
Application of the electrical
impedance method to steel/steel
EHD point contacts

Taisuke Maruyama1,2*, Daichi Kosugi1,2, Shunsuke Iwase1,2,
Masayuki Maeda1,2, Ken Nakano3 and Satoshi Momozono2

1Core Technology R&D Center, NSK Ltd., Fujisawa, Japan, 2NSK Tribology Collaborative Research
Cluster, Tokyo Institute of Technology, Yokohama, Japan, 3Faculty of Environment and Information
Sciences, Yokohama National University, Yokohama, Japan

The authors have previously developed the electrical impedance method which
simultaneously measure the thickness and breakdown ratio of oil films in EHD
(elastohydrodynamic) contacts. Furthermore, using a ball-on-disc-type
apparatus, the authors have also confirmed that the accuracy of oil film
measurement by the developed method is comparable to that of optical
interferometry (i.e., glass-steel contacts). In this study, we discussed the
experimental results obtained by applying the electrical impedance method to
steel-steel contacts using a steel disc instead of a glass disc. It was found that
under the mixed lubrication regime where wear occurs, the oil film thickness
obtained by this method is calculated to be significantly thicker than the
theoretical value. This can be attributed to the increase in the apparent
dielectric constant of the lubricant due to wear particles in the lubricant.
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1 Introduction

In recent years, with the background of global warming, there has been a demand
for further reduction of torque in rolling bearings used in the sliding parts of various
machines. To reduce bearing torque, measures such as lowering the viscosity of
lubricants or reducing the amount of lubricant filled into the bearing have been
implemented. However, these approaches can promote the breakdown of oil films
in EHD (elastohydrodynamic) contacts (Gohar and Cameron, 1967) of the rolling
bearings, potentially causing various surface damages (Tallian, 1967; Zhu et al., 2007;
Maruyama et al., 2017). Of course, various additives are used to improve lubrication
properties (Bukvić et al., 2024), but oil film breakdown should be avoided as much as
possible. Therefore, the ideal lubrication condition for achieving further torque
reduction in rolling bearings is one where the oil film in EHD contacts is as thin as
possible without causing metallic contact. Thus, the thickness and breakdown ratio of
oil films in EHD contacts are particularly important parameters for visualizing the
lubrication condition.

Various studies have been conducted on the visualization techniques of lubrication
conditions in EHD contacts (Albahrani et al., 2016). In particular, optical
interferometry (Johnston et al., 1991; Yagi and Vergne, 2007; Maruyama and
Saitoh, 2010) can accurately measure the oil film thickness in EHD contacts.
However, it requires the use of light-transmitting materials, making it difficult to
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understand the lubrication conditions in practical rolling
bearings. As a visualization technique for lubrication
conditions in steel-steel contacts, electrical methods (Lord and
Larsson, 2008; Jablonka et al., 2018; Spikes, 2020; Schirra et al.,
2021; Shetty et al., 2022; Esmaeili et al., 2022; Schneider et al.,
2022; Puchtler et al., 2023) have been highlighted. Recently, the
electrical impedance method (Nakano and Akiyama, 2006;
Manabe and Nakano, 2008; Nihira et al., 2015), which applies
an AC voltage to EHD contacts and simultaneously measures the
thickness and breakdown ratio of oil films from the complex
impedance response, has been proposed. Maruyama and Nakano
(2018) applied both optical interferometry and the electrical
impedance method to a ball-on-disc-type apparatus and
confirmed that the oil film measurement accuracy of the
developed method is comparable to that of optical method
(i.e., glass-steel contacts). Furthermore, improvements were
made to apply this method to practical deep groove ball
bearings (Maruyama et al., 2019) and thrust needle roller
bearings (Maruyama et al., 2023) (i.e., steel-steel contacts),
and it was confirmed that the results were almost consistent
with the theoretical oil film thickness under hydrodynamic
lubrication. However, in the case of steel-steel contacts, the
experimental results for thickness and breakdown ratio of oil
films fluctuated under the mixed lubrication regime, suggesting
that wear might have influenced the measurement accuracy.
Additionally, since multiple rolling elements are used in
rolling bearings, the obtained experimental results represent
averaged values for all EHD contacts, which is not suitable for
investigating the causes of fluctuations in the results.

