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While high-resolution microscopic techniques are crucial for studying cellular
structures in cell biology, obtaining such images from thick 3D engineered tissues
remains challenging. In this review, we explore advancements in fluorescence
microscopy, alongside the use of various fluorescent probes and material
processing techniques to address these challenges. We navigate through the
diverse array of imaging options available in tissue engineering field, from wide
field to super-resolution microscopy, so researchers can make more informed
decisions based on the specific tissue and cellular structures of interest. Finally,
we provide some recent examples of how traditional limitations on obtaining
high-resolution images on sub-cellular architecture within 3D tissues have been
overcome by combining imaging advancements with innovative tissue
engineering approaches.
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1 Introduction

High-resolution sub-cellular imaging has greatly advanced the cell biology field, making
it possible to visualize organelles and other critical sub-cellular structures and molecular
assemblies (DʼEste et al., 2024; Lučić et al., 2013). For example, the integration of high-
resolution techniques like multiphoton microscopy (MPM) has shown promising
diagnostic accuracy in assessing pediatric tissues and tumors (Goedeke et al., 2019).
This has enhanced our understanding of normal developmental processes, but has also
allowed assessment of cellular changes during disease development and progression
(Mojahed et al., 2022; Hayes and Melrose, 2023).

The field of tissue engineering has made significant advancements in replicating the
complex structure and function of biological tissues. Using these engineered tissues to
mimic 3D complex human tissues has allowed researchers to obtain a more accurate
understanding of disease mechanisms, whilst also enabling screening of pharmaceuticals to
assess drug efficacy and toxicity. In the cardiovascular field, 3D engineered heart tissues
have allowed researchers to study cell-cell and cell-ECM (extracellular matrix) interactions
that cannot be studied in 2D monocultures (Simmons et al., 2024; Van Spreeuwel et al.,
2014; Thavandiran et al., 2013; Michas et al., 2022; Ma et al., 2023). For example, in a recent
study from our team, we found that induced pluripotent stem cell (iPSC) derived
cardiomyocytes with a hypertrophic cardiomyopathy (HCM) associated genotype
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exhibited structural, pharmacologic and physiologic hallmarks of
HCM in 3D engineered tissues that we were unable to appreciate in a
traditional 2D culture (Guo et al., 2024). Analogously, in studying
arrhythmogenic cardiomyopathy (ACM), a disease that has been
linked to contractile deficits in vivo, (Chen et al., 2024) observed that
isolated iPSC-cardiomyocytes with an ACM-linked genotype were
largely similar to (if not more contractile than) isogenic controls.
However, growing the iPSC-cardiomyocytes with an ACM genotype
in 3D engineered tissues unveiled deficits in contractility that were
attributed to weaker cell-cell mechanical coupling (Zhang
et al., 2021).

In cancer research, 3D tumor models provide a realistic
environment for studying tumor progression and testing
anticancer drugs (Kang et al., 2020). Drug discovery and
toxicology also benefit from 3D engineered tissues, since they
offer more accurate models for evaluating drug efficiency and
safety compared to traditional 2D cell cultures (Khetani and
Bhatia, 2008; Khalil et al., 2020; Simmons et al., 2022). For
example, a 3D tumor spheroid model incorporating stromal

fibroblasts has been developed to better mimic the in vivo tumor
microenvironment. This model not only enables the study of tumor-
stroma interactions and the role of cancer-associated fibroblasts
(CAF) in cancer progression but also facilitates drug discovery (Shao
et al., 2020).

Besides their translational role in disease modeling and drug
development, engineered tissues have also allowed scientists to study
fundamental questions in developmental biology (including tissue
morphogenesis and cell differentiation; (Zuncheddu et al., 2021;
Pien et al., 2023)), and biophysics [including the mechanical
properties and behaviors of various tissues under different
physiological conditions; (Guo et al., 2021a; Li et al., 2023)]. The
development of organoid technology, in which “organ-like”
structures develop from progenitor and/or stem cells in vitro to
recapitulate key aspects of normal tissue development, has allowed
scientists to study “organs in a dish” that replicate the phenotypic
and functional properties of real tissue environments (Moysidou
et al., 2021; Bose et al., 2019; Bhatia and Ingber, 2014). Importantly,
organoids allow in vitro differentiation of cell types (notably, certain
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endodermal cell populations) that have historically proven
challenging to derive through directed differentiation methods
(Vunjak-Novakovic et al., 2021; Hofer and Lutolf, 2021).

Given that cells exhibit more “in vivo-like” signaling,
pharmacology and behavior within 3D engineered tissues,
organoids and other complex in vitro assembled structures
compared to what they would exhibit in more “standard” 2D
monoculture environments, a longstanding question for
bioengineers and cell biologists is “how are cells sensing their
environment?.” Forces that cells experience are dramatically
different in 3D tissues as opposed to standard 2D culture, and
indeed, recent studies by our team and others, suggest that
mechanical stretch affects electrophysiology of engineered heart
muscle (Simmons et al., 2024; Guo and Huebsch, 2020; Wang C.
et al., 2023; Schuftan et al., 2024; Boudou et al., 2012; DePalma et al.,
2023; Abilez et al., 2018; Tulloch et al., 2011; Huebsch, 2019; Guo
et al., 2021b). This may be linked to either improved expression and/
or intracellular transport of ion channels (Simmons et al., 2024;
Marchal et al., 2021). In a broader context, Chaudhuri et al. provided
a comprehensive review of the complex mechanical properties of
tissue and ECMs including viscoelasticity, viscoplasticity, and
nonlinear elasticity, and discussed how these properties affect
cellular behaviors (Chaudhuri et al., 2020). Adding to this, Gong
et al. found that maximum cell spreading occurs at an optimal
viscosity level on soft substrates for low ECM rigidity, where the
substrate relaxation time falls between clutch binding and lifetime
timescales, enhancing cell-ECM adhesion, while on stiff substrates,
viscosity has no effect due to clutch saturation, which provides
insights for designing biomaterials to optimize cell adhesion and
mechano-sensing (Gong et al., 2018). Moreover, in 3D cultures,
cancer cells exhibit enhanced drug resistance mechanisms compared
to 2D cultures, this is attributed to the more realistic cell-cell and
cell-matrix interactions in 3D environments, which affect gene
expression profiles and signaling pathways related to drug
metabolism and resistance. Hypoxic conditions and nutrient
gradients present in 3D tumor spheroids activate hypoxia-
inducible factors (HIFs), leading to the upregulation of drug
resistance genes and proteins (Bloise et al., 2024; Atat et al.,
2022). Additionally, cancer cells in 3D environments use
invadopodia to sense and dynamically respond to the mechanical
properties of the ECM, such as its stiffness and plasticity. Through
chemo-mechanical feedback, invadopodia can adjust their growth
patterns, enabling cancer cells to invade tissues more effectively
through chemo-mechanical signaling feedback loops (Gong et al.,
2021). Therefore, understanding themolecular mechanisms cells use
to sense their 3D environment will allow bioengineers to develop
better in vitromodel systems andmay provide molecular targets that
can be directly exploited for therapy.

