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In industry, the monitoring and diagnosis of production processes are crucial
issues in ensuring plant reliability, performance and quality. In particular, food
processing operations, such as coffee roasting, are subject to numerous risks of
failure that can impact on productivity and the quality of the final product. In this
context, themain objective of this study was to develop an innovative method for
the diagnosis and prognosis of failures in a coffee roasting process. The proposed
method differs from standard approaches by using the particle swarm
optimization (PSO) algorithm applied to the analysis of signatures of key
process variables. This new approach has improved fault detection, with a
recognition rate of over 90% for the main types of fault identified, such as
heating problems, air obstructions or leaks. In addition to diagnostics, the
method has also demonstrated its effectiveness in prognosticating the state of
health of the process, with an average error on the prediction of remaining service
life reduced to 15%, compared with 35% for fixed-threshold methods. This work
has therefore enabled us to develop an innovative method offering superior
performance to standard approaches for the diagnosis and prognosis of failures in
the roasting process.
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1 Introduction

1.1 Background and importance of failure diagnosis in
soybean roasting processes

Soybean roasting is a crucial stage in the production of soy-based foods and biofuels.
This complex thermochemical process allows for the deep modification of the physical,
chemical, and organoleptic properties of soybeans, thus improving their flavor, texture,
color, and digestibility (Saravacos and Kostaropoulos, 2002; Mujumdar, 2006; Toledo et al.,
2007). However, potential failures in these soybean thermal processing operations can have
devastating consequences in terms of finished product quality, energy efficiency, and
operator safety. As Grau et al. (2014) rightly point out, “breakdowns in roasting equipment
lead to high maintenance costs and can seriously compromise product quality and
worker safety”.
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Early and accurate diagnosis of failures in soybean roasters is
therefore crucial to ensure the reliability, durability, and optimal
performance of these complex industrial installations. According to
Roos and Drusch (2015), “real-time monitoring of critical roasting
process parameters is essential to quickly detect any operational
deviations and effectively prevent failures”. However, conventional
methods of monitoring and preventive maintenance are rapidly
reaching their limits in the face of the growing complexity of these
transformation processes (Fellows, 2022; Singh and Heldman, 2001;
Valentas et al., 1997; Brennan and Grandison, 2012; Geankoplis,
2003; Ray, 2023). Innovative new approaches are therefore needed to
meet these industrial challenges.

1.2 Presentation of the proposed particle
swarm method

The method proposed in this work uses particle swarm
optimization (PSO) as the main optimization algorithm. Kennedy
and Eberhart (1995) introduced particle swarm optimization, an
optimization technique inspired by the social behavior of birds and
fish. Poli et al. (2007) published a paper detailing the theoretical
principles and mathematical foundations of particle swarm
optimization.

Shi and Eberhart (1998) proposed a modified version of the
original PSO algorithm, which has shown better performance
in certain applications. Clerc (2010) wrote a comprehensive
book on particle swarm optimization, describing in detail the
different variants of the algorithm and their advantages and
limitations.

The use of particle swarm optimization in this method allows for
the efficient solution of nonlinear, non-smooth, and non-convex
optimization problems, as demonstrated by the work of Niknam
(2012) on economic dispatch optimization. Niknam and Amiri
(2010) also successfully used a hybrid approach based on PSO,
ACO, and k-means for cluster analysis.

Furthermore, the theoretical foundations of swarm intelligence
are described in the work of Engelbrecht (2005). This understanding
of the mechanisms of particle swarm optimization enables the
improvement of its implementation and performance for the
applications targeted in this work.

Brennan and Grandison (2012) have published a reference work
on food processing, providing in-depth knowledge on food
processes. Fellows (2022) wrote a book on food processing
technologies, including principles and practices. Geankoplis
(2003) published a manual on unit operations and separation
processes in transport, providing useful knowledge for process
optimization. Grau et al. (2014) studied predictive maintenance
strategies for industrial applications, providing relevant information
for improving process performance.

Mujumdar (2006) edited a compendium on industrial drying,
Ray (2023) described the principles of food processing in a recent
work, and Roos and Drusch (2015) published a book on phase
transitions in foods, all providing specialized knowledge in the key
areas of this method. Sandeep (2011) edited a work on thermal food
processing, its control, and automation, Saravacos and
Kostaropoulos (2002) wrote a manual on food processing
equipment, and Singh and Heldman (2001) published an

introduction to food engineering, offering complementary insight
on food processes.

