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Background: In the power system, the identification of the health status of the
transmission tower is a daily task that must be performed. In addition, bolt
loosening is a common damage mode affecting the main materials of
transmission towers. When bolt loosening occurs, it weakens the bearing
capacity of the transmission tower. If not detected and addressed in a timely
manner, serious adverse events, such as tower collapse, may occur which will
endanger the normal operation of the power system.

Methods: Based on this, in order to ensure the normal operation of the
transmission tower and improve the identification effect of bolt loosening, the
GP-BP neural network algorithm was applied to the detection process. The
feasibility of this algorithm was evaluated through the quantitative analysis of
different damage degrees.

Result: The results are as follows: 1) except for the average accuracy rate of
substructure 7, which is 89.74%, the identification accuracy of other
substructures is more than 90%, indicating that the GA-BP neural network
algorithm is effective in identifying the single-damage degree of the tower
bolt loosening in the main material; 2) the identification accuracy of double-
damage substructure is also more than 90%, indicating that the GA-BP algorithm
is effective in identifying the double-damage degree of the tower bolt loosening
in the main material.

Conclusion: In summary, it can be concluded that both the single- and double-
damage degree conditions exhibit a relatively considerable recognition accuracy.
In addition, the recognition effect of the algorithm under the double-damage
degree condition is better than that of the single-damage degree condition.
Therefore, it can be applied in practical projects involving double-damage degree
conditions to improve the recognition effect of bolt-loosening faults and provide
reliable technical support for the safe operation of transmission equipment.
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Introduction

A transmission tower is a crucial part of the power system, and the bolt serves as a key
connection element in the tower structure. Faults in these bolts can inhibit the normal
operation of the equipment and hence affect the safety of the transmission line (Lu et al.,
2024; Wang et al., 2023; Tian et al., 2022; Jiang et al., 2021). For the fault detection of tower
bolts, traditional methods often rely on manual inspection or regular maintenance, which
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has low efficiency and high cost. The GA-BP neural network
algorithm is an avant-garde algorithm with excellent
generalization ability in fault detection (Yang and Li, 2023).
Combined with the GP-BP neural network algorithm and
optimization strategy, the abnormal state of tower bolts can be
identified more accurately and quickly, and the fault detection
efficiency and accuracy of equipment can be improved (Li et al.,
2023). Therefore, the detection of bolt-loosening faults in
transmission towers using this algorithm has positive practical
significance and value for the power transmission industry.

In order to improve the accuracy of detecting transmission
tower bolt-loosening faults, two domestic scholars, Wan
Shuting and Sun Ruibin, proposed a fusion detection
algorithm. Using this fusion algorithm, a sensitivity analysis
of local measurement points on the tower was carried out, and it
was found that the loosening of transmission tower bolts could
be detected with the fusion algorithm, which has a relatively
considerable detection effect. It has contributed to the
development of local bolt-loosening detection of towers
(Wan et al., 2023). In the same year, to avoid interfering
with the operation of transmission towers, Liu Jie, Wang
Xiangdong, and other scholars conducted targeted research
on bolt-loosening faults and proposed a fault detection
method based on wavelet energy in general. Vibration signals
before and after bolt loosening were obtained through pulse
excitation, and then the obtained original data were
decomposed by a wavelet to find out the energy spectrum of
each frequency band. The loosening of bolts is determined by
comparing the change law between the two sections of tower
materials, which aids in the detection of bolt faults (Liu et al.,
2023). With the aim of not affecting the normal operation of
transmission towers, Liu Guanghui and Wu Chuan et al.,
conducted quantitative empirical research on the bolt
fastening characteristics of transmission towers and found
that the residual preload of the bolt is in inverse proportion
to the vibration amplitude; after increasing the vibration
amplitude, it will decrease, but it is difficult to use vibration
frequency to affect the dynamic characteristics of transmission
tower bolts. At the same time, after the lubrication intervention,
it is found that the residual preload of the bolt surface is
reduced, indicating that, in practice, when the preload of the
bolt is determined to be too high, the lubrication operation can
be used to intervene. In addition, it is found that the loosening
probability and data discreteness are inversely related to the
initial preload and decrease with an increase in the initial
preload. This study provides a basis for detecting bolt-
loosening faults and has a positive promoting effect (Liu
et al., 2022). In order to solve this problem, an adaptive
clustering weighting algorithm is used to mitigate the
problem of oversampling and improve the effect of fault
diagnosis (Li et al., 2024). In order to solve the problem of
abnormal vibration data, AI designed a multi-layer perceptron,
which can effectively detect the problem of abnormal vibration
data and provide convenience for such data processing (Fan
et al., 2024). It is not difficult to find that many domestic
scholars have joined the research on the loosening of
transmission tower bolts and have achieved certain results.
However, in essence, this kind of research is one-way, cannot

be used in other bolt-loosening problem monitoring conditions,
and has certain limitations.