Therefore, in this study, ball-on-disc tests using steel discs were
conducted to simplify the experimental results obtained when

applying the electrical impedance method to steel-steel contacts.
It is expected that this paper can contribute to a better
understanding of lubrication condition monitoring when
applying the electrical impedance method to practical rolling
bearings. Furthermore, this method is expected to not only
contribute to the improvement of rolling bearing performance
and the prediction of lubrication life (time until oil film
breakdown) but also to the advancement of lubrication theory.

2 Experimental details

2.1 Apparatus

Figure 1 shows a schematic diagram of ball-on-disc-type
apparatus used in this study for steel/steel contacts. In this setup,
the rotating ball specimen is pressed against the rotating disc
specimen from below. An AC voltage from an LCR meter is
applied to the EHD contact area via slip rings attached to the
ends of both rotational axes. Lubricating oil is supplied to the contact
area from an oil bath as the ball specimen rotates. Additionally, a
torque meter is connected to the rotational axis of the disc specimen,
allowing the measurement of the friction coefficient in the
EHD contact.

2.2 Materials

2.2.1 Test specimens
The ball specimen used in this study (diameter: 25.4 mm,

arithmetic mean roughness: Ra1 = 8.2 nm, root mean square

FIGURE 1
Schematic diagram of ball-on-disc-type apparatus for steel/steel contacts.
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roughness: Rq1 = 13.9 nm) was made of AISI 52100 steel (Young’s
modulus: 207 GPa, Poisson’s ratio: 0.30). Similarly, the steel disc
specimen (diameter: 100 mm, thickness: 10 mm, roughness: Ra2 =
0.6 nm, Rq2 = 2.2 nm) was made of the same material as the
ball specimen.

2.2.2 Test oils
Table 1 shows two types of PAO (poly-α-olefin oil) used as test

oils, with viscosities of ] = 30 mm2/s and ] = 396 mm2/s at 40°C. For
both lubricants, the oil film thickness was calculated using the same
dielectric constant ε = εoil ε0 = 2.10 ε0 F/m, where ε0 = 8.85•10−12 F/m
is the dielectric constant in vacuum.

2.3 Procedures

In this study, all tests were conducted at room temperature
(approximately 25°C). Prior to the tests, the oil bath, ball and disc
specimen were cleaned with petroleum benzene using ultrasonic
cleaning. After cleaning, the oil bath and each specimen were
mounted on the ball-on-disc-type apparatus. The lubricating oil
was applied to the ball specimen, which was then pressed against the
disc specimen. Using an LCR meter (RMS amplitude: Ie = 50 μA,
frequency: f = 1.0 MHz), initial values (|Z0| [Ω], θ0 [deg]) under the
stationary contacts (i.e., α = 1) were first measured. Subsequently,
the ball specimen was separated from the disc specimen, and while
rotating, they were brought into contact again to measure the
magnitude of the complex impedance |Z| [Ω] and the phase
angle θ [deg] in the dynamic contacts. From these measured
values in the stationary and dynamic contacts (|Z0|, θ0, |Z|, θ),
the average oil film thickness h [m] and the breakdown ratio of
oil film α [–] were calculated using the following Equations 1, 2
(Maruyama and Nakano, 2018), respectively.

h � 1 − α( )2c2
2r

/W 1 − α( )c2
2r2

exp 1 − sin θ
2πεωr Z| |( )( ) (1)

α � Z0| | cos θ
Z| | cos θ0 (2)

Here, c [m] denotes the Hertzian contact radius, r [m] is the
radius of the ball specimen, ω [rad/s] is the angular frequency of the
AC voltage, and W(x) represents the Lambert function defined
implicitly as x � W(x) exp(W(x)) (Lambert, 1758). Furthermore,
in this study, the friction coefficient μ [–] occurring in the EHD
contact was also measured. The average oil film thickness h obtained
using this method was compared with the central oil film thickness

derived from the Hamrock–Dowson equation (Hamrock and
Dowson, 1977a) to verify the accuracy of the oil film
measurement. The h- and α-values were measured using an LCR
meter at a sampling rate of 20 kHz for 0.05 s, and error bars
representing the standard deviation of the measurement results are
displayed in all graphs shown in this study. However, due to the
constraints of the testing apparatus, the measured μ was plotted as a
single point for each test condition.