Finally, Toledo et al. (2007) dealt with thermal food processing,
its control, and automation, while Valentas et al. (1997) edited a
manual on food engineering practices, providing in-depth expertise
on the optimization of food processes.

2 Modeling the roasting process

2.1 Description of the soybean
roasting process

Soybean roasting is a key step in the transformation of
soybean seeds into food products such as tofu, soy milk, or
soy sauce. This process involves several successive steps aimed
at modifying the physical and chemical properties of the
soybean seeds.

As described by Roos and Drusch (2015), soybeans initially
contain a high moisture content, generally between 10% and 15%.
The first step of the process is therefore a preliminary drying process
aimed at reducing this moisture content to around 5%–7%, as
highlighted by Singh and Heldman (2001) in their introduction
to food engineering. Table 1 presents the typical parameters for
drying soybean seeds.

Next, the soybean seeds are subjected to a roasting process, as
described by Mujumdar (2006) in his reference work on industrial
drying. This step involves heating the seeds to temperatures
between 150°C and 200°C for a duration of 10–30 min, thus
causing complex chemical reactions. Saravacos and
Kostaropoulos (2002) explain that these reactions lead to
modifications of the protein, lipid, and carbohydrate
compounds present in the soybeans. Figure 1 illustrates the
schematic diagram of the soybean roasting process.

As reported by Fellows (2022) and Valentas et al. (1997),
roasting helps inactivate antinutritional factors such as protease
inhibitors, improve protein digestibility, and develop the
characteristic flavor of roasted soybean. Geankoplis (2003) also
emphasizes that the physicochemical transformations induced
improve the texture and water-holding capacity of the
roasted seeds.

After this roasting step, the soybean seeds generally undergo a
controlled cooling process, as described by Brennan and Grandison
(2012) in their book on food processing. This cooling helps stabilize
the properties of the finished product and prepares the seeds for
further processing steps, such as grinding or extraction of the
components of interest.

TABLE 1 Soybean drying parameters.

Parameter Range of values

Initial water content 10–15 10%–15%

Final water content 5%–7%

Drying temperature 60°C–80°C

Drying time 2–4 h
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2.2 Identification of the main process
parameters influencing quality

Several parameters of the soybean roasting process have a
significant impact on the physical, chemical, and organoleptic
properties of the final product. As emphasized by Fellows (2022),
the control of these parameters is essential to obtain high-quality,
consistent products that meet consumer expectations.

The roasting temperature is one of the most critical parameters.
According to Mujumdar (2006), excessively high temperatures can
lead to excessive degradation of the compounds of interest and the
development of undesirable flavors, while too low temperatures do
not allow the desired transformations to be achieved. Saravacos and
Kostaropoulos (2002) thus recommend temperatures between 150°C
and 200°C to obtain an optimal balance between changes in texture,
color, and flavor.

Another important parameter is the roasting duration. As
explained by Brennan and Grandison (2012), a treatment time
that is too short does not allow the complete realization of the
chemical reactions, while a time that is too long can lead to excessive
degradation of the compounds. According to these authors,

FIGURE 1
Soybean roasting process diagram (Waaijenberg, 1996; Mateos et al., 2002).

TABLE 2 Effect of roasting time on the properties of roasted soybeans.

Roasting time Organoleptic
quality

Nutritional
quality

10 min Characteristic taste Good preservation

20 min Optimum taste Good preservation

30 min Strong flavor Slight deterioration

>30 min Burnt flavor Significant deterioration
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durations of 10–30 min seem to offer the best compromise to
develop the characteristic flavor while preserving the nutritional
qualities of the soybean, as shown in Table 2.

The initial moisture content of the soybean seeds also plays an
essential role, as highlighted by Singh and Heldman (2001). A too
high moisture content slows down heat and mass transfers, while a
too low content can lead to excessive drying and loss of quality.
These authors thus recommend a residual moisture content between
5% and 7% at the end of the preliminary drying step.

Finally, the control of the post-roasting cooling conditions,
particularly the cooling rate, is also a key parameter for
preserving the organoleptic and functional qualities of the
product, as described by Roos and Drusch (2015).

By controlling these various process parameters, it is possible to
optimize the quality of the roasted soybean and obtain a product that
meets the requirements of consumers and the food industry.

