaces and involvesmultiple engineering constraints,
which may lead the algorithm to fall into local optima, we propose
an improved algorithm based on the fundamental PSO algorithm
from references (Wang et al., 2018; Lin et al., 2022) to enhance its
applicability.

This paper presents a precision assembly error analysis method
for parts based on multi-constraint surface matching. In Section 1,
we introduce interference-free and force stability constraints to
establish an assembly positioning model, incorporating multiple
surfacematching constraints. Corresponding penalty terms are used
for these constraints, and the penalty function method is applied
to transform the constrained problem into an unconstrained one.
In Section 2, we propose an approach utilizing Spatial Pyramid
Matching (SPM) with chaotic mapping for population initialization
to enhance population diversity. To address the susceptibility of
the basic particle swarm optimization (PSO) algorithm to local

Frontiers in Mechanical Engineering 02 frontiersin.org

https://doi.org/10.3389/fmech.2024.1519646
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org


Tang et al. 10.3389/fmech.2024.1519646

FIGURE 1
Assembly positioning process based on multi-constraint surface matching.

optima, we introduce a dynamic inertia weight adjustment method
using a hyperbolic tangent function, and incorporate a simulated
annealing mechanism into the PSO to avoid convergence to
local optima. The improved PSO algorithm is then used to solve
the model. In Section 3, we use a precision-machined vibratory
bowl feeder as the case study and design three sets of experiments
to evaluate the effectiveness of the proposed method and the
performance of the improved PSO algorithm.

2 Assembly positioning based on
multi-constraint surface matching

As illustrated in Figure 1, the assembly positioning process
involves translating and rotating the surface to be matched from its
initial position to the target surface, subject to various engineering
constraints, to achieve optimal alignment between the mating
surfaces. The key steps of this process are as follows: First, sampling
is performed to generate 3D point cloud data, followed by meshing
to convert the data into a triangular mesh model. Subsequently,
under interference-free and force stability constraints, the nearest
distances from the 3D point cloud to the triangular mesh are
calculated to establish corresponding point sets, referred to as the
source point set and the target point set. Finally, iterative translation
and rotation are applied to continuously adjust the position of
the source point set, ensuring optimal alignment with the target
point set.

2.1 Establishment of assembly positioning
model based on multi-constraint surface
matching

The assembly positioning process based on multi-constraint
surface matching is illustrated in Figure 2, with the detailed steps as
follows:

(1) Surface Data Acquisition and Preprocessing. Identify
the two mating surfaces with machining errors—target
surface—target surface S1 and the surface to be matched

S2. Convert target surface S1 into a triangular mesh model
M = {M1 ,M2, ...,Mi, ...,Mn−1,Mn}, where Mi represents the
ith triangular mesh, and n denotes the total number of
triangular meshes. For surface S2, obtain 3D point cloud
data through sampling, with the point set denoted as P =
{P1 ,P2, ...,Pi, ...,Pm−1, Pm}, where Pi represents the jth point in
the point cloud, and m represents the total number of points
in the point cloud.

(2) Calculate the nearest distances from the point cloud to the
triangular mesh to establish the corresponding nearest point
sets between the target surface S1 and the surface to bematched
S2, namely, the target point setMi,0 and the source point setPi,0.
Mi,0 and Pi,0 represent the initial correspondences between the
target surface S1 and the surface to bematched S2 in their initial
positions.

(3) Calculate the homogeneous transformation matrix for point
set P to ensure it meets the objective function (1) under
interference-free and force stability constraints. These two
constraints are explained in detail in Section 2.2.

F(Tk,Rk) =min 1
m

m

∑
i=1
‖RkPi,k−1 +Tk −Mi,k‖ (1)

In this formula, Rk represents the optimal rotation matrix,
whose expression is given by Equation 2. α, β and γ denote the
rotation angles of the point set around the x-axis, y-axis, and
z-axis, respectively. Tk represents the optimal translation matrix,
whose expression is given by Equation 3. tx, ty and tz represent
the translation distances of the point set along the x-axis, y-axis,
and z-axis, respectively. F(Tk,Rk) is the average distance from all
transformed 3D point cloud data points p, after translation and
rotation, to the nearest triangular mesh.