TABLE 1 Test oil properties.

Oil Poly-α-olefin oil Poly-α-olefin oil

Additive – –

Density, g/mm3 0.826 0.850

Kinematic viscosity at 40°C, mm/s2 30 396

Pressure-viscosity coefficient at 25°C, Gpa−1 12.5 16.3

Relative permittivity 2.10 2.10

FIGURE 2
Measured values of oil film thickness h (top), breakdown ratio α
(middle), and friction coefficient μ (bottom) for varying entrainment
speed U under steel/steel contacts; oil: PAO (viscosity at 40°C: ] =
30 mm2/s), normal load: Fz = 10 N, and slide-to-roll ratio: Σ = 2;
red open circles in top and middle graphs: measured values by
electrical method; black dashed line in top graph: theoretical
prediction by Hamrock and Dowson.
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3 Experimental results

3.1 Influence of entrainment speed U

First, h, α and μ were measured when the entrainment speed U
[m/s] was varied from U = 0.005–0.5 m/s. This range of U was
selected because it represents the operational capabilities of the
testing apparatus. The measurement results are shown in Figure 2.
Here, low-viscosity PAO (viscosity at 40°C: ] = 30 mm2/s) was used
as the test oil, and the normal load Fz = 10 N was held constant. Only
the ball specimen was rotated (i.e., slide-to-roll ratio Σ = 2.0), and the
speed was gradually reduced fromU = 0.5 to 0.005m/s. The red plots
in Figure 2 show the experimental results using the electrical
impedance method, and the black dashed line is the theoretical
central oil film thickness obtained from the Hamrock-Dowson
equation (Hamrock and Dowson, 1977a). From Figure 2, it was
confirmed that h measured using the electrical method is in close
agreement with the theoretical value under the hydrodynamic
lubrication regime (i.e., α ≈ 0). In other words, it was shown that
the average oil film thickness measured by the electrical method is
equivalent to the theoretical predictions, and it was suggested that

the minimum oil film thickness in the EHD contact (Hamrock and
Dowson, 1977a) does not significantly affect the oil film
measurement accuracy of this method. On the other hand, for U
≤ 0.02 m/s, both α and μ increased, suggesting that this speed range
is the mixed lubrication regime. In other words, this developed
method can quantitatively evaluate α even in steel/steel contacts.
However, h under the mixed lubrication regime was calculated
thicker than the theoretical value. In particular, the measured h
was extremely thick and had significant variability at the lowest
speed condition (i.e., h ≥ 10−5 m at U = 0.005 m/s).

3.2 Influence of slide-to-roll ratio Σ

Figure 3 shows the experimental results only when Σ was varied
while keeping U = 0.5 m/s. From Figure 3, it can be confirmed that
the measured h using developed method is almost consistent with
the theoretical value even when Σ is varied. Moreover, it is evident
that μ is significantly affected by Σ. Additionally, the measured α

using this method suggest that these tests were conducted in the
hydrodynamic lubrication regime. In other words, it was confirmed
that the electrical method does not affect the oil film measurement
accuracy even when the lubricating oil is sheared in the
hydrodynamic lubrication regime.

Meanwhile, Figure 2 indicates that the measured h using this
developed method is significantly thicker than the theoretical value
in the mixed lubrication regime when Σ = 2. Therefore, to investigate
the effect of Σ on measured values in detail, h and α at Σ = 0 were
measured when U was varied from 0.005 to 0.5 m/s.

FIGURE 3
Measured values of oil film thickness h (top), breakdown ratio α
(middle), and friction coefficient μ (bottom) for varying slide-to-roll
ratio Σ under steel/steel contacts; oil: PAO (viscosity at 40°C: ] =
30 mm2/s), normal load: Fz = 10 N, and entrainment speed: U =
0.5 m/s; red open circles in top and middle graphs: measured values
by electrical method; black dashed line in top graph: theoretical
prediction by Hamrock and Dowson.