In this paper, the GP-BP neural network algorithm is a fusion
algorithm that can deal with bolt loosening under different
conditions, such as single- and double-damage conditions, and
will not be constrained by conditions. Therefore, this algorithm
will be used to detect faults in transmission tower bolts. The
feasibility of this method is tested empirically, and the final result
can capture the bolt-loosening fault through this more
comprehensive detection method to ensure the normal operation
of the transmission tower.

Transmission tower bolt loose fault
detection method

Overview of the genetic algorithm

The genetic algorithm is a type of random optimization search
method (Tang et al., 2019). It finds the optimal solution by simulating
the natural evolution process. Its main feature is its ability to directly
manipulate structural objects without being limited by derivation and
functional continuity. It also has inherent implicit parallelism and high
global optimization capability. By using probability optimization
methods, the optimized search space can be automatically obtained
without the need for certain rule guidance, and the search direction can
be adaptively adjusted. Due to the fact that the overall search strategy
and optimization search methods of genetic algorithms do not rely on
gradient information or other auxiliary knowledge, only the objective
function and corresponding fitness function that affect the search
direction are needed, providing a universal framework for solving
complex system problems. It is not dependent on the specific
domain of the problem and is, therefore, widely used in
combinatorial optimization. Machine learning, signal processing, and
adaptive control are key technologies in modern intelligent computing.

Basic steps of the genetic algorithm

It is not difficult to find through the analysis of genetic
algorithms that their genetic operations can be divided into three
modes: first, selection; second, crossover; and third, mutation.
Under this optimal choice, the optimal solution is determined.
The specific process is shown in Figure 1.

Design of the BP neural network based on
genetic algorithm optimization

In the damage identification process, if the BP neural network is
used alone, there is a high possibility of unfriendly convergence (Xie
et al., 2023). Since the network structure and number of hidden layer
neurons simultaneously calculate the threshold and weight of the
algorithm through trial calculation, scholars will add other
algorithms to intervene in order to improve the generalization
ability of the BP neural network algorithm, and the genetic
algorithm is particularly suitable for optimization problems with
only coding concepts; in general, it is used to adjust the threshold
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FIGURE 1
Genetic algorithm flow.

FIGURE 2
Process of optimizing the BP neural network using the genetic algorithm.

FIGURE 3
Identification process.
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and weight of the algorithm (Yang and Li, 2023). It is also applied to
structural damage identification. Genetic algorithms encode the
parameters, not the parameters themselves. At the same time, the
optimal solution is obtained through a group search. Genetic
algorithms are different. The selection, crossover, and mutation

of the algorithms are carried out in a probabilistic manner, rather
than using a completely random blind search. The shortcomings of
the BP algorithm are addressed. In order to comprehensively analyze
the integration of genetic and BP algorithms, three levels are
analyzed: first, the structure of the BP algorithm is determined;

TABLE 1 Main rod numbers of substructures 1–9.

Substructural region Member number Number of
rods

Substructure 1 1, 4, 7, and 10 4

Substructure 2 13, 14, 17, 18, 21, 22, 25, and 26 8

Substructure 4 15, 16, 19, 20, 23, 24, 27, 28, 62, 63, 64, and 65 12

Substructure 4 70, 71, 72, 73, 66, 67, 68, and 69 8

Substructure 5 74, 75, 76, 77, 78, 79, 80, and 81 8

Substructure 6 300, 301, 303, 304, 309, 311, 326, 327, 329, 330, 331, 335, 337, 352, 353, 355, 356, 358, 359, 360, 361, 363, 78, 379, 381,
382, 383, 384, 387, and 389

31

Substructure 7 451, 453, 454, 456, 457, 459, 460, 461, 462, 463, 466, 465, 466, 467, 469, 470, 471, 472, 473, 474, 476, 477, 478, 479,
480, 481, 482, 483, 484, 486, 487, 488, 489, and 490

31

Substructure 8 451, 452, 453, 454, 455, 456, 457, 459, 460, 461, 462, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 476, 477,
478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 489, and 490

36

Substructure 9 493, 498, 500, 502, 503, 506, 507, 510, 511, 512, 516, 517, 520, 521, 524, and 525 16

TABLE 2 Quantitative identification results of single damage of substructure 1 member.