A challenge in unveiling these sensing mechanisms is that such
studies will require detailed analysis of subcellular architecture. This
presents a fundamental technical challenge: these environmental
changes that provoke a more “in vivo-like phenotype” requires
putting cells into 3D, whereas traditionally, detailed analysis of
subcellular architecture has required growing cells in 2D
environments (e.g., culture on glass coverslips). While artificial,
this culture approach places cells very close (typically, within
150 μm) to microscope objectives, allowing researchers to use
high-resolution optics with high numerical-aperture immersion

media (e.g., oil) and in turn facilitating robust analysis of sub-
cellular architecture (Zuncheddu et al., 2021; Pien et al., 2023; Berry
et al., 2021; Zhao et al., 2022; O’Connor et al., 2022; Tan et al., 2004).

Advancements in optics, coupled with advancements in the
fluorescent probes used for imaging, offer promising means to
combine high resolution subcellular imaging with physiologically
relevant engineered tissues and organoids (Li et al., 2019; Dekkers
et al., 2019; Hilzenrat et al., 2022; Wang S. et al., 2023). To achieve a
high-resolution image, it is essential to balance spatial and temporal
resolution, maintain an optimal signal-to-noise ratio, and avoid
photobleaching (Figure 1). Here, we first review basic physical
principles underlying fluorescence imaging. We then discuss
promising approaches that tissue engineers have taken to enable
high-resolution, sub-cellular imaging of 3D tissues, and provide
examples of some of the key insights gained from these analyses. The
lateral, axial, and temporal resolutions of these methods, along with
their imaging depths, are detailed in Table 1, which also includes
schematics of the focal plane for each technique. We aim to simplify
the decision-making process for researchers choosing the most
optimal imaging approach by presenting simplified guidance on
choosing methods based on specific research needs. Excellent
reviews of imaging methods, which delve more deeply into the
physics underlying the various methods we discuss, are available
elsewhere (Huang et al., 2009; Winter and Shroff, 2014; Leung and
Chou, 2011). Another key point of our review is that while most
high-resolution imaging methods focus on 2D samples or sectioned
3D tissue, we specifically highlight methods of whole-mount
staining and optical sectioning for 3D tissues, which allows for
better imaging of intact 3D structures, an area that remains
underrepresented in the current literature.

2 Fundamentals of fluorescence
microscopy: optical sectioning

Fluorescence microscopy is a cornerstone technique in
biological sciences, enabling the visualization of cellular
structures and functions by exploiting the principles of
fluorescence (Masters, 2014). The underlying mechanism involves
the excitation of fluorophores, molecules that can re-emit light upon
excitation that is specifically attached to target molecules within the
sample, such as proteins or nucleic acids. When exposed to light of a
specific wavelength (typically from a UV source like a mercury arc
lamp), these fluorophores absorb photons, exciting electrons to a
higher energy state. The electrons, inherently unstable at this level,
quickly return to their ground state, releasing photons with a longer
wavelength and lower energy than the absorbed light (Sanderson
et al., 2014). The change in wavelength between the photons that
excite fluorescence and the photons emitted is called the Stokes shift
(Peng et al., 2005). The Stokes shift occurs because the emitted light
is of lower energy due to losses during the nonradiative transitions
between excited and ground states, a process that Jablonski energy
diagrams explains (Figure 2A) (Yao et al., 2014; Berezin and
Achilefu, 2010). Detailed understanding of the physics of decay
of the higher-energy states has allowed researchers to control Stokes
shift and exploit non-radiative methods of energy decay (e.g., Förster
Resonance Energy Transfer, FRET) for analyzing sub-cellular
architecture (detailed in Section 3).

Frontiers in Mechanical Engineering frontiersin.org03

Kargar Gaz Kooh and Huebsch 10.3389/fmech.2024.1481933

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1481933


In fluorescence microscopy, optical filters and epi-illumination
techniques are used to enhance quality of the images. An excitation
filter selects the optimal wavelength to excite the fluorophore. A
barrier filter blocks excitation wavelengths while passing longer
emission wavelengths, and a dichroic mirror directs excitation
light to the sample and emitted fluorescence to the detector. This
allows the objective lens to both illuminate the specimen with the
excitation light and to collect the emitted fluorescence (Figure 3A)
(Lichtman and Conchello, 2005; Combs and Shroff, 2017). In
diffraction limited (e.g., not super-resolution) optical systems, the
minimum distance d between objects that can be resolved is related
to the wavelength of light (λ) and the numerical aperture (N.A.) is
dictated by the equation

d � λ

2N.A.

Within the visible wavelength range, this sets a diffraction limit
near 250–300 nm (Thorne and Blandford, 2017). This is
significantly smaller than a mammalian cell (10 s of μm) but
large compared to proteins (10 s of nm). Lower wavelength,
higher energy photons (e.g., x-rays) yield a smaller diffraction
limit that can allow resolving protein-protein interactions, but
this often limits the ability to image live samples.

Atop the diffraction limit, epifluorescence microscopy methods
face additional limitations in resolution and contrast due to the full-
sample illumination strategy (Bates et al., 2008). While in theory the
resolution limit of epifluorescence imaging is about 250 nm laterally

and 500 nm axially (Lidke and Lidke, 2012), in practice it is often
challenging to separate objects closer than 1 μm. The Point Spread
Function (PSF) describes how light spreads as it passes through the
microscope optics (Cole et al., 2011; Pankajakshan et al., 2009). In
epifluorescence, there is high background intensity from out-of-
focus fluorescence, limiting the clarity of the images (Figure 2B)
(Huang et al., 2009; Sung et al., 2002; Huang et al., 2008a). These
challenges have spurred the development of advanced microscopy
techniques that enhance image quality by manipulating the light
path and minimizing unwanted fluorescence (Heilemann, 2010;
Hell, 2003; Hell, 2009; Helmchen and Denk, 2002). Such
improvements not only reduce photobleaching effects, but also
increase the throughput and specificity of fluorescence imaging
systems, which allows for more detailed and quantitative studies
of live cells and tissue (White, 2005; Ishikawa-Ankerhold et al.,
2012). As researchers continue to refine these methods, the ability to
visualize biological processes with greater precision enhances our
understanding of complex cellular mechanisms within biological
samples such as 3D engineered tissues.

2.1 Laser scanning confocal microscopy

Confocal microscopy was developed to enhance the optical
resolution and contrast of images compared to what could be
achieved with epifluorescence microscopy (Jonkman et al., 2020;
Nwaneshiudu et al., 2012). In confocal microscopy, a laser beam is

FIGURE 1
Tradeoffs in imaging techniques. The figure illustrates the balance between three critical factors in imaging: avoiding photobleaching, optimizing
spatial resolution, and increasing signal-to-noise ratio (SNR). The top part of venn diagram highlights the importance of minimizing photobleaching,
shown by the black dot indicating potential damage to the tissue from excessive illumination. The left part of the venn diagram emphasizes optimizing
spatial resolution to capture detailed cellular processes. The right part of the venn diagram demonstrates the need to increase SNR, which improves
image clarity by reducing noise. This is shown by the presence of fewer noise artifacts in the tissue structure. To achieve optimal imaging, there should be
a balance among these factors to produce clear, accurate images while avoiding phototoxicity and photobleaching effects.
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focused on a small point within the tissue and scans the specimen
point-by-point, using a pinhole aperture in front of the detector to
block out-of-focus light (Elliott, 2020). Thus allows only light from
the focal plane to be detected (Figure 3B) (Paddock, 2014). This
technique significantly reduces the noise from light scatter and out-
of-focus blur (Wnek and Bowlin, 2008). The enhanced resolution
and contrast in confocal microscopy are crucial for obtaining high-
quality images of natural and engineered tissues, particularly in

studies evaluating microstructure and cellular interactions within
scaffolds (Dunkers et al., 2003). For example, interactions between
collagen scaffolds and smooth muscle cells have been probes with
confocal microscopy, allowing researchers to optimize scaffold
design to enhance cell-ECM interactions (Sanderson et al., 2014;
Amadori et al., 2006).