Rk = [
cos β cos γ
cos β sin β
− sin β

sin α sin β cos γ− cos α sin β
sin α sin β sin γ+ cos α cos γ
sin α cos β

cos α sin β cos γ+ sin α sin β
cos α sin β sin γ− sin α cos β
cos β cos β

]

(2)

Tk =
[[[[

[

tx
ty
tz

]]]]

]

(3)
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FIGURE 2
Assembly positioning based on multi-constraint surface registration.

(4) Transform the source point set Pi,k−1 through coordinate
transformation to form a new point set, updating
the position of all 3D point cloud data on surface
S2, denoted as Pi,k = RkPi,k−1 +Tk. Then, based on the
triangular mesh model, determine the nearest point
from point cloud to each triangular mesh to calculate
the objective function, whose expression is given
by Equation 4:

Fk =min 1
m

m

∑
i=1
‖Pi,k −Mi,k‖ (4)

Where ‖Pi,k −Mi,k‖ represents the Euclidean distance between
points Pi,k and Mi,k at the kth iteration, and ‖·‖ denotes
the L2-norm.

(5) Termination Condition Evaluation. If Fk is greater than or
equal to the given threshold ε, return to Step 3, and continue
until the distance meets the requirement or the maximum
number of iterations is reached.

(6) Calculate the final contact points between the target surface
S1 and the surface to be matched S2, and perform assembly
error analysis.

2.2 Constraint conditions

In practical assembly processes, the alignment of two surfaces
involves more than simple positioning; it must also satisfy a set of
defined engineering constraints. In this study, interference-free and
force stability constraints are systematically introduced during each
iteration to achieve a more accurate and realistic representation of
the actual assembly conditions.

(1) Constraint Condition 1: During the matching process, the
target surface S1 and the surface to be matched S2 must remain
interference-free, i.e., no overlapping or intersection occurs
between them.Mathematically, this condition is represented as
di ≥ 0, where di denotes theminimumdistance from a point on
the source surface to the triangular mesh of the target surface.
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FIGURE 3
Non-interference schematic diagram.

FIGURE 4
Single-point contact.

The specific approach to determine whether this condition is
satisfied is as follows: if a point lies on the side of the triangular mesh
where the normal vector is directed, the distance from the point to
the mesh is considered positive. As illustrated in Figure 3, positions
1, 2, and 3 exhibit di < 0, indicating a violation of the constraint,
whereas position four shows di ≥ 0, thereby satisfying the constraint.

To address Constraint Condition 1, this study utilizes the
absolute value of the nearest distance from point cloud data points
to the surface as a penalty term, formulating the penalty expression
as shown in Equation 5.

penalty1 =
{
{
{

0,di ≥ 0

|min (dis tan ces1)|,di < 0
(5)

In this context, |min (dis tan ces1)| represents the absolute value
of the signed nearest distance from a point cloud data point
to surface S1. If di ≥ 0, it indicates that there is no interference
between the two surfaces, penalty1 = 0; whereas if di < 0, it suggests
that interference occurs between the two surfaces, penalty1 =
|min (dis tan ces1)|.

FIGURE 5
Two-point contact.

FIGURE 6
Satisfying force stability condition.

FIGURE 7
Not satisfying force stability condition.
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FIGURE 8
Population initialization based on the spatial pyramid matching (SPM)
with chaotic mapping.

FIGURE 9
Chaos value frequency statistics diagram.