Damaged member number Damage degree Theoretical output Actual output Relative error

1 85% 0.85 0.8266 2.23%

75% 0.75 0.7319 1.81%

65% 0.65 0.6437 0.63%

55% 0.55 0.5456 0.44%

45% 0.45 0.4410 0.90%

4 85% 0.85 0.8533 0.33%

75% 0.75 0.7525 0.25%

65% 0.65 0.6539 0.30%

55% 0.55 0.5517 0.17%

45% 0.45 0.4596 0.96%

7 85% 0.85 0.8597 0.97%

75% 0.75 0.7614 1.14%

65% 0.65 0.6628 1.28%

55% 0.55 0.5647 1.47%

45% 0.45 0.4585 0.85%

10 85% 0.85 0.8566 0.66%

75% 0.75 0.7548 0.48%

65% 0.65 0.6522 0.22%

55% 0.55 0.5519 0.19%

45% 0.45 0.4596 0.96%
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TABLE 3 Quantitative identification results of single damage of substructure 2 member.

Damaged member number Damage degree Theoretical output Actual output Relative error

13 85% 0.85 0.8482 0.2%

75% 0.75 0.7421 0.79%

65% 0.65 0.6366 1.34%

55% 0.55 0.5543 0.43%

45% 0.45 0.4745 2.45%

14 85% 0.85 0.8441 0.59%

75% 0.75 0.7559 0.59%

65% 0.65 0.6555 0.55%

55% 0.55 0.5494 0.06%

45% 0.45 0.4566 0.66%

17 85% 0.85 0.8334 1.66%

75% 0.75 0.7419 0.81%

65% 0.65 0.6548 0.48%

55% 0.55 0.5708 2.08%

45% 0.45 0.4859 3.59%

18 85% 0.85 0.8499 0.01%

75% 0.75 0.7471 0.29%

65% 0.65 0.6462 0.38%

55% 0.55 0.5501 0.01%

45% 0.45 0.4722 2.22%

21 85% 0.85 0.8441 0.59%

75% 0.75 0.7516 0.16%

65% 0.65 0.6516 0.16%

55% 0.55 0.5577 0.77%

45% 0.45 0.4766 2.66%

22 85% 0.85 0.8511 0.11%

75% 0.75 0.7580 0.8%

65% 0.65 0.6694 1.94%

55% 0.55 0.5788 2.88%

45% 0.45 0.4985 4.85%

25 85% 0.85 0.8563 0.63%

75% 0.75 0.7541 0.41%

65% 0.65 0.6402 0.98%

55% 0.55 0.5399 1.01%

45% 0.45 0.4704 2.04%

26 85% 0.85 0.8355 1.45%

75% 0.75 0.7499 0.01%

65% 0.65 0.6548 0.48%

(Continued on following page)
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second, the fusion of the genetic algorithm is analyzed; and third, the
prediction of the BP algorithm is made. Among them, under the
influence of the fitting function, the number of partial parameters is
obtained, and based on this, the individual length of the genetic
algorithm is implemented. The individual fitness value is calculated
using the fitness function. Through selection, crossover, and
mutation operations, the genetic algorithm can find the optimal

adaptive value of the corresponding individual. Under the influence
of the genetic algorithm, the optimal individual is obtained, then the
threshold and weight are scheduled, and the final prediction
function is obtained through training. The specific process of
optimizing the BP algorithm through this algorithm is shown
in Figure 2.