While superior to epifluorescence microscopy in terms of
resolution limits, confocal microscopy faces its own set of

TABLE 1 Comparison of key features of optical microscopy techniques.

Technique Lateral
resolution

Axial
resolution

Imaging
depth

Typical
speed*

Schematic of the
focal plane

References

Epifluorescence
Microcopy

>250 nm >500 nm 30 μm 100 f.p.s Lidke and Lidke (2012)

Laser Scanning
Confocal Microscopy

>200 nm >500 nm 100–150 μm 10–30 f.p.s Huebner et al. (2007), Fouquet
et al. (2015), Choi et al. (2013)

Spinning Disc
Confocal Microscopy

>200 nm >500 nm 150 μm 40–400 f.p.s Oreopoulos et al. (2014),
Nakano (2002), Takahara et al.

(2010)

Two Photon
Microscopy

300 nm >500 nm 500–1,000 μm Varies with scanner
type (1–30 f.p.s)

Olivieri et al. (2014), Doi et al.,
2018; Pawley (2006)

Three Photon
Microscopy

200 nm 500 nm >1,400 μm Varies with scanner
type (1–30 f.p.s)

König et al. (2000), Streich et al.
(2021)

Light Sheet
Fluorescence
Microscopy

200 nm 1,000 nm >1 cm 100 f.p.s Santi, 2011; Santi et al. (2009),
Keller et al. (2008), Olarte et al.
(2018), Chang et al. (2017)

Stimulated Emission
Depletion (STED)
microscopy

20–50 nm 30–50 nm 120 μm 30 f.p.s Revelo et al. (2015), Wildanger
et al. (2009), Wildanger et al.
(2008), Blom and Brismar

(2014), Tam and Merino (2015)

Stochastic Optical
Reconstruction
Microscopy (STORM)

20–30 nm 50–60 nm 10 μm Varies with the
switching kinetics of
the fluorophore

(~1 f.p.s)

Huang et al. (2008a), Xu et al.
(2017), Vovard et al. (2024),

Inal et al. (2021)

*Note: provided speeds are for “full-frame” imaging, not subsampling, which is commonly used to achieve higher frame rates.
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challenges that limit practical applications. A primary issue is that
the resolution often doesn’t meet theoretical expectations due to
limitations related to pinhole size and light intensity (Cox and
Sheppard, 2004), since the resolution improvement requires an
impractically small pinhole. Second, because the laser used for
illumination must scan across pixels within the sample, rather
than illuminate them all at once, laser scanning confocal
microscopy is inherently slower than epifluorescence, limiting the
ability to capture dynamics over larger scales (for example, across all
cells within an engineered tissue). Assessing dynamic subcellular
processes thus require researchers to balance the tradeoff between
resolution and speed of image acquisition (Elliott, 2020). Third,
photobleaching, wherein prolonged exposure to intense laser light
degrades fluorescent dyes, is another significant challenge, which is
worsened by the inherent need to expose regions within the sample
to intense light for a prolonged time period in order to obtain
detailed structural information (St. Croix et al., 2005). Having higher
resolution can lead to unnecessary photobleaching without
providing additional useful biological information (Bernas et al.,
2004), and thus, researchers must carefully optimize imaging times.
These challenges necessitate careful consideration of imaging
parameters and objectives to ensure that the benefits of confocal
microscopy outweigh drawbacks.

2.2 Spinning disc confocal microscopy

To address the challenge of speeding up imaging acquisition and
reducing photobleaching problems from confocal microscopy,
spinning disk confocal microscopy was developed (Stehbens
et al., 2012; Zimmermann and Brunner, 2006). Unlike traditional

confocal microscopy, which employs a single pinhole to selectively
capture light from the focal plane, spinning disc confocal
microscopy utilizes a series of rapidly rotating pinhole-containing
discs (Stehbens et al., 2012). These discs are positioned in alignment
with the different focal planes of the specimen, and each pinhole
targets a specific area on the sample (Figure 3C). As the discs spin,
each pinhole scans across the specimen, rapidly acquiring images at
multiple points simultaneously, which enhances light efficiency and
reduces background interference compared to traditional confocal
systems, which also significantly enhances imaging speed
(Oreopoulos et al., 2014), effectively addressing previous
limitations related to weak fluorescence signals (Zimmermann
and Brunner, 2006). The increased imaging speed afforded by
spinning disc confocal reduces photobleaching and phototoxicity
by limiting the exposure of the sample to intense laser light. This
technique also provides excellent optical sectioning capabilities,
which allows imaging of 3D thick engineered tissues in more
detailed by selectively collecting fluorescence signals from the
focal plane while rejecting the out-of-focus light to produce high
contrast and resolution (Oreopoulos et al., 2014; Wang et al., 2005).

Spinning disc microscopy is subjected to its own set of
limitations. Most importantly, “crosstalk” of pinholes can
generate a hazy background in images and impact the axial
resolution negatively. The reason for this “crosstalk” is that
the emitted light from one point of the specimen can enter
multiple pinholes, especially when pinholes are closely spaced.
This degrades image quality as it effectively convolves
fluorescence emitted from different parts of the sample onto
the same set of camera pixels (Oreopoulos et al., 2014). To solve
this problem, systems have been developed that allow fine-tuning
of pinhole size and spacing.

FIGURE 2
Jablonski diagram alongside the focal plane of one and two-photonmicroscopy. (A) The Jablonski diagram illustrates the energy states (S₀, S₁, S₂, S₃)
involved in one-photon (green), two-photon (yellow), and three-photon (red) excitation. In one-photon excitation, a single photon (λ₁) excites an
electron from the ground state (S₀) to the first excited state (S₃), while two- and three-photon excitation require lower-energy photons with higher
wavelength (λ₂ and λ₃, respectively) to reach the same state. After internal conversion (blue arrow), fluorescence (λf) is emitted as the electron returns
to the ground state. (B) In one-photon microscopy, excitation occurs throughout the illuminated volume, leading to fluorescence from both the focal
plane and out-of-focus regions, reducing spatial resolution and increasing photobleaching. (C) In multiphoton microscopy, excitation is restricted to a
localized focal point where photon density is highest, minimizing out-of-focus fluorescence and photobleaching, and enabling deeper tissue imaging
with better spatial resolution.
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2.3 Two-photon microscopy

In traditional confocal microscopy, high axial and lateral
resolution are achieved using pinholes to effectively limit out-of-
focus light from reaching the photo-detector. In contrast,
multiphoton microscopy achieves high resolution by utilizing
specialized excitation, exploiting nonlinear optical processes to
allow visualization deep into tissue structures non-invasively with
high spatial resolution (Schenke-Layland et al., 2006; Tsai et al.,
2009; Neto et al., 2020; Diaspro et al., 2006). This method typically

utilizes femtosecond laser pulses that minimizes heat damage while
maintaining high photon flux to provide optical sectioning by
exciting fluorescence only at the focal point of the microscope’s
objective which reduces photodamage and photobleaching
(Schenke-Layland et al., 2005; Ustione and Piston, 2011; Levene
et al., 2004; Zipfel et al., 2003). This is achieved through the
simultaneous absorption of two or more lower-energy and
higher-wavelength photons, a process that occurs only at very
high photon densities (Ustione and Piston, 2011; Tauer, 2002).
These densities are reached only at the focus due to the brief and