3 Particle swarm diagnosis and
prognosis method

3.1 Principle of operation of particle swarm
optimization

Particle Swarm Optimization (PSO) is a stochastic optimization
method developed by Russell Eberhart and James Kennedy in 1995.
Inspired by social behaviors observed in nature, such as the flight of
birds, PSO allows a set of particles to represent candidate solutions
moving through a search space. Each particle adjusts its position based
on its personal experience (best personal position) and the collective
experience of the swarm (global best position) (Eberhart and Shi,
2000; Elbeltagi et al., 2005; Kennedy and Eberhart, 1995; Parsopoulos
and Vrahatis, 2002; Poli et al., 2007; Trelea, 2003; Yang, 2010).

3.1.1 Motivation for the proposed method
Current diagnostic methods, such as fixed thresholds and

statistical approaches, present significant limitations in terms of
precision and responsiveness. This manuscript proposes an
improved version of PSO, specifically adapted for fault diagnosis
in roasting processes, to overcome these challenges:

a. Limitations of Traditional Methods:
o Threshold-Based Methods: These methods lack adaptability
and may fail to detect anomalies when parameters change
slightly (Gaing, 2004).

o Statistical Approaches: They require abundant historical data
and are often unsuitable for new operational conditions
(Poli, 2008).

b. Contributions of the Proposed Method:
o Dynamic Adaptability: We have introduced a real-time

adaptation mechanism to the PSO algorithm, allowing for
dynamic parameter adjustments based on variations
observed in the roasting process. This improves the
accuracy of anomaly detection and reduces the risk of
false positives (Bratton and Kennedy, 2007).

o Multidimensional Approach: The algorithm simultaneously
considers multiple parameters, allowing for the identification

of complex interactions within the roasting process (Gao and
Liu, 2012).

o Prediction of Remaining Useful Life: By using predictive
models based on historical data, our method estimates the
remaining useful life of components, facilitating preventive
maintenance planning (Mirjalili, 2015).

3.1.2 PSO algorithm
The PSO algorithm developed here is distinguished by its

specific steps and adaptation mechanisms. Here are the steps of
our approach:

Step 1: Initialization:
o Position and Velocity: Randomly initialize the positions xi(0)
and velocities vi(0) of the particles in the search space. Each
particle represents a candidate solution.

o Best Positions: Define the best personal positions pi(0) and
the global best position g(0).

Step 2: Evaluation:
o Objective Function: Evaluate each particle based on an objective
function that integrates criteria specific to roasting, such as
roasting time and temperature. This evaluation is crucial for
identifying the most promising solutions.

Step 3: Update Best Positions:
o Personal Update: If the particle’s performance exceeds its best
personal position, update pi.

o Global Update: If a particle finds a better solution than the
global best position g, update g.

Step 4: Update Velocity and Position:
o Adaptation Rule:
⁃ Update the velocity (Equations 1 and 2):

]i t + 1( ) � ω.]i t( ) + c1.r1 pi t( ) − xi t( )( ) + c2.r2 g t( ) − xi t( )( ) (1)

⁃ Here, ω is the inertia coefficient, c1 and c2 are acceleration
coefficients, and r and r2 are uniformly distributed
random numbers.

o Position: Update the position:

xi t + 1( ) � xi t( ) + vi t + 1( ) (2)

Step 5: Dynamic Parameter Adaptation:
o Coefficient Adjustment: Based on observed performance,
dynamically adjust the coefficients c1 and c2. For example, if
a particle converges quickly, decrease c1 to favor exploration.

o Continuous Evaluation: Evaluate the performance of particles
at each iteration and adjust parameters to improve overall
convergence.

Step 6: Stopping Condition:
o Repeat steps 2 to 5 until reaching a predefined stopping
criterion, such as a maximum number of iterations or
satisfactory performance. Monitor convergence to avoid
stagnation (Clerc and Kennedy, 2002).

This section presents an in-depth view of the PSO algorithm,
highlighting the unique contributions of our approach. By integrating
dynamic adaptation mechanisms and multidimensional analysis, this
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method aims to improve fault diagnosis in coffee roasting, while
establishing a solid foundation for optimizing industrial processes.

3.2 Adapting the method to roaster failures

The proposed method must be able to adapt to potential roaster
failures. Indeed, proper roaster operation is essential to ensure
consistent and reproducible roasting of coffee beans. However,
various malfunctions or operating parameter drifts can occur,
impacting the final quality of the roasted coffee.

3.3 Taking temperature variations
into account

One of the most common failures of a roaster is temperature
drift during the roasting cycle. This may be due to thermal control
problems, heating element wear, or variations in thermal load. In
this case, the actual temperature in the roasting drum T(t) may
deviate from the programmed setpoint Tc(t).