FIGURE 4
Measured values of oil film thickness h (top) and breakdown ratio
α (bottom) by electrical method for varying entrainment speed U
under steel/steel contacts; oil: PAO (viscosity at 40°C: ] = 30 mm2/s),
and normal load: Fz = 10 N; red open circles in graphs: measured
values under pure rolling contacts (i.e., Σ = 0); black open circles in
graphs: measured values under pure sliding contacts (i.e., Σ = 2); black
dashed line in top graph: theoretical prediction by Hamrock
and Dowson.
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The red plots in Figure 4 show the experimental results at Σ = 0. On
the other hand, the black plots in Figure 4 are the results at Σ = 2 and are
the same as the red plots shown in Figure 2. Figure 4 shows that h
measured using the electrical method is almost equal to the theoretical
values even in themixed lubrication regime whenΣ = 0. Furthermore, it
was found that α at Σ = 0 is smaller than that at Σ = 2. It is thought that
in the case of Σ = 2, running-in wear (Ludema, 1984; Grabon, 2018)
occurred on the sliding surfaces, increasing the real contact area.
Therefore, the surface roughness of the disc specimens after tests
were measured using an optical interference microscope, as shown
in Figure 5. Figure 5A confirmed that the surface roughness increased
due to wear in the case of Σ = 2 (for more detailed surface roughness
parameters, see SupplementaryMaterial). This suggests that when wear
occurs in the EHD contact, the hmeasured using the developedmethod
is evaluated to be thicker than the theoretical oil film thickness.

3.3 Influence of normal load Fz

Figure 6 shows the experimental results when Fzwas varied from
1.4 to 59 N. It was confirmed that this developed method can
accurately measure the oil film thickness even when Fz (i.e., Hertzian
contact circle radius c [m] shown in Equation 1) is varied.

Next, the thickness h and the breakdown ratio α of oil films were
measured under various normal load conditions (Fz = 1.4, 10 and
59 N) while varying the entrainment speed U. However, as shown in
Figure 4, under the mixed lubrication regime (i.e., α ≥ 0) in steel/steel
contacts, the measured h values are known to be significantly thicker
than the theoretical values. Therefore, the tests were conducted
under conditions where wear is unlikely to occur (i.e., Σ = 0), as
shown in Figure 7. Here, the blue plots show the results for Fz =
1.4 N, the green plots show the results for Fz = 10 N, and the red plots
show the results for Fz = 59 N. From Figure 7, it was confirmed that
varying Fz from 1.4 to 59 N had little effect on the oil film thickness
h. However, it was found that h becomes slightly thinner as Fz

increases. This is evident from the Hamrock-Dowson equation
(Hamrock and Dowson, 1977a).

On the other hand, it was found that the breakdown ratio α is
greatly affected by Fz. This load dependency of α at Σ = 0 is not
considered to be due to wear, as the increase in h shown in Figure 4
was not observed in the mixed lubrication regime.

3.4 Influence of viscosity ν

Finally, tests were conducted using high-viscosity PAO
(viscosity at 40°C: ] = 396 mm2/s) with varying speeds from U =
0.005–0.5 m/s, as shown in Figure 8. It was confirmed that in the
range ofU ≤ 0.1 m/s, measured h-values using the electrical method
were found to be in close agreement with the theoretical values.

On the other hand, in the range ofU ≥ 0.2 m/s, it was found that
the measured h-values were thinner than the theoretical values.
Furthermore, it was confirmed that μ increases in the range of U ≥
0.2 m/s. Although direct observations of the EHD contact area were
not possible because a steel disc specimen was used as the upper
specimen instead of a glass disc specimen, it is expected that the
starved lubrication (Hamrock and Dowson, 1977b; Cann et al., 2004;
Maruyama and Saitoh, 2015; Nogi, 2015) occurs in this high-speed
range, as h decreases and μ increases. Specifically, the decrease in h
leads to an increase in shear rate within the EHD contact, resulting
in an increase in μ (Ali et al., 2017). In other words, the increase in μ

also supports the occurrence of starved lubrication.