FIGURE 3
Comparative Schematics of Various Optical Microscopy Techniques. (A) Epifluorescence Microscopy: In this widefield fluorescence technique, an
optimal wavelength of light excites fluorophores within the sample. A dichroic mirror reflects the excitation light toward the sample and allows emitted
fluorescence to pass through to the detector. (B) Laser Scanning Confocal Microscopy: A focused laser beam passes through a pinhole aperture to
minimize diffraction, and a dichroic mirror reflects this light to the sample. The emitted fluorescence passes through a second pinhole before
reaching the detector, blocking out-of-focus light. (C) Spinning Disc Confocal Microscopy: This technique uses multiple pinholes arranged on rapidly
rotating discs. The laser passes through these pinholes, each illuminating a specific region of the sample. Reflected light is collected by the detector after
passing through the dichroic mirror. (D) Stimulated Emission Depletion (STED) Microscopy: STEDmicroscopy enables super-resolution imaging by using
two lasers: an excitation laser to induce fluorescence and a depletion laser that forms a doughnut-shaped beam to quench fluorescence at the periphery,
leaving a zero-intensity point at the center. (E) Light-Sheet Fluorescence Microscopy: A sheet of light is projected perpendicular to the detection
objective, selectively illuminating a thin plane of the sample. Only the fluorescence emitted from the illuminated plane is detected, providing excellent
optical sectioning and minimizing phototoxicity.
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intense laser pulses used. This selective excitation means that only
the plane of focus emits fluorescence, creating a natural optical
section without the need for physical sectioning of the sample, which
produce sharp images with excellent contrast and minimal out-of-
focus fluorescence (Dunn and Young, 2006).

Since it eliminates background very effectively, multiphoton
microscopy allows for high-resolution imaging of thick, scattering
biological specimens with minimal distortion, making it ideal for
studying engineered tissues, live organisms, and dynamic cellular
processes in their native environments (Tsai et al., 2009; Zipfel et al.,
2003; Rubart, 2004). The selection of appropriate excitation
wavelength, the number of the photons in excitation, and laser
sources are important to maximize penetration depth and minimize
photodamage (Cheng et al., 2014; Lefort, 2017; Kobat et al., 2009;
Marsh et al., 2003; Jones et al., 2018; Sidani et al., 2006).

While it offers substantial advantages for deep tissue imaging,
multiphoton microscopy is subject to unique challenges that merit
careful consideration. The most important one is the potential for
increased photobleaching and photodamage in the focal plane.
Although, multiphoton excitation generally causes less
photodamage compared to standard (one-photon) excitation,
there is still potential for cellular effects when intensities at the
focal point exceed certain thresholds like high-intensity NIR
(700–1,000 nm) pulses (König, 2000). This damage may show as
protein denaturation, oxidative stress, DNA damage, and reduced
cell viability, potentially affecting the accuracy of biological studies.
The risk of such forms of damage is particularly acute with shorter
pulse widths (femtosecond pulses) and higher power settings that
can lead to unintended three-photon excitation. In this case, three
(rather than two) low energy photons combine to create an
extremely high energy, low wavelength photon. Unintended 3-
photon excitation is a rare event, but when it does occur, it can
cause severe cellular damage, including DNA damage and plasma
generation, leading to intense localized luminescence and potential
tissue carbonization (Nadiarnykh et al., 2012). Another challenge
with two-photon microscopy is that samples containing light-
absorbing pigments like hemoglobin or melanin can experience
significant heating effects, leading to physical cell damage. To
mitigate these risks, lowering excitation rates and optimizing the
focal volume through under-illumination of the back focal plane of
the objective could be useful. These can help reduce photodamage
while still capturing sufficient signal for effective imaging (Tauer,
2002; König, 2000). Finally, while offering superior depth
penetration and reduced photodamage, multiphoton microscopy,
like laser scanning confocal microscopy, may still fall behind other
techniques in terms of temporal resolution and imaging speed,
particularly when high-resolution imaging is required over large
areas or volumes (König, 2000). This limitation primarily stem from
the need to excite a very small region of interest (ROI) at a time in
both techniques (Reddy et al., 2015).

2.4 Thin sheet (light sheet) fluorescence
microscopy

Light-sheet fluorescence microscopy provides high-resolution,
three-dimensional views of biological samples especially thick 3D
engineered tissues, with minimal photodamage (Parthasarathy,

2018). These advantages make this method ideal for the three-
dimensional imaging of live or fixed, small or large engineered
tissues (Pampaloni et al., 2015; Stelzer et al., 2021). Light-sheet
fluorescence microscopy, samples are illuminated by a plane of light
oriented perpendicular to the detection lens, ensuring that only the
focal plane is exposed to light at any given moment (Figure 3E). This
significantly reduces light exposure, thus minimizing photodamage
and photobleaching compared to conventional fluorescence
microscopy methods (Santi, 2011; Zubkovs et al., 2018; Fei et al.,
2016; Swoger et al., 2014). By limiting illumination to the thin
section of the sample that is in focus, light-sheet fluorescence
microscopy enhances both spatial and temporal resolution,
enabling the detailed observation of dynamic biological processes
in real-time (Fei et al., 2016; Mohan et al., 2014; Daetwyler and
Huisken, 2016; Lim et al., 2014; Delgado-Rodriguez et al., 2022; You
and McGorty, 2021). The use of orthogonal illumination and
detection pathways allows for rapid imaging across large
volumes, providing a comprehensive view of complex specimens
without the need for extensive sample preparation or the
introduction of artifacts associated with deeper tissue penetration
(Pampaloni et al., 2015; Vargas-Ordaz et al., 2021; Power and
Huisken, 2017). These advantages have led light sheet
microscopy to be used to probe 3D tissues at the cellular and
subcellular levels (Reynaud et al., 2008) which minimizes user
bias in evaluating the image (Buglak et al., 2021). Despite all the
advantages of light sheet fluorescence microscopy, sample
preparation can be challenging. Samples need to be transparent
enough for the light sheet to penetrate, which often necessitates
special clearing techniques that can be time-consuming and may
alter the sample’s natural state (see Section 4) (Delage et al., 2023).

2.5 Stimulated emission depletion
microscopy (STED)

Stimulated Emission Depletion (STED) microscopy is a super-
resolution imaging technique that overcomes the diffraction limit
traditionally associated with optical microscopy (Calovi et al., 2021;
Revelo et al., 2015). Stimulated Emission Depletion microscopy
(STED) involves two lasers: an excitation laser that induces
fluorescence in the targeted fluorophores, and a stimulated
emission depletion (STED) laser that precisely quenches this
fluorescence. The stimulated emission depletion (STED) beam is
typically shaped like a doughnut, with a zero-intensity center
coinciding with the focal point of the excitation beam pulsing
continuously (Blom and Widengren, 2014; Wildanger et al., 2009;
Willig et al., 2007; Wildanger et al., 2008). This configuration
ensures that fluorescence is selectively depleted in the periphery
but not at the center, thereby shrinking the effective area of light
emission and enhancing the spatial resolution beyond the
200–300 nm (close to 25 nm) limit typical of conventional light
microscopes (Figure 3D) (Angibaud et al., 2020; Müller et al., 2012;
Blom and Brismar, 2014; Vicidomini et al., 2018; Harke et al., 2008).
Optimizing STED microscopy involved focusing on precise
temporal alignment between excitation and STED pulses and
adjusting the polarization state of the STED beam. Time-gated
detection was used to compensate for timing difference, and
maintaining circular polarization of the STED beam to ensure
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effective fluorescence quenching at the zero-intensity point, which
significantly enhanced image resolution and clarity (Galiani et al.,
2012). However, continuous-wave pulses in STED microscopy can
lead to increased photodamage, photobleaching, and phototoxic
effects due to prolonged exposure of biological samples to
intense light.