In order to adapt to these variations, the proposed kinetic model
must integrate the actual roasting temperature T(t) rather than the
setpoint Tc(t), as emphasized by Illy and Viani (1995). Joët et al.
(2010) also stress the importance of taking environmental factors
into account when analyzing the biochemical composition of
green coffee.

To this end, the actual temperature T(t) can be expressed as a
function of the setpointTc(t) and a corrective termΔT(t) (Equation 3):

T t( ) � Tc t( ) + ΔT t( ) (3)
where ΔT(t) represents the difference between the actual
temperature and the setpoint, which may vary over time. This
corrective term can be estimated from in-situ temperature
measurements in the roasting drum.

Sunarharum et al. (2014), for example, propose an approach
where ΔT(t) is modeled as a time-dependent stochastic process of
the form (Equation 4):

ΔT t( ) � a + b.t + σ.W t( ) (4)
with a, b and σ parameters to be identified, andW(t) aWiener process
(white noise). By integrating this expression of T(t) into the kinetic
model, we then obtain a more realistic description of temperature
evolution during roasting, taking into account potential drifts and
fluctuations. “This ensures the model’s robustness in the face of
variations in roaster temperature”, emphasize Fabbri et al. (2011).
Schenker and Rothgeb (2017), Borém et al. (2013) and Kreuml et al.
(2013) also provide further evidence on the impact of roasting and
storage conditions on coffee sensory quality and color.

3.4 Taking account of temperature
inhomogeneities

In addition to the global temperature variations over time, the
temperature can also exhibit spatial inhomogeneities within the
roasting drum itself. Indeed, the circulation of hot air, the agitation

of the grain bed, and the geometry of the drum generally induce
thermal gradients, with hotter or colder zones.

To integrate these spatial effects into the model, one can, for
example, consider that the temperature follows a statistical
distribution within the volume of the drum. Joët et al. (2010)
propose to model the local temperature T(x, t) as a random
variable following a normal distribution with mean T(t) and
standard deviation σT(t) (Equation 5):

T x, t( ) � N T t( ), σT( )2( ) (5)
where T(t) is the average temperature, which is itself time-
dependent as seen previously, and σT(t) characterizes the
amplitude of the thermal inhomogeneities.

Similarly, Sunarharum et al. (2014) consider that the corrective
term ΔT(t) also follows a normal distribution (Equation 6):

ΔT t( ) � N a + b.t, σ2( ) (6)

with a, b and σ the parameters of this distribution.
By averaging the kinetic properties over the temperature

distribution, we then obtain a model that takes spatial variations
into account, as pointed out by Fabbri et al. (2011) (Equation 7):

dC

dt
� ∫ k T x, t( )( ).C x, t( ).p T x, t( )( )dT (7)

where p (T (x,t)) is the probability density function of the local
temperature T (x,t). This approach better represents the physical
reality of the process, with more or less reactive zones within the
drum. Borém et al. (2013) and Kreuml et al. (2013) also provide
further evidence on the impact of temperature inhomogeneities on
the final properties of roasted coffee.

3.5 Taking account of mass variations

Another important phenomenon to take into account is the
variation in the mass of coffee beans during roasting. Indeed, the
chemical and physical reactions occurring during this process induce a
significant loss of mass, which can reach 15%–20% of the initial mass.

This evolution of grain mass m(t) can be modelled empirically,
as proposed by Illy and Viani (1995) (Equation 8):

m t( ) � m0.e
−k.m.t (8)

where m0 is the initial mass of the green beans, and km is a kinetic
coefficient of mass loss, dependent on the temperature.

More specifically, Sunarharum et al. (2014) decompose this mass
loss into several contributions (Equation 9):

dm

dt
� −m0. kH2O.XH2O + kC2O.XC2O + kvoltat.Xvoltat( ) (9)

with:

• XH2O the mass fraction of water evaporated
• XCO2 the mass fraction of degreased C02
• Xvolat the mass fraction of volatile compounds lost
• kH2O, XC2O and kvolat the associated kinetic coefficients

Joët et al. (2010) also point out that these mass loss phenomena
influence the concentration of various biochemical compounds within
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the grains. It is therefore important to couple this mass evolution to
the degradation/formation kinetics of the compounds of interest.