4 Discussion

4.1 Validation of measured oil film thickness

Figure 4 shows that measured h-values using this electrical
method are significantly thicker than the theoretical values in the

FIGURE 5
Surface roughness images of steel disc specimens after tests at varying entrainment speeds U from 0.005 to 0.5 m/s; oil: PAO (viscosity at 40°C: ] =
30 mm2/s), and Fz = 10 N; (A) surface roughness image at Σ = 2 and (B) surface roughness image at Σ = 0; red arrows: rotational directions of steel
ball specimens.
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mixed lubrication regime (α ≥ 0) when Σ = 2. Conversely, when Σ =
0, the measured h-values are found to be almost equal to the
theoretical values in all speed ranges. Also, the measured α-
values in the low-speed ranges at Σ = 2 were larger than those at
Σ = 0, suggesting that the wear in the EHD contact area occurred, as
shown in Figure 5A. In other words, it is considered that the wear in
the contact area may have had some effect on the oil film
measurement accuracy of the electrical impedance method. From
Equation 1, the oil film thickness obtained by this electrical method
is affected by the dielectric constant of the lubricating oil, so it is
thought that the wear particles generated in the contact area may
have affected the dielectric constant of the lubricating oil. Originally,
we should investigate the relationship between the iron powder
concentration and the dielectric constant using test oil. However,
because the iron powder precipitates when measuring the dielectric
constant of oil mixed with iron powder, we substituted the test oil
with grease. Commercially available grease (base oil: mineral oil,
thickener: Li-soap, base oil viscosity at 40°C: ] = 100 mm2/s, worked
penetration: 280) was mixed with iron powder (material: cementite,
particle diameter: 70–150 μm, hardness: HV870). Figure 9 shows the
dielectric constant of the grease when iron powder was added. Here,

φFe [vol%] is the volume fraction of iron powder in the grease, and
εgrease [–] is the relative permittivity of the grease. Figure 9 shows
that as φFe increases, εgrease also increases. This means that the
apparent dielectric constant increases when iron powder is dispersed
in the grease.

The simulation result of the oil film thickness h’ [m] obtained
using the electrical impedance method (see Equation 1), assuming
that the dielectric constant ε of the test oil changes to the apparent
dielectric constant ε’ [F/m], is shown in Figure 10. Here, f = 1.0 MHz,
ε = 2.10 ε0 F/m, c = 0.09mm, and r = 12.7 mm, and it is assumed to be
in hydrodynamic lubrication (i.e., α = 0, h = 100 nm, θ = −90 deg).
Figure 10 shows that simulated h’-value increases exponentially with
increasing ε’. In other words, according to Figures 9, 10, it is suggested
that the very thick h-value obtained by the developed method (see
Figure 4) in themixed lubrication regime (i.e., α ≥ 0) whenΣ = 2 is due
to wear within the EHD contact area, which increases the apparent
dielectric constant of the lubricant. From Figure 4, it is clearly
unnatural for both h and α to increase simultaneously, and we
believe that when such results are obtained, it can be judged that
wear is occurring in the contact area. Therefore, we estimated the
apparent dielectric constant ε’ [F/m] of the lubricant at Σ = 2,
assuming that the actual oil film thickness at Σ = 2 in Figure 4 is
the same as the experimental results at Σ = 0. Figure 11 shows that ε′
increases at low-speed ranges, especially at U = 0.005 m/s, where the
apparent dielectric constant of the lubricant increases about 10 times
due to wear shown in Figure 5A. This suggests that the lower the
velocity, the more wear particles are mixed in the lubricant due to
wear occurring in the EHD contact area.

FIGURE 6
Measured values of oil film thickness h (top), breakdown ratio α
(middle), and friction coefficient μ (bottom) for varying normal load Fz
under steel/steel contacts; oil: PAO (viscosity at 40°C: ] = 30 mm2/s),
entrainment speed:U = 0.5m/s, and slide-to-roll ratio: Σ = 2; red
open circles in top and middle graphs: measured values by electrical
method; black dashed line in top graph: theoretical prediction by
Hamrock and Dowson.