(2) Constraint Condition 2: During the assembly positioning
process, force stability must be ensured. Force stability refers
to the ability of components to maintain a stable state under
certain conditions, which can be analyzed through the contact
state of two surfaces. The contact states between two surfaces
can be categorized as single-point contact (see Figure 4), two-
point contact (see Figure 5), and multi-point contact (see
Figures 6, 7). Single-point contact may lead to instability due
to potential rotation of the surface around the contact point in
any direction. Two-point contactmay also result in instability if
the surface rotates around the line connecting the two contact
points. Therefore, to ensure force stability, at least three non-
collinear contact points are required between the surfaces.

The specific method to determine whether this condition is
satisfied is as follows: assume the point of force Force is located at

a point Q on the surface to be matched S2. Project this point onto
the convex hull formed by the contact points, with the projected
point denoted as Q′. If Q′ lies within the convex hull of the contact
points, the force stability condition is satisfied, as illustrated in
Figure 6; otherwise, the force stability condition is not satisfied,
as shown in Figure 7.

To address Constraint Condition 2, this study utilizes the
minimum Euclidean distance from the point of force to the
boundary of the convex hull as a penalty term, formulating the
penalty expression as shown in Equation 6.

penalty2 =
{
{
{

0,Q′ ∈ CH

min (dis tan ces2),Q′ ∉ CH
(6)

Here, min (dis tan ces2) represents the minimum Euclidean
distance from the point of force to all vertices of the convex
hull formed by the contact points, denoted as CH. If Q′ ∈ CH,
it indicates that Q′ lies within the convex hull formed by the
contact points, thereby satisfying the force stability requirement,
resulting in penalty2 = 0. Otherwise, if Q′ lies outside the convex
hull, the force stability requirement is not satisfied, and penalty2 =
min (dis tan ces2).

Finally, by incorporating the expressions of the above
two constraints, this study employs the penalty function
method to improve the optimization objective, transforming the
multi-constraint optimization problem into an unconstrained
optimization problem. The objective function of Equation 1 is
redefined as Equation 7:

F(Tk,Rk) = min
1
m

m

∑
i=1
‖RkPi,k−1 + Tk −Mi,k‖ +

m

∑
i=1

penalty1+
m

∑
i=1

penalty2 (7)

3 Model solving based on improved
particle swarm optimization algorithm

In the process of solving the surface matching model, the basic
Particle Swarm Optimization (PSO) algorithm is prone to getting
trapped in local optima. Moreover, the random generation of initial
particle positions may lead to uneven distribution of particles. To
address these issues, this study proposes an improved PSOalgorithm
for solving the surface matching model. In the solving process, α, β,
γ, tx, ty, tz are treated as six-dimensional variables, and the improved
objective function from Section 2.2 is used as the fitness function.

To address the shortcomings of the basic Particle Swarm
Optimization (PSO) algorithm in model solving, this study
introduces improvements in the following aspects:

(1) To address the issue of uneven particle distribution caused
by the random generation of initial particle positions in
the Particle Swarm Optimization (PSO) algorithm, which
may negatively affect population diversity (Kang et al., 2024;
Xufan et al., 2021), this study employs the Spatial Pyramid
Matching (SPM) with chaotic mapping to initialize the
population. This approach ensures a uniform distribution of
the initial population and enhances population diversity. The
effectiveness diagram of population initialization based on the
SPM chaotic map is shown in Figure 8. To deeply analyze the
distribution of chaotic values across various ranges, this study
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has conducted statistics on the frequency of occurrence of
midpoints within each chaotic value range and presented the
statistical results in Figure 9. From Figures 8, 9, it is clearly
observable that initializing the population using the Spatial
Pyramid Matching (SPM) with chaotic mapping results in a
well-distributed and uniform characteristic of the population
in space. Therefore, this method can effectively overcome the
potential randomness defects in the population generation
process of the basic PSO algorithm, thereby enhancing
population diversity.