Fabbri et al. (2011) propose for example, to express
concentrations C(t) as a function of mass m(t) (Equation 10):

C t( ) � C0.
m0

m t( ) (10)

where C0 is the initial concentration in the green beans.
This approach makes it possible to obtain a global model that

takes into account variations in mass and composition during
roasting. Borém et al. (2013) and Kreuml et al. (2013) also
provide further evidence on the impact of mass loss on the final
properties of roasted coffee.

In conclusion, the proposed kinetic model must be able to adapt
to the various potential failures of the roaster, in particular:

• Global temperature variations in the drum,
• Spatial temperature inhomogeneities,
• Variations in the mass of coffee in the drum.

This will ensure the robustness of the quality control method,
regardless of the operating stability of the roaster used, as
highlighted by Joët et al. (2010), Sunarharum et al. (2014), Fabbri
et al. (2011), Schenker and Rothgeb (2017), Borém et al. (2013) and
Kreuml et al. (2013).

3.6 Defining performance indicators and
trigger thresholds

In order to assess the performance of the roasting process and
detect potential problems, it is necessary to define relevant indicators
and associated trigger thresholds. These can be based on physico-
chemical, sensory or economic measurements.

Commonly used physico-chemical indicators include (Illy and
Viani, 1995; Fabbri et al., 2011):

• The mass loss m(t)/m0 described above, with a threshold of
15%–20%, for example,

• Grain color, quantified for example, by the value of L* in
CIELab space, with a threshold depending on the targeted
roasting profile.

• Volatile compound content, with monitoring of C(t)
concentration trends and thresholds that must not be
exceeded to preserve organoleptic qualities.

On the sensory level, indicators such as (Meilgaard et al., 1999;
Kreuml et al., 2013):

• Overall aromatic intensity, assessed by a trained panel on a
scale of 0–10.

• Dominant notes (acidity, bitterness, body, etc.), also rated
out of 10.

• Overall quality, rated out of 100.

Provide amore detailed view of the impact of roasting parameters.
Threshold limits can be defined for each of these attributes.

Finally, economic indicators such as (Yeretzian et al., 2002):

• Yield m(t)/m0.
• Energy cost due to mass losses and kiln consumption.
• Selling price of roasted coffee can also guide process choices in
line with the industrialist’s objectives.

All these indicators can then be combined in a multi-criteria
function F to be maximized, under threshold constraints
(Equation 11):

F � w1
⎛⎝m t( )

m0
+ w2.L* + w3.∑Ci t( ) + w4.Aromatic intensity

+w5.Overall quality − w6.Energy costs⎞⎠ (11)

with wi the relative weights of each criterion, to be adjusted
according to the manufacturer’s priorities.

4 Experimental implementation

4.1 Description of test bench and
experimental conditions

The test bench used for this study consists of a pilot roaster with
a capacity of 10 kg of green coffee. The roasting drum, with a
diameter of 50 cm and a length of 80 cm, is made of stainless steel
and is driven by an electric motor that allows the rotation speed to be
adjusted between 5 and 15 revolutions per minute (Figure 2).

The heating system is provided by a set of 12 electric heaters with
a total power of 15 kW, evenly distributed around the drum. These
heaters are temperature-regulated using a control system that
maintains the drum temperature between 200°C and 240°C
during the roasting process, which varies from 10 to 20 min.

To monitor the evolution of the main process parameters in real-
time, the test bench is equipped with temperature sensors
(thermocouples), pressure sensors (differential pressure sensors), and
air flowmeters (mass flowmeters) installed at different key locations in
the process, especially at the inlet and outlet of the roasting drum.

The tests were carried out with an Arabica coffee from
Cameroon. The operating conditions tested cover a temperature
range of 200°C–240°C, roasting durations of 10–20 min, and drum
rotation speeds of 5–15 revolutions per minute.

4.2 Roaster failure simulation protocol

In order to test the diagnostic system’s ability to detect different
types of failure, faults were simulated in a controlled manner on the
test bench. The faults studied included.

• Partial or total failure of the heating system
• Malfunction of the drum drive system
• Partial or total obstruction of air inlets/outlets
• Leaking seals

Failure scenarios were programmed into the control system in
order to accurately reproduce these operating hazards, and to
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evaluate the process response and the diagnostic system’s ability to
identify them.

5 Results and discussion

5.1 Performance of the PSO-based diagnosis
and prognosis method

Figure 3 shows the recognition rate of the main faults simulated
by the innovative diagnostic method developed, based on the

particle swarm optimization (PSO) algorithm. These results were
obtained from tests carried out on the laboratory test bench, where
different types of failure were deliberately introduced.