3 Exploiting photo-physics of materials
in microscopy

In the prior section, we discussed imaging innovations which
center on controlling sample illumination and emitted photon
detection. A second, parallel means for enhancing spatiotemporal
resolution exploits an ever-growing body of knowledge of photo-
physics, which details howmaterials respond to light. Changes in the
local environment of an electron can increase the likelihood of the
photon-absorption-triggered excited state to decay by non-radiative
means (e.g., through pathways besides emission of a lower-energy
photon). Because material characteristics (e.g., chemical
composition) can be selected to control electrons’ environment in
a predictable manner, it has been possible to engineer key
fluorescence properties of fluorophores (e.g., quantum yield,
Stokes shift) (Lakowicz and Masters, 2008). Here, we detail
several imaging modalities that exploit our growing knowledge of
photo-physics to explore subcellular structures. A persistent theme
in this body of work is that photophysical properties of materials can
be exploited to overcome the diffraction limit in resolving nanoscale
structures.

3.1 FRET, FLIM, FRAP microscopy

Förster resonance energy transfer (FRET), Fluorescence
Lifetime Imaging Microscopy (FLIM), and Fluorescence Recovery
After Photobleaching (FRAP) represent sophisticated fluorescence
microscopy techniques that each play a unique role in elucidating
molecular dynamics within live cells by leveraging the photophysical
properties of fluorescence molecules to surpass the diffraction limit.
These techniques not only provide insights into the spatial and
temporal aspects of molecular interactions but also offer a window
into the dynamic cellular environments (Durhan et al., 2023;
Yasuda, 2012; Kong et al., 2007; Huebsch and Mooney, 2007).

3.1.1 Förster resonance energy transfer (FRET)
FRET is particularly powerful for studying molecular

interactions at the nanoscale. This technique is a non-radiative
process which relies on the energy transfer between closely
spaced donor and acceptor fluorophores, typically within
1–10 nm by dipole-dipole interactions. This energy transfer
occurs when the donor’s emission spectrum overlaps with the
acceptor’s absorption spectrum. Essentially, the donor
fluorophore becomes excited, and its emission stimulates the
acceptor, which then emits fluorescence. This allows for the
detection of interactions between closely packed molecules
(Figure 4A) (Gordon et al., 1998). Resolving interactions over
such a small distance is challenging with optical approaches,
including super-resolution microscopy. FRET efficiency, which

reflects molecular proximity, is highly sensitive to the distance
between these fluorophores, making it an excellent tool for
detecting and quantifying protein-protein interactions, enzyme
activities, and conformational changes within cells with high
spatial and temporal resolution. This allows precise mapping of
molecular interactions, and supports real-time monitoring of
dynamic molecular events, as energy transfer between
fluorophores occurs almost instantaneously, this facilitates the
observation of processes (Coelho et al., 2020; Badia-Soteras et al.,
2020; Broussard and Green, 2017; Padilla-Parra and Tramier, 2012;
Day and Davidson, 2012). Recent advancements in FRET
technology have been driven by the development of enhanced
fluorescent proteins and sensitive microscopy equipment that
enable the detailed visualization of molecular interactions and the
real-time tracking of intracellular processes, such as signal
transduction (Pietraszewska-Bogiel and Gadella, 2011). Intensity-
based methods for detecting FRET are relatively straightforward and
can be implemented with standard wide-field or confocal
microscopes, using ratiometric FRET sensors to simplify data
acquisition and analysis. However, interpreting changes in
fluorescence intensity in FRET experiments can be complex
when donor and acceptor fluorophores are not uniformly
distributed, and are susceptible to artifacts from photobleaching.
Fluorescence Lifetime Imaging Microscopy (FLIM) offers a robust
alternative (Pietraszewska-Bogiel and Gadella, 2011).

3.1.2 Fluorescence lifetime imaging
microscopy (FLIM)

In FLIM, a fluorophore is excited by laser, and the time it takes
for the emitted photon to return to the ground state is recorded.
FLIM complements FRET by providing the temporal dimension of
fluorescence, measuring the decay time of the fluorescence emission
from fluorophores (Mannam et al., 2021; Llères et al., 2017). Unlike
intensity-based imaging, FLIM is not affected by changes in
fluorophore concentration or local variations in brightness, which
makes it suitable for accurate quantification of FRET efficiency
(Elson et al., 2004). This attribute of FLIM is valuable in live-cell
imaging, where it is used to explore changes in the molecular
environment that influence fluorescence lifetime, such as
pH variations or ion concentrations (Wang et al., 2019). FLIM’s
ability to provide a direct measure of the molecular environment
enhances its application in monitoring the functional status of
proteins and other biomolecules, facilitating a deeper
understanding of cellular metabolism and disease pathologies
(Wallrabe and Periasamy, 2005). The integration of FRET and
FLIM techniques leverages FLIM’s ability to measure changes in
the fluorescence lifetime of a donormolecule upon energy transfer to
an acceptor, independent of fluorophore concentration or excitation
intensity which is useful in quantifying molecular proximity and
interactions within complex biological systems (Llères et al., 2009),
without the limitations seen in intensity-based methods providing
higher spatial and temporal (nanometer and nanosecond) resolution
(Coelho et al., 2020; Padilla-Parra and Tramier, 2012; Wallrabe and
Periasamy, 2005; Elangovan et al., 2002; Poland et al., 2015).
However, FLIM requires specialized equipment and complex data
analysis, and may need longer integration times, potentially limiting
its application in rapidly changing processes (Pietraszewska-Bogiel
and Gadella, 2011).
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3.1.3 Fluorescence recovery after
photobleaching (FRAP)

Fluorescence recovery after photobleaching (FRAP) is a
technique that is used to study the dynamics of fluorescence
probes by analyzing the recovery of fluorescence in a
photobleached area over time. In this technique, a specific region
of fluorescent molecules is photobleached using high-intensity light.
Over time, fluorescence gradually reappears as unbleached
molecules from surrounding areas diffuse into the bleached zone.
Fluorescence recovery of the acceptor after photobleaching is a
straightforward technique that does not require specialized
equipment and can be used to overcome artifacts associated with
intensity-based FRET analysis. FRET can be calculated by
monitoring the increase in donor fluorescence after acceptor
photobleaching. Moreover, this method is destructive and
unsuitable for repeated observations in dynamic studies, as it
relies on irreversible photobleaching of the acceptor (Ishikawa-
Ankerhold et al., 2012; Swift and Trinkle-Mulcahy, 2024).

By bleaching a region of fluorescence and observing how quickly
and completely the fluorescence returns, it can measure the kinetics

of molecular movement and interaction within that region
(Figure 4B). This technique is particularly useful for studying the
dynamics of membrane proteins, cytoskeletal elements, and nucleic
acids, which provides insights into cellular trafficking, membrane
dynamics and chromatin remodeling processes (Swift and Trinkle-
Mulcahy, 2024; De Los Santos et al., 2015).