(2) To address the issue of the Particle Swarm Optimization
(PSO) algorithm being prone to local optima, this study
proposes an adaptive adjustment strategy that dynamically
adjusts the inertia weight using a hyperbolic tangent function.
The approach is as follows: Initially, during the early stages
of the search, a slower rate of decrease is employed to
allow the particles sufficient time for global exploration,
thereby reducing the risk of getting trapped in local optima.
Subsequently, in the middle stages of the search, the rate of
decrease is accelerated to enhance local search capabilities.
Finally, as the search approaches its conclusion, the rate of
change is reduced to ensure that the algorithm can focus
effectively on local refinement.

(3) To enhance the global search capability of the Particle
Swarm Optimization (PSO) algorithm, this study proposes an
efficient and accurate hybrid strategy. This strategy integrates
the Metropolis criterion from the Simulated Annealing
algorithm (Yao et al., 2024) into the basic PSO, ensuring
sufficient flexibility for broad exploration of potential solutions
in the initial stages. As the temperature gradually decreases,
the algorithm increasingly focuses on refining the solution to
identify optimal regions.

The model solving process based on the improved Particle
Swarm Optimization (PSO) algorithm is illustrated as follows:

Step 1: Initialize parameters, including population size N, the
number of dimensions for the optimization variables D,
maximum and minimum inertia weight coefficients ωmax
and ωmin, maximum and minimum social learning factors
c1 max and c1 min, maximum and minimum self-learning
factors c2 max and c2 min, maximum number of iterations
kmax, and the simulated annealing factor λ.

Step 2: Use the Spatial Pyramid Matching (SPM) with chaotic
mappingto initialize thepositionandvelocityofallparticles in
the population.The expression for the SPM chaotic mapping
function is shown in Equation 8. Equations 9, 10 are used
to transform the chaotic values into the search space of
the population, thereby obtaining the new initial values for
particle positions and velocities, denoted as Xi

′ and Vi
′.

x(i+ 1) =

{{{{{{{{{{{
{{{{{{{{{{{
{

mod(
x(i)
τ
+ μsin(πx(i)) + r,1),0 ≤ x(i) < τ

mod(
x(i)/τ
0.5− τ
+ μsin(πx(i)) + r,1),τ ≤ x(i) < 0.5

mod(
(1− x(i))/τ
0.5− τ

+ μsin(π(1− x(i))) + r,1),0.5 ≤ x(i) < 1− τ

mod(
1− x(i)

τ
+ μsin(π(1− x(i))) + r,1),1− τ ≤ x(i) < 1

(8)

Xi
′ = Xmin +Xi(Xmax −Xmin) (9)

Vi
′ = Vmin +Vi(Vmax −Vmin) (10)

When τ ∈ (0,1) and ∈ (0,1), the function is in a chaotic state.
Here, i = 1,2, ...,N, where N represents the population size; r is
a random number within the range [0,1] interval, and Xmin,
Xmax, Vmin and Vmax represent the minimum and maximum
values for particle position and velocity, respectively. In the
text, τ = 0.4 and μ = 0.3.

Step 3: Calculate the fitness function value for each particle, and
identify the individual and global optimal solutions based
on these values. The initial temperature for simulated
annealing is set according to Equation 12. In this study, the
improved objective function presented in Section serves as
the fitness function, defined as Equation 11:

Fit = F(Tk,Rk) (11)

t(k) =
{
{
{

Fit(gbestkid)/ log (5),k = 1

t0(k− 1)λ,k > 1
(12)

Here, t0 represents the initial temperature, Fit(gbestkid) denotes
the fitness value of the global optimum, λ is the simulated annealing
coefficient, and k is the current iteration number.

Step 4: Update the velocity of the particle swarm using
Equation 13 and adjust the position of the particle swarm
according to Equation 14. Equations 15–17 are used
to adaptively adjust the inertia weight ω and learning
factors c1 and c2.