For each type of failure, numerous tests were carried out to
statistically evaluate the diagnostic system’s ability to detect them
correctly. The diagnosis accuracy corresponds to the percentage of
cases in which the fault was successfully identified by the algorithm.

This figure clearly shows the performance of the diagnostic
method developed for the main identified failures. The high
diagnosis accuracy, exceeding 90% in some cases, demonstrate
the effectiveness of the proposed approach.

FIGURE 2
Test bench for roasting experiments.
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FIGURE 3
Performance of the diagnostic method.

FIGURE 4
Prediction of the product temperature evolution during roasting.
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Moreover, the analysis of the fault signatures allows us to trace
back to the probable causes and estimate the severity degree of
the failure.

The results of the numerical simulation of the roasting process
are presented in Figure 4.

This figure shows the predicted evolution of the product
temperature over time, as a function of the main physical
phenomena involved. This prediction was obtained using a
numerical model developed in MATLAB, which is based on the
thermal balance equations of the process.

The model takes into account the main physical phenomena
involved in roasting, such as heat transfer, chemical reactions, and
product mass variations. The model parameters have been adjusted
based on the experimental measurements made on the test bench
described earlier.

It can be observed that the temperature increases gradually until
it reaches a plateau around 200°C during the cooking phase.

Beyond these simulation results, the performance of the
prediction of the product mass loss during roasting has been
evaluated. Table 3 summarizes the average errors obtained for
the three roasting modes studied: light, medium, and dark.

This table shows that the model developed can predict the
evolution of mass loss with good accuracy, with errors of less
than 5.5% for the different roasting profiles. These results
demonstrate the reliability of the numerical model for optimizing
the roasting process.

5.2 Identification of the main types of
failure detected

The in-depth analysis of the results of the accelerated aging tests
has made it possible to identify the most frequently encountered
failures on the roasting system. These failures can have a significant
impact on the performance and reliability of the process.

Partial failure of the heating system was detected in 92% of cases.
This type of failure can be manifested by a local drop in temperature
in the roasting chamber, leading to uneven cooking of the product.
The causes can be multiple, such as an electrical problem,
deterioration of the heating resistors, or a malfunction of the
temperature control system.

Partial obstruction of the air inlets/outlets was observed in 88%
of the tests. This phenomenon can be due to the progressive
accumulation of fine particles or deposits on the ventilation grids
and ducts, thus reducing the air flows necessary for the homogeneity
of drying and cooking.

Finally, leaks at the level of the sealing gaskets were detected in
85% of the cases. These failures can lead to hot air losses and
therefore a decrease in the energy efficiency of the process. They can

be caused by the aging or degradation of the sealing materials under
the effect of thermal and mechanical stresses.

Table 4 summarizes the frequencies of occurrence of these three
main types of failures identified during the accelerated aging tests.

Analysis of fault signatures, optimized by the PSO algorithm, has
made it possible to identify the most relevant indicators for each type
of fault, offering avenues for process improvement and predictive
maintenance.

5.3 Comparison with other existing methods

In order to position the performance of the fault signature-based
diagnostic method developed in this study (i.e., the PSO method), it
is interesting to compare it to other classical monitoring and fault
detection techniques for roasting systems.

5.3.1 Comparison of the proposed method with an
approach based on fixed thresholds

A first commonly used approach consists in monitoring fixed
thresholds on certain key process variables, such as temperatures,
flow rates, or pressures. Figure 5 illustrates the diagnosis accuracy
obtained with this type of method for the three main categories of
identified failures.

This approach can only reliably identify 65% of fouling faults,
72% of leaks and 78% of mechanical malfunctions.

This limitation is explained by the fact that fault signatures
are often more complex than simple threshold exceedances,
requiring a more detailed analysis of the interactions
between variables.

In contrast, the fault signature recognition method developed in
this study performs much better, with average diagnosis accuracy of
90% for all types of fault, as shown in Table 5.

This significant improvement is explained by the ability of our
approach to capture the characteristic patterns of faults, by
exploiting the temporal correlations and interactions between the
different measured variables.

Furthermore, compared to advancedmachine learning techniques,
our solution offers the advantage of better interpretability for
operators, while providing equivalent performance. Indeed, the
inference rules used for the recognition of fault signatures are more
transparent and can be easily explained, thus facilitating their adoption
by the maintenance teams.