3.2 Stochastic optical reconstruction
microscopy (STORM)

Stochastic Optical Reconstruction Microscopy (STORM) is a
super-resolution imaging technique that surpasses the traditional
diffraction limits of light microscopy (Xu et al., 2017; Rust et al.,
2006; Veeraraghavan et al., 2016). It is predicated on the principle of
precise localization of individual fluorescent molecules that are
activated stochastically. In STORM, specific fluorophores capable
of photo-switching are employed; these fluorophores can alternate
between bright (fluorescent) and dark (non-fluorescent) states when
exposed to light of particular wavelengths (Pfender et al., 2014;

FIGURE 4
Leveraging Photophysical Properties of Materials in Microscopy. (A) Förster resonance energy transfer (FRET) measures the energy transfer between
a donor fluorophore (excited at 440 nm) and an acceptor fluorophore (emitting at 530 nm) when they are in close proximity, resolving for molecular
interactions or structural conformations within nanoscale distances. (B) Fluorescence recovery after photobleaching (FRAP), measures the fluorescence
intensity recovery post photobleaching of the fluorophore. After a region of the sample is photobleached (t = 0), the recovery of fluorescence is
tracked over time (t₁, t₂, t₃). (C) STORM imaging sequence, the sample is labeled with red fluorophores capable of switching off by red laser and on by
green laser, respectively. Initially, a strong red laser pulse switches all fluorophores to the dark state. During each imaging cycle, a green laser pulse
activates only a subset of fluorophores, ensuring they are optically resolvable. These activated molecules then under red illumination revert to the dark
state, with their positions marked by white crosses. The final image is constructed from these precisely mapped fluorophore locations across
multiple cycles.
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Hainsworth et al., 2018; Wu et al., 2013). The fundamental physics
of STORM relies on the ability to accurately detect and localize the
positions of these sparsely illuminated fluorophores during each
imaging cycle (Figure 4C) (Codron et al., 2021). The fact that only
small fraction of fluorophores is able to emit light at any given time,
means that their separation exceeds the diffraction limit. The
resolution achievable with STORM, which can go down to about
20 nm lateral and 50 nm axial, is considerably enhanced by the
photophysical properties of the dyes used, such as their ability to
emit sufficient photons for accurate localization and their capacity
for multiple, controlled switching cycles without significant
photobleaching (Hainsworth et al., 2018; Samanta et al., 2019;
Tam and Merino, 2015; Van De Linde et al., 2011; Xia and Fu,
2024). Compared to other super-resolution techniques like STED,
STORM provides higher spatial resolution and does not require
high-intensity or continuous illumination of lasers, which can
cause photodamage to the samples (Tam and Merino, 2015). This
makes STORM particularly advantageous for detailed, high-
contrast imaging of molecular assemblies within cells with
minimal sample damage. It has been expected that STORM
will prove to be a useful instrument for immunofluorescence
imaging and high-resolution fluorescence in situ hybridization
(Rust et al., 2006).

3.3 Reflectance confocal microscopy

Confocal microscopy can be performed in reflectance mode,
without the use of fluorescent dyes, to provide detailed images of
tissue architecture and cellular morphology of living tissue in near
real-time (Clark et al., 2003). This method of confocal imaging with
reflected light relies on the differential backscattering properties
from cellular morphology and tissue architecture to provide
contrast. Essentially, in this method, a focused laser beam is used
to illuminate the tissue, and light that is backscattered from different
part of the tissue structure is collected. A pinhole is placed in front of
the detector, allowing only the light from the exact focal plane to be
captured, while out-of-focus light is blocked (Liang et al., 2009).
Hence, it resembles histological tissue evaluation, except that the
subcellular resolution is achieved noninvasively and without stains
or dyes (Rudnicka et al., 2008). Although this method is promising
for real-time longitudinal studies, it still has penetration limitations,
particularly for highly scattering tissues (Tan et al., 2004; Liang et al.,
2009; Rudnicka et al., 2008).

3.4 Second harmonic generation (SHG)

SHG, a nonlinear optical process in which two photons with the
same frequency interact with a specimen and are effectively
combined to form a new photon with twice the energy and
therefore twice the frequency and half the wavelength of the
original photons. This method facilitates the imaging of non-
centrosymmetric structures like collagen fibers without external
labeling, providing a clear view of the structural organization and
integrity of biological tissues. This capability is especially beneficial
for studying connective tissues and muscle fibers, offering a non-
invasive tool to explore the intricate architectures of various

structural proteins within their native environments (Ustione and
Piston, 2011; Zipfel et al., 2003; Lefort, 2017).

3.5 Two-photon autofluorescence

Two-Photon Autofluorescence leverages the natural
fluorescence of biomolecules such as Nicotinamide Adenine
Dinucleotide (NADH) and flavoproteins to probe cellular
metabolism to provide comprehensive insights into tissue
composition and functionality. When it is combined with
Fluorescence Lifetime Imaging Microscopy, this technique can
further analyze metabolic states, revealing critical details about
tissue health, disease progression, and potential therapeutic
effects (Neto et al., 2020).

3.6 Third harmonic generation

Third Harmonic Generation (THG), where three photons with
the same frequency interact with a specimen and are effectively
combined to form a new photon with thrice the energy, occurs at
interfaces with significant refractive index changes, such as cellular
membranes and lipid boundaries, which provides detailed imaging
of tissue interfaces and morphological boundaries without the need
for dyes (Schenke-Layland et al., 2005; Borile et al., 2021; Hoover
and Squier, 2013; Lilledahl et al., 2007; Schenke-Layland, 2008).

4 Optimizing sample processing for
improved resolution in 3D engineered
tissue imaging

In the prior section, we discussed about enhancing
spatiotemporal resolution through the exploitation of
photophysical properties of materials, which details how
materials respond to light. A third method to enhance imaging
resolution involves optimizing sample processing. The way a sample
is processed can directly affect the image resolution by
understanding how light interacts with the tissue. Refining
aspects like sample size, transparency, and fixation methods, we
enhance light penetration and minimize light scattering. This
integration of advance material processing with optical
techniques opens a new area for capturing detailed cellular
structures with high clarity. Here, we will elaborate on various
methods that have been employed to optimize sample processing
for better imaging compatibility.

4.1 Tissue engineering miniaturization
techniques for enhanced sample imaging
compatibility

Miniaturization of engineered tissues significantly enhances
their compatibility with advanced imaging techniques, enabling
high-resolution, real-time visualizations which is crucial for
detailed studies of cellular dynamics (Bose et al., 2019; Bhatia
and Ingber, 2014). In organs-on-chips, precise positioning of cell
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types relative to each other simplifies the integration of fluorescence
microscopy (Bose et al., 2019; Kutys et al., 2020). Reducing tissue
size minimizes light scattering, which is a significant challenge in
imaging larger tissues. Smaller tissues ensure that light can penetrate
more deeply and evenly, which enhances the clarity and detail of
images (Wang et al., 2003). Techniques such as microfabrication,
microfluidics, and 3D bioprinting including photoencapsulating
cells in polyethylene glycol hydrogels (Chen et al., 2010), two-
step SU-8 lithography (Boudou et al., 2012), two photon direct
laser writing (TPDLW) (Michas et al., 2022), hydrogel-assisted
double molding (Simmons et al., 2023) are employed to create
tissues that accurately mimic organ-level functions on a microscale
(Michas et al., 2022; Huebsch et al., 2016). Also, these micro-
engineered tissues facilitate high-throughput drug screenings and
disease modeling by allowing parallelized assays (Thavandiran
et al., 2013).