Parameter selection and
detection process

Natural frequency change rate

When the structure is damaged, the variable Δωi of the ith-order
frequency is related to the change ΔK in K of the structure stiffness
matrix and the damage position parameter r. The formula is as
follows Formula 1:

Δωi � f i ΔK, r( ). (1)

Using the series expansion and ignoring the highest term, we can
obtain Formula 2

Δωi � ΔKgi r( ). (2)

Assuming that no mass loss occurs in the structure and that the
second-order term is ignored, the vibration mode of the structure is
shown in Formula 3:

Δω2
i �

ϕT
i ΔKϕi

ϕT
i ΔMϕi

. (3)

The overall stiffness matrix of the structure is decomposed into
several element stiffness matrices, and the variable form of the
element can be obtained Formula 4:

εm ϕ( ) � f ϕ( ), (4)

where εm represents unit deformation and m indicates the unit
number. Further derivation leads to Formula 5:

ϕT
i ΔKϕi � ∑M

m−1
εTm ϕi( )Δkmεm ϕi( ), (5)

where M represents the total number of units. For a single damaged
unit, it can be calculated using Formula 6.

Δω2
i �

εTN ϕi( )ΔkNεN ϕi( )
ϕT
i Mϕi

. (6)

At this time, let ΔkN � αNKN because different elements have
different influences on the structural stiffness. αN � ΔkN

KN
is a

matrix form, and by substituting Formula 6, we can obtain
Formula 7

TABLE 3 (Continued) Quantitative identification results of single damage of substructure 2 member.

Damaged member number Damage degree Theoretical output Actual output Relative error

55% 0.55 0.5477 0.23%

45% 0.45 0.4605 1.05%

FIGURE 4
Convergence results of substructure 1 damage quantitative
identification.

FIGURE 5
Convergence results of substructure 2 damage quantitative
identification.
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Δω2
i �

αNεTN ϕi( )kNεN ϕi( )
ϕT
i Mϕi

. (7)

By substituting the vibration equation, we can obtain Formula 8

K + ΔK( ) − ω2 + Δω2( ) M + ΔM( )[ ] ϕ + Δϕ( ) � 0. (8)

Finally, integration yields the damage identification equation for
the frequency change rate Formula 9:

FCRi � Δωi

ωi
�

�������
ϕT
i ΔKϕi

ϕT
i Kϕi

√
�

���������������
αNεTN ϕi( )KNεN ϕi( )

ϕT
i Kϕi

√
. (9)

It can be observed thatwhen the damage location is determined in the
damage identification process, the frequency change rate can be used as a
judgment indicator. Therefore, the frequency change rate will be used as
the indicator of bolt-loosening failure to carry out damage identification.

Identification process

The basis for the quantitative identification of bolt-loosening damage
through the GA-BP neural network is to first locate the damage within
the substructure and then identify the degree of damage to the main
material members within the substructure where bolt-loosening damage
occurs. The flow diagram is shown in Figure 3.

Result analysis

GA-BP neural network sample settings

In this paper, the GA-BP neural network is simulated by the
numerical method, with the main material damage occurring in the
same substructure as a case example.

The quantitative method of bolt-loosening damage is verified,
and the optimal substructure for bolt-loosening damage on the main
steel tower is divided into nine substructure divisions, referred to as
substructure models. Therefore, the main steel in the same
substructure within substructure model I is taken as the research
object, and the main rod numbers of substructures 1 to 9 are shown
in Table 1.

Fault detection results under single-damage
loosening conditions

Through fault detection under single-damage loosening
conditions, the quantitative identification results for single-
damage conditions in substructures 1 and 2 were obtained, as
shown in Tables 2, 3, respectively. The convergence of the
damage quantitative identification for substructures 1 and 2 is
shown in Figures 4, 5, respectively. After continuous debugging,
it was determined that the optimal number of intermediate
neurons for substructure 1 is set to 8, and for substructure 2,
it is set to 11.

According to the results displayed in Figure 4, the minimum
error value of the member in substructure 1 is achieved when the
genetic algebra is 13. According to Table 2, the maximum relative
error value of the member in substructure 1 is 2.24%, and the
relative error value of all the members in the working condition is
less than 5%. According to Figure 5, the minimum error value of
the member in structure 2 is achieved when the genetic algebra is
33. According to Table 3, the maximum relative error value of
substructure 2 is 4.85%, and the relative error value of all the
members and working conditions is also within 5%. It shows that
the GA-BP neural network algorithm can effectively identify the
damage degree of the members of substructures 1 and 2. In order

FIGURE 6
Recognition accuracy of different substructure regions.
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to better discuss the applicability of the GA-BP neural network
algorithm in identifying single-damage degrees, the identification
accuracy of different substructure regions was tested, as shown
in Figure 6.