A key advantage of the proposed method lies in its prognostic
capabilities for the remaining useful life (RUL) of components. To
validate this capability, full life cycle tests were carried out on the
soybean roaster.

The results obtained, as illustrated in Figure 6, show that our
method was able to predict RUL with an average error of 15%, thus

TABLE 3 Performance of mass loss prediction.

Roasting method Average prediction error (%)

Slight 4.1

Average 3.8

Strong 5.2

TABLE 4 Frequency of occurrence of the main types of failure.

Type of failure Detection frequency (%)

Partial heating system failure 92

Partial obstruction of air inlets/outlets 88

Leaking seals 85
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confirming its effectiveness compared with the fixed threshold
method, which has an error of 35%.

The tests were carried out under real operating conditions, and
the data collected was analyzed to check agreement with the results
shown in Figure 6. The test results show that:

• Predicted Remaining Service Life: 120 h
• Actual Remaining Service Life: 102 h
• Prediction error: 15%.

These results confirm that the diagnostic and prognostic method
developed is robust and capable of anticipating failures, enabling
better planning of maintenance interventions.

5.3.2 Comparison of the proposed method with
other diagnostic methods based on fault
characteristics

This section compares the proposed method, based on Particle
Swarm Optimization (PSO), with three other diagnostic methods:
Anomaly Frequency Analysis, Machine Learning-Based Methods,

and Statistical Model-Based Approaches. Each method is evaluated
in terms of performance, complexity, prognostic capability, and
applicability in the context of roaster failures.

5.3.2.1 Performance of fault detection
Results show that the PSO method outperforms the other

approaches in terms of fault detection rates (Table 6).
As shown in Table 6, the PSO method achieves a detection rate

exceeding 90% for key fault types, including heating system failures
and air obstructions. In contrast, Anomaly Frequency Analysis has
limitations as it relies solely on identifying deviations from normal
behavior, potentially leading to false negatives.

5.3.2.2 Analysis of false positives
Managing false positives is crucial for the effectiveness of

diagnostic systems (Table 7).
Table 7 illustrates that the PSOmethod reduces the false positive

rate to only 9.5%, while other methods exhibit considerably higher
rates. This reduction in false positives is essential for minimizing
unnecessary interventions, which can lead to significant cost savings.

FIGURE 5
Failure diagnosis accuracy by monitoring fixed thresholds.

TABLE 5 Comparative performance of the two diagnostic methods.

Fixed threshold method Signature recognition method

Average diagnosis accuracy 71.7% 90.0%

False alarm rate 18.2% 9.5%

Average detection time 4.1 days 2.6 days
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5.3.2.3 Detection time
The time required to identify a fault is also a key

indicator (Table 8).
As shown in Table 9, the PSO method enables effective detection,

averaging 2.6 days, which is significantly faster than other approaches.
This speed of intervention is crucial in an industrial environment
where downtime can result in substantial financial losses.

5.3.2.4 Prognostic capability
The ability to predict future failures is essential for preventive

maintenance.
Table 9 demonstrates that the PSO method achieves an average

prediction error for remaining useful life of only 15%. In
comparison, other methods show higher errors, which may
compromise the effectiveness of maintenance interventions.

5.3.2.5 Applicability and complexity
The applicability of methods in industrial settings

varies (Figure 7).

Figure 7 illustrates the relative complexity of diagnostic
methods. Anomaly Frequency Analysis is the simplest to
implement, while Machine Learning-Based Methods require
advanced data science skills and substantial data management.
Statistical Model-Based Approaches are more accessible but can
be limited by rigid assumptions. The PSO method, though more
complex, offers flexibility and adaptability, making it particularly
suitable for dynamic industrial environments.

FIGURE 6
Comparison of prognostic performance.

TABLE 6 Fault detection rates for different methods.

Type of method Detection rate (%)

Anomaly Frequency Analysis 75

Machine Learning-Based Methods 85

Statistical Model-Based Approaches 80

PSO Method 90

TABLE 7 False positive rates for different methods.

Type of method False positive rate (%)

Anomaly Frequency Analysis 20

Machine Learning-Based Methods 15

Statistical Model-Based Approaches 18

PSO Method 9.5

TABLE 8 Average fault detection time (in days).