FIGURE 7
Measured values of oil film thickness h (top) and breakdown ratio
α (bottom) by electrical method for varying entrainment speed U and
normal load Fz under steel/steel contacts; oil: PAO (viscosity at 40°C:
] = 30 mm2/s), and slide-to-roll ratio: Σ = 0; red open circles in
graphs: measured values at Fz = 59 N; green open circles in graphs:
measured values at Fz = 10 N; blue open circles in graphs: measured
values at Fz = 1.4 N; dashed lines corresponding to each color of Fz in
top graph: theoretical predictions by Hamrock and Dowson.
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By the way, in the case of glass/steel contact (Maruyama and
Nakano, 2018), it has been confirmed that this electrical method
can accurately measure the oil film thickness under the mixed
lubrication regime (i.e., α ≥ 0) even when Σ = 2. In other words,
the measured oil film thickness was not evaluated to be thicker
than the actual oil film thickness (i.e., the measured values
obtained by optical interferometry or the theoretical values by
Hamrock–Dowson equation). This is likely because, in the case of
glass/steel contact, adhesion wear (Kalin and Vizintin, 2006) does
not occur as much as in steel/steel contact due to the contact
between dissimilar materials, resulting in minimal impact on the
measurement accuracy of the oil film thickness by the developed
method. However, note that the extremely thick measured
h-values may be influenced not only by the generation of wear
particles but also by changes in surface roughness (see
Supplementary Material). Additionally, it is already known
that the capacitance around the EHD contact can affect the
accuracy of oil film measurement (Jablonka et al., 2018;
Maruyama and Nakano, 2018). However, it has been
theoretically shown that as the oil film becomes thinner, the
influence of the capacitance around the contact becomes very

small (Maruyama and Nakano, 2018). In other words, under
conditions where the oil film is thin enough for wear to occur, we
believe that the influence of wear particles around the contact on
the measurement accuracy is minimal.

FIGURE 8
Measured values of oil film thickness h (top), breakdown ratio α
(middle), and friction coefficient μ (bottom) for varying entrainment
speed U under steel/steel contacts; oil: PAO (viscosity at 40°C: ] =
396 mm2/s), normal load: Fz = 10 N, and slide-to-roll ratio: Σ = 2;
red open circles in top and middle graphs: measured values by
electrical method; black dashed line in top graph: theoretical
prediction by Hamrock and Dowson.

FIGURE 9
Relationship between volume fraction of iron particles in grease
φFe and relative permittivity of Li-soap grease εgrease; black dashed line:
fitted curve by linear function fitted curve by linear function.

FIGURE 10
Effect of dielectric constant onmeasured oil film thickness under
Fz= 10Nwith no breakdown area (i.e., α=0); ε: true dielectric constant
of oil (ε = 2.10 ε0 F/m), ε’: estimated dielectric constant of oil, h: true oil
film thickness (h = 100 nm), h’: theoretical measured oil film
thickness obtained by electrical method; black dashed vertical line:
ε’ = ε, black dashed horizontal line: h’ = h.
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4.2 Validation of breakdown ratio

Next, using the results from Figure 7, the film parameter Λ [–],
defined as the ratio of oil film thickness to surface roughness, was
calculated to investigate its relationship with the breakdown ratio of
oil films α in steel/steel contacts. Here, Λ is obtained from the
following Equation 3 (Tallian, 1967):

Λ � h���������
Rq1

2 + Rq2
2

√ (3)

where h [m] is the average oilfilm thicknessmeasured using the electrical
method, andRq1 [m], Rq2 [m] are the rootmean square roughness of the
ball and disc specimen surfaces before tests under non-load conditions,
respectively (see 2.2.1 Test specimens). The film parameter Λ is often
defined using the minimum oil film thickness. However, as the oil film
generally becomes thinner, the difference between the minimum and
central oil film thickness decreases (Hamrock and Dowson, 1977a).
Therefore, in this study, Λ was calculated using the average oil film
thickness (≈ central oil film thickness) obtained by the electrical method.
Tallian (1967) also calculated Λ using the central oil film thickness and
found that wear occurs in EHD contacts when Λ < 3.