It can be observed that, except for substructure 7, which has
an average accuracy of 89.74%, the recognition performance of
the remaining substructures exceeds 90%, indicating that the
GA-BP algorithm is effective in identifying the degree of single
damage to the loose main materials of iron tower bolts.

Substructures 1 to 6 represent the average accuracy of
single-damage identification for the main material of the
tower body, while substructures 7 to 9 represent the average
accuracy of single-damage identification for the main material
of the tower head. Moreover, the average accuracy of single-
damage identification for the main material of the tower body is
higher than that for the tower head, indicating that the single-
damage identification indicators obtained when the main
material of the tower body is damaged are more sensitive

TABLE 4 Fault detection results of substructure 1 under both damage and loosening conditions.

Damaged member number Damage degree Theoretical output Actual output Relative error

1 and 7 85% 0.85 0.8548 0.48%

75% 0.75 0.7517 0.17%

65% 0.65 0.6517 0.17%

55% 0.55 0.5529 0.29%

45% 0.45 0.4624 1.24%

4 and 10 85% 0.85 0.8566 0.66%

75% 0.75 0.7539 0.39%

65% 0.65 0.6533 0.33%

55% 0.55 0.5536 0.36%

45% 0.45 0.4613 1.13%

1 and 10 85% 0.85 0.8593 0.93%

75% 0.75 0.7554 0.54%

65% 0.65 0.6562 0.62%

55% 0.55 0.5571 0.71%

45% 0.45 0.4668 1.68%

4 and 7 85% 0.85 0.8576 0.76%

75% 0.75 0.7528 0.28%

65% 0.65 0.6527 0.27%

55% 0.55 0.5533 0.33%

45% 0.45 0.4642 1.42%

1 and 4 85% 0.85 0.8522 0.22%

75% 0.75 0.7521 0.21%

65% 0.65 0.6533 0.33%

55% 0.55 0.5544 0.44%

45% 0.45 0.4646 1.46%

7 and 10 85% 0.85 0.8477 0.23%

75% 0.75 0.7514 0.14%

65% 0.65 0.6548 0.48%

55% 0.55 0.5561 0.61%

45% 0.45 0.4658 1.58%
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TABLE 5 Fault detection results of substructure 2 under both damage and loosening conditions.

Damaged member number Damage degree Theoretical output Actual output Relative error

13 and 21 85% 0.85 0.8487 0.13%

75% 0.75 0.7508 0.08%

65% 0.65 0.6477 0.23%

55% 0.55 0.5514 0.14%

45% 0.45 0.4638 1.38%

14 and 22 85% 0.85 0.8485 0.15%

75% 0.75 0.7512 0.12%

65% 0.65 0.6516 0.16%

55% 0.55 0.5528 0.28%

45% 0.45 0.4531 0.31%

17 and 25 85% 0.85 0.8471 0.29%

75% 0.75 0.7471 0.29%

65% 0.65 0.6364 1.36%

55% 0.55 0.5392 1.08%

45% 0.45 0.4531 0.31%

18 and 26 85% 0.85 0.8522 0.22%

75% 0.75 0.7523 0.23%

65% 0.65 0.6538 0.38%

55% 0.55 0.5521 0.21%

45% 0.45 0.4510 0.10%

13 and 17 85% 0.85 0.8452 0.48%

75% 0.75 0.7529 0.29%

65% 0.65 0.6419 0.81%

55% 0.55 0.5544 0.44%

45% 0.45 0.4686 1.86%

21 and 25 85% 0.85 0.8466 0.34%

75% 0.75 0.7527 0.27%

65% 0.65 0.6519 0.19%

55% 0.55 0.5543 0.43%

45% 0.45 0.4685 1.85%

25 and 13 85% 0.85 0.8489 0.11%

75% 0.75 0.7542 0.42%

65% 0.65 0.6536 0.36%

55% 0.55 0.5556 0.56%

45% 0.45 0.4655 1.55%

21 and 17 85% 0.85 0.8432 0.68%

75% 0.75 0.7518 0.18%

65% 0.65 0.6496 0.04%

(Continued on following page)
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than those obtained when the main material of the tower head
is damaged.