Vk+1
id = ω ⋅V

k
id + c1 ⋅ rand ⋅ (pbest

k+1
id −X

k
id) + c2 ⋅ rand ⋅ (gbest

k+1
id −X

k
id) (13)

Xk+1
id = X

k
id +V

k+1
id (14)

ω =
ωmax +ωmin

2
+ tanh(−4+ 8×

kmax − k
kmax
)
ωmax −ωmin

2
(15)

c1 = c1 max −
(c1 max − c1 min) × (k− 1)

kmax − 1
(16)

c2 = c2 max −
(c2 max − c2 min) × (k− 1)

kmax − 1
(17)

Here, i = 1,2, ...,N , where N represents the population size; d =
1,2, ...,D, where D denotes the dimensionality of the optimization
variables; rand is a random number between 0 and 1; pbestkid
represents the individual best solution; gbestkid denotes the global
best solution; ωmax and ωmin represent the maximum andminimum
values of inertia weight, respectively; c1 and c2 represent the social
learning factor and the self-learning factor, respectively; c1 min, c1 max,
c2 min and c2 max denote the minimum and maximum values of
the social and self-learning factors; kmax represents the maximum
number of iterations; k denotes the current iteration number. In the
equations. In the equations, N = 50, D = 6, ωmax = 0.9, ωmin = 0.4,
c1 min = 1.25, c1 max = 2.5, c2 min = 1.25, c2 max = 2.5, kmax = 50.
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FIGURE 10
Assembly drawing of the vibrating disk for net area processing.

TABLE 1 Test Function information.

Function Expression of function Searching space

1 F1 =
D
∑
i=1

xi
2 [-100,100]

2 F2 =
D
∑
i=1
(

i
∑
j=1

xj)
2

[-100,100]

3 F3 =
D
∑
i=1
[xi2 − 10 cos(2πxi) + 10] [-5.12,5.12]

4 F4 = − 20 exp(−0.2(1/D
D
∑
i=1

x2i )
1/2
)− exp((1/D

D
∑
i=1

cos(2πxi2)))+20=e [-32,32]

TABLE 2 The best optimal value of objective function.

Function Improved PSO PSO

1 2.0450e-03 94.3015

2 4.1240 1,287.5914

3 1.3566e-07 88.2627

4 3.1402e-04 4.7273

Step 5: Calculate the fitness value of each particle after the updates
in the previous step, and determine whether it is better
than the previous generation. If the current position
of an updated particle shows a higher fitness than its
historical best position, update the particle’s historical best
position record; otherwise, accept the positionwith a certain
probability. After evaluating all particles, compare and
update the global best value for the entire swarm.

Step 6: According to the Metropolis criterion, calculate the
probability pi(k) of accepting the new solution. The
calculation formula is as Equation 18.

pi(k) =
{{
{{
{

1,Fiti(k) ≥ Fitk

exp(−
Fiti(k) − Fitk

t(k)
),Fiti(k) < Fitk

(18)

Here, Fiti(k) represents the fitness value of particle i in k-th
iteration; Fitk denotes the fitness value of the current global best
position in the swarm; t(k) indicates the temperature at the k-th
iteration.

Step 7: Compare the probability pi(k) with rand(0,1) to determine
whether the new solution generated by particle i should
replace the global best solution for simulated annealing.
If Fiti(k) < Fitk, then the new solution is accepted as the
current solution; if exp(− Fiti(k)−Fitk

t(k)
) greater than a random

number between 0 and 1, the new solution is still accepted as
the current solution. If so, proceed with the cooling process
and update the temperature; otherwise, return to Step 4.

Step 8: Check whether the termination condition for iterations
is met. If not, return to Step 4 to continue with the
next iteration; otherwise, output the current best particle,
which is the optimal solution for the parameter vector
(α,β,γ, tx, ty, tz).