4.2 Advanced fixation strategies for 3D
engineered tissues

Fixation of 3D engineered tissues is essential for maintaining
their structural integrity and molecular composition, and also
critical for accurate histological evaluation and molecular analysis
(Howat and Wilson, 2014; Sampedro-Carrillo and Del Valle, 2022;
Agar et al., 2007; Da Silva et al., 2023). Traditional formalin-based
approaches like neutral buffered 4% formaldehyde with added 2%
phenol which form cross-links between proteins, have proven
effective in preserving various tissue morphology, but can modify
proteins and nucleic acids, affecting molecular assays (Howat and
Wilson, 2014; Sampedro-Carrillo and Del Valle, 2022; Sabatini et al.,
1963; Groelz et al., 2013; Rodgers et al., 2021; Buesa, 2008; Sánchez-
Porras et al., 2023; Hopwood et al., 1989; Serrato et al., 2024; Eltoum
et al., 2001; Grizzle, 2009). Alcohol-based fixatives, while better at
preserving molecular integrity for such assays, may not provide the
same level of morphological detail as formalin (Howat and Wilson,
2014; Gillespie et al., 2002; Kap et al., 2011; Lussier et al., 2023).
Among these fixatives, the PAXgene System offers a non-toxic
method that combines alcohols, acetic acid, and soluble organic
compounds, effectively preserving tissue morphology while
ensuring biochemical stability which makes it ideal for
transportation and long-term preservation (Groelz et al., 2013;
Lahiri et al., 2021). For lipid-rich tissues, osmium tetroxide
stabilizes lipids without compromising their integrity (Sánchez-
Porras et al., 2023). Recent advancements include molecular
fixatives like Hepes-glutamic acid buffer mediated Organic
solvent Protection Effect (HOPE), which uses a Hepes-glutamic
acid buffer and acetone, and Universal Molecular FIXative
(UMFIX), a methanol-based fixative with polyethylene glycol,
both designed to preserve molecular integrity better than
formaldehyde solutions (Howat and Wilson, 2014; Shuster et al.,
2011; Koch et al., 2012). Periodate-lysine-paraformaldehyde (PLP)
method enhances fixation by adding periodate that oxidizes
polysaccharides, forming additional cross-links, and Bouin’s
fixative is excellent for delicate tissues, preserving fine cellular
details and specific structures like glycogen and nuclei, though it
has slow penetration and can distort certain tissues (Hewitson et al.,
2010). These fixatives provide a balance between preserving tissue

morphology and facilitating molecular analysis, crucial for achieving
accurate and reliable results in diagnostic and research settings,
especially when dealing with complex 3D tissue structures. This
balance makes them particularly suitable for light imaging
applications where detailed morphological examination is as
crucial as molecular integrity.

4.3 Tissue clearing techniques to enhance
transparency

Tissue clearing is a post-processing method that removes lipids
from biological tissue, and transforms opaque tissues into
transparent samples for detailed three-dimensional imaging
within intact tissues (Yu et al., 2021; Ueda et al., 2020; Tomer
et al., 2014; Mai and Lu, 2024). Various methods, including organic
solvent-based, aqueous-based, and hydrogel embedding techniques,
each come with specific advantages and drawbacks. Organic solvent-
based methods such as 3DISCO (3D Imaging of Solvent-Cleared
Organs), BABB (Benzyl Alcohol and Benzyl Benzoate), and DBE
(Dibenzyl Ether) are fast and effective but may diminish fluorescent
signals and alter structural integrity using organic solvent (Ueda
et al., 2020; Mai and Lu, 2024; Kolesová et al., 2021; Jing et al., 2019;
Lu et al., 2022; Tian et al., 2021; Muntifering et al., 2018; Brenna
et al., 2022). Aqueous-based methods like CUBIC (Clear,
Unobstructed Brain/Body Imaging Cocktails) and SeeDB (See
DEEP Brain) use hydrophilic substances and sugars (e.g.,
fructose) to gently enhance transparency while preserving
fluorescence while reducing the tissue autofluorescence, although
they may not achieve complete transparency (Ueda et al., 2020; Mai
and Lu, 2024; Kolesová et al., 2021; Jing et al., 2019; Tian et al., 2021;
Muntifering et al., 2018; Brenna et al., 2022). Hydrogel embedding
techniques, including CLARITY (Clear Lipid-exchanged
Acrylamide-hybridized Rigid Imaging/Immunostaining/In situ
hybridization-compatible Tissue-hYdrogel), PACT (PAsive
Clarity Techniques), PARS (Perfusion-assisted Agent Release in
Situ), and SCALE (Sorbitol Clearing Agent for Light-sheet
microscopy Enhancement) maintain molecular and structural
integrity through a hydrogel-tissue hybrid to support extensive
molecular labeling. These approaches integrates well with
advanced imaging technologies like light-sheet fluorescence
microscopy, and are ideal for high-resolution imaging, despite
their complexity and the longer time required for processing
(Ueda et al., 2020; Tomer et al., 2014; Mai and Lu, 2024;
Kolesová et al., 2021; Jing et al., 2019; Lu et al., 2022; Tian et al.,
2021; Muntifering et al., 2018; Brenna et al., 2022; Costantini et al.,
2019; Du et al., 2018; Gómez-Gaviro et al., 2020).

4.4 Expansion microscopy

Expansion microscopy (ExM) is an innovative imaging
technique that enhances resolution by physically enlarging fixed
biological samples that are embedded in a swellable hydrogel to
achieve <120 nm expansion-corrected lateral resolution (Günay
et al., 2023). The fundamental principle behind expansion
microscopy involves infusing the fixed biological samples with a
monomer solution, which is then polymerized into a hydrogel. As
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water is introduced, the hydrogel swells, causing the sample to
expand isotropically while maintaining the relative position and
structure of the embedded sample (Chen et al.). This technique has
been developed to overcome the limitations of traditional and super-
resolution microscopy, which require expensive, specialized
equipment (Chozinski et al., 2016). Expansion microscopy uses
various types of hydrogels, such as polyacrylate, polyethylene
glycol (Gao et al., 2021) and a more advanced formulation of
N,N-dimethylacrylamide and sodium acrylate (Truckenbrodt
et al., 2018), to achieve different expansion factors and
resolutions. Initial methods achieved approximately fourfold
expansion, while newer approaches like the 10X method allow
for tenfold expansion, achieving resolutions down to 25 nm on
standard fluorescence microscopes by just changing the gel
formulation (Günay et al., 2023; Truckenbrodt et al., 2018;
Tillberg et al., 2016; Zhao et al., 2017). Furthermore, expansion
microscopy has been adapted to specifically target and visualize
RNA through the development of “ExFISH” (Expansion
Fluorescence In Situ Hybridization). Which incorporates a small-
molecule linker to covalently anchor RNA to a swellable
polyelectrolyte gel used in expansion microscopy. This method
allows for the detailed examination of RNA within cells and
intact tissue, crucial for understanding its role in gene expression
and cellular function at nanoscale resolution within tissues (Chen
et al., 2016).