Fault detection results under double
damage and loosening conditions

Taking substructures 1 and 2 as examples, the double-
damage conditions were quantitatively identified, and the
results are shown in Tables 4, 5. The resulting convergence is
shown in Figures 7, 8. After continuous debugging, it is
determined that the optimal number of interneurons in
substructure 1 is set to 9, and the optimal number of
interneurons in substructure 2 is set to 10.

Figure 7 shows that the double-damaged member in
substructure 1 achieves the minimum error when the genetic
algebra is 16. Table 4 shows that the maximum relative error is
1.68% when nos 1 and 10 members are damaged at the same
time in substructure 1, and the relative error values of all
members are within 5% under working conditions. Figure 8
shows that the double-damaged member in structure 2 has
reached the minimum error when the genetic algebra is 50.
Table 5 shows that in substructure 2, when the member nos
21 and 25 are damaged at the same time, the maximum relative
error is 1.86%, and the relative error values of all the members

and working conditions are within 5%. It shows that the GA-BP
neural network algorithm can effectively identify the damage
degree of the members of substructures 1 and 2. In order to
better discuss the applicability of the GA-BP neural network
algorithm in dual damage degree recognition, the comparison
diagram of recognition accuracy in different substructure
regions is shown in Figure 9.

Figure 9 shows that the recognition effect of double-damage
substructure has exceeded 90%. Among them, the lowest
recognition accuracy rate is 91.3%, while the highest is
99.56%; the recognition accuracy rate of other substructure
regions fluctuates at approximately 95%, and the recognition
accuracy is relatively stable, indicating that the GA-BP
algorithm is effective in identifying the double-damage
degree of the tower bolt loosening. In the double-damage
degree identification, the average accuracy of tower body
identification is higher than that of tower head
identification, indicating that the double-damage
identification index is more sensitive to damage in the tower
body than that in the tower head. Compared with the results of
the damage recognition degree of the single-damage model, it
can be observed that when the double damage occurs in the
tower member, the recognition accuracy is higher than that of
the single damage of the tower member on the whole, indicating
that the double-damage index is more sensitive and consistent
with the actual engineering law.

TABLE 5 (Continued) Fault detection results of substructure 2 under both damage and loosening conditions.

Damaged member number Damage degree Theoretical output Actual output Relative error

55% 0.55 0.5481 0.19%

45% 0.45 0.4599 0.99%

FIGURE 7
Identification convergence results of sub-structure 1 under
double damage and loosening conditions.

FIGURE 8
Identification convergence results of sub-structure 2 under
double damage and loosening conditions.
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Conclusion

On the basis of locating loosening damage in the main bolt
of the tower, a quantitative identification method for bolt-
loosening damage is proposed using the GA-BP neural
network algorithm. Specifically, the quantitative damage
identification of different substructures under single- and
double-damage conditions is carried out, confirming the
feasibility of the algorithm. The work and conclusions
obtained are as follows: 1) in this work, the change rate of
the whole tower’s natural frequency is taken as the damage
index, and the GA-BP neural network algorithm is used to
quantitatively identify the loosening damage of the main bolt of
the tower. 2) Single- and double-damage conditions are set for
the main rods in different substructures, and training using the
GA-BP neural network algorithm is used to effectively identify
the damage degree of the damaged members. 3) Under single-
damage conditions, the average accuracy rate of the quantitative
damage identification of the main rod in substructure 7 is
89.7%, and the average accuracy rate for the remaining
substructures exceeds 90%; under double-damage conditions,
the average accuracy rate of the quantitative damage
identification of all the substructure rods exceeds 90%. It
shows that the GA-BP neural network algorithm is effective in
identifying single- and double-damage conditions. Due to the
conclusion regarding the tower head, the identification effect of
tower body damage has been obtained. On the whole, the research
method proposed in this paper can cope with bolt fault
identification under different damage conditions. However, due
to limitations in knowledge, experience, and time, other material
damage identification methods, such as for transverse partition,
pole and tower inclines, and auxiliary materials, have not been
examined nor compared with the most recent damage
identification methods. In the future, we will focus on these
aspects to gradually fill the research gap and improve the
identification quality of each component of the tower.
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