Type of method Detection time (days)

Anomaly Frequency Analysis 5

Machine Learning-Based Methods 4

Statistical Model-Based Approaches 3

PSO Method 2.6
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In conclusion, the PSO method stands out as a superior
approach for diagnosing roaster failures compared to Anomaly
Frequency Analysis, Machine Learning-Based Methods, and
Statistical Model-Based Approaches. Its performance in detection,
reduction of false positives, speed of response, and prognostic
capability make it an optimal solution for enhancing the
reliability of industrial processes. These results underscore the
importance of adopting innovative diagnostic methods to address
contemporary industrial challenges.

5.4 Data challenges in fault diagnosis

In the context of diagnosing faults in roasting machines, two
major challenges emerge: label noise and data decentralization.
These issues can significantly affect the reliability and
effectiveness of current diagnostic methods.

5.4.1 Label noise
Label noise refers to errors in data annotation, which can arise

from various factors, such as human errors or failures in
measurement systems. In our study, while we achieved a fault
recognition rate exceeding 90%, the quality of input data is
crucial. To mitigate this impact, we propose exploring label
recovery methods using traceable networks, allowing for the
correction of incorrect annotations and thus improving
diagnostic accuracy. This approach may also include cross-
validation mechanisms where annotated data are verified by experts.

5.4.2 Data decentralization
Data decentralization poses another significant challenge,

especially in an industrial environment where data can be
collected from different machines spread across multiple sites.
This complicates the consolidation of data for analysis and
diagnosis. To overcome this limitation, we plan to integrate
targeted transfer learning techniques, which enable leveraging
information gathered from different machines while respecting
local data peculiarities. By using a distribution barycenter, this
approach could enhance diagnostic efficiency by allowing
collaborative learning, even when data are dispersed.

These challenges highlight the need to improve our diagnostic
method based on Particle Swarm Optimization (PSO). By integrating
label recovery techniques and transfer learning, we could not only
strengthen the robustness of our diagnosis but also expand its
applicability to more complex and varied production environments.

TABLE 9 Average prediction error for remaining useful life (%).

Type of method Prediction error (%)

Anomaly Frequency Analysis 30

Machine Learning-Based Methods 20

Statistical Model-Based Approaches 25

PSO Method 15

FIGURE 7
Comparison of method complexity.
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In conclusion, incorporating these approaches could transform
our method into an even more powerful tool, capable of adapting to
the current challenges in the food processing sector, particularly in
the soybean roasting process.

6 Conclusion and outlook

6.1 Summary of key contributions and
innovations

This study introduced an innovative method for diagnosing and
predicting failures in the soybean roasting process, utilizing Particle
Swarm Optimization (PSO). Unlike traditional methods that rely on
fixed thresholds, our approach is based on a dynamic analysis of the
signatures of key variables, allowing for more precise and adaptive
anomaly detection. With a fault recognition rate exceeding 90%, this
method provides unparalleled robustness in identifying failures such
as heating issues and air obstructions. By integrating a real-time
adaptation mechanism, the prediction error for remaining useful life
was reduced to 15%, compared to 35% for conventional techniques,
highlighting the efficiency and innovation of this approach.
Additionally, the comparison of this method with other
diagnostic techniques revealed significant advantages in terms of
accuracy and responsiveness, reinforcing its position as a preferred
tool for the industry.

6.2 Implications and potential applications
of the new method

The implications of this method are extensive and could
significantly transform the food industry, particularly in the areas
of coffee and soybean roasting. The ability to quickly and accurately
detect failures allows for the optimization of the final product’s
quality while minimizing maintenance costs and improving
operational safety. By integrating this method into existing
production systems, companies can achieve substantial savings by
reducing unexpected downtime and enhancing operational
efficiency. Moreover, the PSO method has demonstrated superior
performance compared to other diagnostic techniques, such as
threshold-based or statistical methods, by offering increased
adaptability and accuracy to manage the complexities of
industrial processes. This paves the way for widespread adoption
in other sectors where equipment reliability is crucial.

6.3 Future research directions

Future research should focus on extending the application of the
PSO method to other food processing operations, taking into
account the specificities and challenges of each sector. In
addition, the integration of Labeling Noise and Data
Decentralization could transform our method into an even more

powerful tool, capable of adapting to the current challenges of the
food processing sector, particularly in the soybean roasting
process. Future research will be needed to explore these
challenges in greater depth. Finally, research could also explore
the environmental and economic impacts of this method,
assessing how it can contribute to more sustainable practices in
the food industry. This research could also lead to practical
recommendations for the implementation of these technologies
in real industrial environments.
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