4 Example verification

4.1 Verification case

To validate the effectiveness of the proposedmethod, a precision
machining vibrating disk is selected as the verification object.
This disk primarily comprises components such as the hopper
and chassis, where the quality of assembly has a direct impact on
the accuracy of precision products. Within the vibrating disk, the
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FIGURE 11
Algorithm Iteration Curves. (A) Iteration Curve of Function one test. (B) Iteration Curve of Function two test. (C) Iteration Curve of Function 3 test. (D)
Iteration Curve of Function four test.

TABLE 3 Transformation parameters obtained under three different conditions.

Unconstrained - PSO Unconstrained - improved PSO Constrained -improved PSO

α/∘ 1.0000 0.5733 0.5000

β/∘ 4.8095 × 10−6 0.4410 0.5000

γ/∘ 0.5029 0.5199 0.6693

tx/mm 0.3682 0.2285 0.3800

ty/mm 0.5583 0.3060 0.4031

tz/mm 0.3901 0.4922 0.3977

components are aligned and matched through interfacing surfaces.
The assembly configuration is illustrated in Figure 10. This study
focuses on two critical components, Part1 and Part 2, both of which
have rotational structures with annular planar contact interfaces.

4.2 Algorithm performance test

To verify the performance of the improved particle swarm
optimization algorithm proposed in this study, four test functions

were employed to evaluate both the proposed algorithm and
the basic particle swarm optimization algorithm. The specific
expressions of the test functions and the settings for the search spaces
are detailed in Table 1. Simulations were conducted in theMATLAB
2022a environment, with the population size of particles uniformly
set to 50 and the maximum number of iterations set to 1,000. For
the other parameters of the improved particle swarm optimization
algorithm, the same settings as described in Section 3 of this study
were adopted. For the basic particle swarm optimization algorithm,
a linear inertia weight factor, as shown in Equation 19, is used, with
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FIGURE 12
Comparison of transformation parameters.

FIGURE 13
Algorithm iteration curves under three different conditions.

the other parameters set as follows: ωmax = 0.9, ωmin = 0.4, c2 = 1.7,
c1 = 1.3.

ω = ωmax −
(ωmax −ωmin) × (k− 1)

kmax − 1
(19)

The optimal values obtained from testing the improved
particle swarm optimization algorithm and the basic particle
swarm optimization algorithm using the four functions in Table 1
are shown in Table 2.

As can be seen from Table 2, the optimal values of the objective
functions for the improved particle swarm optimization algorithm
are significantly smaller than those for the basic particle swarm
optimization algorithm. Therefore, the algorithm proposed in this
paper demonstrates higher accuracy.

To visually compare the difference in accuracy between the two
algorithms, iterative curve graphs of the algorithms tested using
different test functions are plotted, as shown in Figure 11.

Observing Figure 11, it can be seen that although the accuracy
of the improved particle swarm optimization algorithm in (a),
(b), and (c) is not as high as that of the basic particle swarm
optimization algorithm at the initial iterations, the accuracy of
(a) and (c) exceeds that of the basic particle swarm optimization
algorithm before 50 iterations, and (b) does so before 100 iterations.
In (c), the accuracy of the improved particle swarm optimization
algorithm is consistently higher than that of the basic particle
swarm optimization algorithm, which verifies that the algorithm
proposed in this study has certain advantages in terms of accuracy.
However, the convergence speed of the basic particle swarm
optimization algorithm is faster than that of the algorithm proposed
in this study, because most particles in the population have
converged to local optima. Nevertheless, the algorithm proposed
in this study can significantly enhance the ability to escape from
local optima, and it can continue to update the global optimum
in the middle to late stages of iterations, thereby improving
the accuracy of the search results. In summary, the improved
particle swarm optimization algorithm presented in this study has
certain advantages.

4.3 Experimental verification

To validate the effectiveness of the proposed method and
the robustness of the improved particle swarm algorithm, we
sampled 1,152 3D point cloud data points from the lower
surface of Part 2, denoted as P = {P1,P2,⋯,P1152}, forming the
source point set. After triangular meshing, the upper surface
of Part 1 consisted of 1,279 triangular meshes, denoted as M =
{M1,M2,⋯,M1279}, which served as inputs to the algorithm. By
searching for the nearest points from the source point cloud
to the triangular meshes, we identified the closest points as
the target point set P′, represented by P′ = {P′1,P

′
2,⋯,P

′
1152}.