The relationship between Λ and α is shown in Figure 12. It was
found that when Λ > 3, the oil film hardly collapsed regardless of Fz.
On the other hand, when Λ < 3, it suggested that the experiments
were conducted in the mixed lubrication regime. Johnson et al.
(1972) theoretically found that the oil film would collapse when Λ <
3, assuming that the number of asperities directly contacting the
surface roughness follows a Poisson distribution relative to the oil
film thickness. Thus, it was suggested that this method could
quantitatively evaluate α even in steel/steel contacts.

Furthermore, it was found that when Λ < 3, α increased with
increasing Fz even for the same Λ, as shown in Figure 12. Additionally,
from the measured h-values shown in Figure 7 (Σ = 0), an increase in h
as shown in Figure 4 was not observed in the mixed lubrication regime
(α ≥ 0). This indicates that the load dependence of α shown in Figure 12
is not caused by wear. This load dependence is thought to be due to the
larger elastic (or plastic) deformation in the real contact area as the load
increases. However, as the load increases, the Hertzian contact area also
becomes larger, making dielectric breakdown more likely. This could
have led to themeasured α-values being evaluated as larger than the real
contact area. Further investigation is needed to determine the cause of
this load dependence.

5 Conclusion

In this study, ball-on-disc tests using a steel disc were conducted
to verify whether the electrical impedance method, developed in
previous research, can be applied not only to element tests in glass-
steel contacts but also to practical bearing tests in steel-steel contacts.
The findings are as follows:

1. Tests were conducted by varying the entrainment speed, slide-to-
roll ratio, normal load, and viscosity. Then, the oil film thickness
measured by the electrical impedance method was compared with
the theoretical values calculated using Hamrock-Dowson
equation. As a result, except under the mixed or starved
lubrication, it was confirmed that this method can accurately
measure the oil film thickness even for steel/steel contacts.

2. When wear occurs within the EHD contacts, the oil film
thickness obtained using the developed method was found

FIGURE 11
Estimated values of dielectric constant of oil ε′ under pure sliding
steel/steel contacts for varying entrainment speed U; oil: PAO
(viscosity at 40°C: ] = 30 mm2/s), and normal load: Fz = 10 N; black
dashed line: ε’ = ε = 2.10 ε0 F/m.

FIGURE 12
Relationship between film parameter Λ and breakdown ratio α
under steel/steel contacts, oil: PAO (viscosity at 40°C: ] = 30 mm2/s),
entrainment speed: U = 0.005–0.5 m/s, and slide-to-roll ratio: Σ = 0;
red open circles: measured values at Fz = 59 N; green open
circles: measured values at Fz = 10 N; blue open circles: measured
values at Fz = 1.4 N; black dashed line: Λ = 3.
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to be significantly thicker than the theoretical value. This is
believed to be due to the apparent increase in the dielectric
constant of the lubricant caused by the inclusion of wear
particles. In other words, this method suggests that the
occurrence of wear can also be monitored. Specifically, if
the unnatural results of both oil film thickness and
breakdown ratio increasing simultaneously are obtained, it
may indicate that wear is occurring within the EHD contact.

3. When using high-viscosity oil, the oil film thickness was found to
be thinner than the theoretical value at high-speed ranges. Since
the friction coefficient μ increased at that time, it suggests that the
starved lubrication occurred in the EHD contact. This supports
the results obtained using this electrical method, where the oil film
thickness was thinner than the theoretical value.

4. The relationship between the film parameter Λ and the
breakdown ratio α showed that the α increased within the
range of Λ < 3. Additionally, since α and μ increased
simultaneously within the range of Λ < 3, it suggests that
this method can quantitatively evaluate the α even in steel/steel
contacts. Therefore, it was considered that the number of
asperities directly contacting the surface roughness might
follow a Poisson distribution relative to the oil film thickness.

5. It was confirmed that the breakdown ratio of oil films α

increased with larger normal loads within the range of Λ <
3. This is thought to be because the larger the load, the greater
the elastic (or plastic) deformation at the asperity in real
contact area, leading to an increased α.

In summary, this study reports on the interpretation of the
measurement results obtained when applying the electric impedance
method to steel-steel contacts where wear occurs. We hope that this
paper can contribute to a better understanding of lubrication condition
when applying the electrical method to actual rolling bearings.
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