Thus, each point in the source point set corresponds to the
nearest point in the target point set, forming a nearest-distance
pairing. Through iterative computation, the algorithm derives
an optimal transformation matrix, output as a parameter
vector (α,β,γ, tx, ty, tz).

For comparative analysis of assembly error, three experimental
groups were set up: the first group used the standard particle
swarm algorithm to solve for a single fixed pose model; the second
group employed the improved particle swarm algorithm for the
same single fixed pose model; and the third group applied the
improved particle swarm algorithm to solve for multiple fixed
pose models.

Through the above three experiments, the transformation
parameters for each experiment were obtained, as shown in Table 3.

The transformation parameters in Table 3 are visualized
in Figure 12. For parameter α, the third experimental group exhibits
the largest deviation from the first group, with an error of 0.5000.
For parameter β, the value in the first group is nearly zero, showing
a substantial discrepancy compared to the other two groups. For
parameter γ, the first and second groups are relatively close, while the
third group shows deviations of 0.1664 and 0.1194 from the first and
second groups, respectively. For parameter tx, the values of the first
and third groups are comparable, with the second group differing by
0.0118 and 0.1515 from the other two groups. For parameter ty, the
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TABLE 4 Interference points under three different conditions.

Condition Unconstrained - PSO Unconstrained - improved PSO Constrained -improved PSO

Number of Interference Points 399 503 0

Percentage of Total Points 34.64% 43.66% 0

TABLE 5 Contact point coordinates obtained using unconstrained PSO.

Contact point Coordinates (mm)

Contact Point 1 (22.2171, −43.4786, −0.0037)

Contact Point 2 (32.1970, −31.0503, −0.0048)

Contact Point 3 (35.6475, 3.7120, −0.0044)

TABLE 6 Contact point coordinates obtained using unconstrained -
improved PSO (mm).

Contact point Coordinates (mm)

Contact Point 1 (0.8418, −35.7242, −0.0051)

Contact Point 2 (−23.6145, −29.4719, −0.0052)

Contact Point 3 (−39.8441, −11.0183, −0.0052)

Contact Point 4 (41.8198, −5.3288, −0.0056)

Contact Point 5 (45.9448, 2.8126, −0.0053)

Contact Point 6 (31.8108, 31.4595, −0.0056)

TABLE 7 Contact point coordinates obtained using multiple constrained
improved PSO (mm).

Contact point Coordinates (mm)

Contact Point 1 (−43.8114, 11.4948, −0.0049)

Contact Point 2 (−27.7549, 23.5857, −0.0042)

Contact Point 3 (−15.2698, −46.3871, −0.0035)

Contact Point 4 (−5.1604, −44.9999, −0.0045)

Contact Point 5 (5.7417, −46.3880, −0.0042)

Contact Point 6 (46.5777, 10.3018, −0.0038)

first and second groups exhibit the greatest difference, with an error
of 0.2523. Finally, for parameter tz, the second group achieves the
highest value.

Figure 13 presents the changes in optimal fitness values over
iterations for the three experimental conditions. Upon completing
the iterations, the target fitness values under the three different
conditions were 1.5375 × 10−3 mm, 1.0914 × 10−3 mm and 2.4345

FIGURE 14
Assembly positioning results using unconstrained PSO.

FIGURE 15
Assembly positioning results using unconstrained improved PSO.

× 10−3 mm, respectively. The results demonstrate that the improved
particle swarm algorithm achieved 29% higher accuracy than the
basic particle swarm algorithm when solving the unconstrained
fixed pose model, validating the robustness of the improved
algorithm. When the improved particle swarm algorithm was
applied to solve themultiple constrained fixed posemodel, the target
fitness value was 1.6 times that of the unconstrained model solved
with the basic algorithm, and 2.2 times that of the constrained fixed
pose model solved with the basic algorithm.The lower target fitness
value observed for the multiple constrained fixed pose model using
the improved particle swarm algorithm, in comparison with the
other two cases, will be further discussed with reference to Table 4
in the subsequent analysis.
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FIGURE 16
Assembly positioning results using multiple constraints with
improved PSO.

In Figure 13, it can be observed that the fitness function value
of the improved particle swarm algorithm without constraints is
higher than that of the basic particle swarm algorithm at the initial
stage. However, in the final stage of the search, the fitness function
value of the improved particle swarm algorithm is lower than that
of the basic algorithm, indicating higher accuracy.This validates the
effectiveness of the improvement strategy proposed in this paper.

Table 4 outlines the interference conditions across three
scenarios, detailing both the number of interference points and
their percentage relative to the total points. To assess the validity of
the non-interference constraint proposed in this study, we examined
the frequency of interference points in each experimental group.The
statistical is as follows: by calculating the signed distance between the
point cloud and the triangular grid, if the signed distance is positive,
it means that the point is “above” relative to the grid, that is, the point
is an interference point; On the contrary, if the calculated signed
distance is negative, it means that the point is “blow” relative to the
grid, that is, it is not an interference point. The result shows that the
first experiment exhibited interference in 34.64% of the points, while
the second experiment showed interference in 43.66% of the points.
Notably, the third experiment displayed no interference. These
results confirm the reasonableness of imposing a non-interference
constraint between the two surfaces, as a sole focus on minimizing
the distance does not adequately capture the realities of the assembly
process. Furthermore, they support the appropriateness of the third
experiment’s higher target function value at the conclusion of the
iteration process.

Upon completion of the surface matching, the final contact
points between the two surfaces were computed. The coordinates of
these contact points, obtained under the three different conditions,
are presented in Tables 5–7, respectively.

In the assembly positioning results obtained under the three
different conditions, the convex hull formed by the contact
points is visualized in Figures 14–16, respectively. Given that
the hopper exerts pressure on the lower components when
loaded, the position of the force in these figures represents the
location of the equivalent force. The results demonstrate that
in Figure 14, the force projection point lies outside the convex
hull formed by the contact points, indicating non-compliance
with stability requirements. Conversely, in Figures 15, 16, the

force projection points are contained within the convex hull,
thereby meeting stability requirements. These findings confirm
the necessity of incorporating force stability considerations in the
proposed method.

5 Conclusion

This study presents a precision assembly error analysis method
utilizing multi-constrained surface matching to capture the
complexities inherent more accurately in real-world precision
assembly processes. In constructing the assembly positioningmodel,
this approach incorporates non-interference and force stability
constraints to provide a more authentic and accurate representation
of surface matching. For model optimization, SPM chaotic mapping
was utilized for population initialization to enhance diversity,
while a hyperbolic tangent function was applied as a nonlinear
control strategy to dynamically adjust inertia weight. Additionally,
a simulated annealing mechanism was integrated into the particle
swarm optimization (PSO) algorithm to overcome the tendency
of conventional PSO to become trapped in local optima. The
proposed method was validated through an assembly experiment
involving a precision machining vibrating disk. Results from three
experimental groups indicate that the improved algorithm not only
offers superior accuracy compared to the original PSO but alsomore
accurately reflects the actual contact conditions, aligning closely
with the practical assembly process. Future research could further
explore the effects of force magnitude on the positioning of contact
points between two mating surfaces with inherent tolerances in
precision assembly, as well as the impact of deformation caused
by assembly forces on assembly errors. Taking into account the
uncertainty in experimental measurements and the mechanism
of how this uncertainty propagates through the analysis process,
further research is also needed to establish a relationship between
predicted assembly errors and experimentally measured errors.
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