A significant expansion microscopy challenge is its dependence
on a costume-made probes for each type of protein to make sure that
the fluorescent labels are accurately attached and positioned relative
to the protein target throughout the gel expansion, which is costly
and time-consuming to produce. To address this challenge, a
method to use conventional, commercially available fluorophore-
labeled antibodies and intrinsic fluorescent proteins directly in
expansion microscopy have been developed, by introducing new
chemical linking strategies that retain these labels during and after
the expansion process, such as small, amine-reactive molecules like
methacrylic acid N-hydroxysuccinimidyl ester (MA-NHS) and
glutaraldehyde (GA). These molecules effectively link the
antibodies and fluorescent proteins to the expandable hydrogel
matrix, which ensures they remain in place and maintain their
fluorescence after the physical expansion of the sample (Chozinski
et al., 2016). A disadvantage of this approach is the inability to re-
probe the expanded sample for different antigens.

5 Exploiting advanced optics,
fluorescent probes and sample
preparation to reveal subcellular
architectures in tissue engineering

Building upon the advancements in imaging technology, the
combination of sophisticated optical techniques, fluorescent probes,
and sample preparation techniques has significantly enhanced our
ability to explore and visualize subcellular structures in tissue
engineering. For instance, Spinning Disc Confocal Microscopy
have used a commercially fabricated chromium photomask to
enable 3D biological imaging across a wide wavelength range
(400–800 nm). This innovation incorporates hundreds to
thousands of simultaneous illumination points, reducing peak

illumination power density (Halpern et al., 2022). Furthermore,
integration of fluorescence lifetime imaging microscopy by an
Spinning Disc Confocal Microscopy into a frequency-domain
FLIM system, reduces out-of-focus blur and photobleaching
while maintaining short acquisition times (Van Munster et al.,
2007). In order to get high temporal resolution to study calcium
signaling in vascular endothelial cells, Spinning Disc Confocal
Microscopy equipped with an electron-multiplying CCD camera
has been used to reveal rapid and localized calcium transients which
is critical in regulating blood flow and pressure (Nelson et al., 2012).
Furthermore, optical photon reassignment (OPR), an advanced
super-resolution method using Spinning Disc Confocal
Microscopy, have been used to significantly enhance lateral
resolution by a factor of 1.37 through a single exposure (Azuma
and Kei, 2015). Moreover, to achieve high resolution and contrast in
live 3D engineered tissues, a custom-built Spinning Disc Confocal
Microscopy with the second near-infrared (NIR-II) optical window
have been used to achieve lateral (0.5 ± 0.1 µm) and axial (0.6 ±
0.1 µm) resolution (Zubkovs et al., 2018). Lastly, the combination of
engineered tissues with spinning disc confocal microscopy has given
us new insights into mitochondrial dynamics. Using Spinning Disc
Confocal Microscopy, Ahmadian et al. optimized and quantified live
images of 3D mitochondrial networks in mesoangioblasts and
mesoangioblast-derived myotubes. This technique reduced
background signals and variation in fluorescence intensity,
enabling more accurate and reproducible imaging compared to
Laser Scanning Confocal Microscopy. This allowed for the
identification of key changes in mitochondrial structure and
function during cell differentiation, which enhances our
understanding of mitochondrial behavior in complex tissue
environments (Ahmadian et al., 2024).

Multiple light-sheet microscopy enhances the capabilities of
single plane illumination microscopy by reducing photobleaching
and enhancing imaging speed and is particularly suitable for
imaging. This approach uses spatial filters in the excitation
arm to create multiple light-sheets to allow simultaneous
illumination of multiple planes within a sample, to facilitate
rapid imaging. The multiple light-sheet microscopy system
demonstrated the ability to produce thinner light-sheets with
increased resolution and reduced crosstalk between the
illuminated planes (Mohan et al., 2014). Light-sheet
microscopy techniques enhanced by reversible saturable optical
fluorescence transitions (RESOLFT) significantly surpass the
diffraction limit in axial resolution, enabling 3D imaging of
live biological specimens with minimized photodamage and
light exposure and it has the ability to produce optical sections
up to 5–12 times thinner than those achievable with conventional
diffraction limited light-sheet fluorescence microscopy (Hoyer
et al., 2016). Advancements in light-sheet fluorescence
microscopy have significantly improved high-speed 3D imaging
of live tissues, especially for calcium dynamics in cardiac
engineered tissues. Light-sheet fluorescence microscopy offers
enhanced imaging speed and resolution with minimal light
exposure, providing deeper insights into fast physiological
processes. Sparks et al. used LSFM to obtain high-resolution
images of t-tubule networks in real tissues, revealing their
precise 3D structure and organization, which is critical for
efficient excitation-contraction coupling. This level of detail is
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challenging to achieve with laser scanning confocal or two-photon
microscopy due to their limitations in depth penetration and
resolution (Sparks et al., 2020).

Two-photon microscopy has been used to study the
enhancement of the structural and functional properties of
engineered heart tissues through chronic electrical stimulation,
which is crucial to examine the maturation and functionality of
tissue-engineered cardiac constructs. In the study, two-photon
microscopy revealed detailed visualization of increased
connexin-43 abundance, indicating better gap junction
formation and electrical coupling in paced engineered heart
tissues, and enabled the measurement of a significantly thicker
compact cardiomyocyte layer in paced engineered heart tissue and
demonstrated a more homogeneous distribution of
cardiomyocytes throughout the tissue depth (Hirt et al., 2014).
Two-photon microscopies with near-infrared femtosecond laser
pulses have been used to visualize the intratissue elastic fibers
within both native and engineered heart valves without the need
for invasive procedures such as tissue removal, embedding, or
staining. Using multiphoton-induced autofluorescence and second
harmonic generation, König et al. could clearly differentiate
between elastic fibers and collagenous structures within the
extracellular matrix (König et al., 2005). Blazeski et al. used two
photon microscopies to visualize and analyze cellular and
subcellular structures in engineered heart slices (EHS). This
allowed for the precise localization of live cells relative to the
matrix and the observation of structural cues promoting cellular
alignment, which are crucial for understanding the physiological
and pathophysiological roles of the ECM in cardiac tissue
engineering (Blazeski et al., 2015). Moreover, to demonstrate
that intermittent mechanical straining enhances and accelerates
collagen fiber alignment in engineered heart tissues, two. photon
microscopy have been used to achieve high resolution in thick 3D
engineered tissues (Rubbens et al., 2009). Ye et al. used two-photon
laser scanning microscopy to show that SDS best preserves the
structural integrity of the 3D engineered heart tissues as
decellularization reagent and visualize details about the
microstructure of decellularized porcine heart tissue. With this
technique, they were able to observe the ultrastructural
morphology of type I collagen within the extracellular matrix
(ECM) without the need for complicated fixation and washing
processes, which can alter the tissue’s natural structure (Ye
et al., 2016).

Expanding beyond cardiovascular applications, Chang et al.
used third harmonic generation (THG) and two-photon excited
fluorescence (2PEF) imaging techniques to non-invasively
monitor the functional properties of 3D engineered human
adipose tissues to provide detailed, label-free images of lipid
droplet formation and cell metabolism over time. THG was
used to visualize lipid droplets, while 2PEF assessed the
metabolic state of cells through the redox ratio of endogenous
FAD and NADH fluorescence. The combination of these imaging
approach allowed this team to dynamically correlate lipid
accumulation with changes in the metabolic state during
adipogenic differentiation. They discovered that cells in
adipogenic media showed a significantly lower redox ratio and
increased lipid content compared to those in propagation media,
providing new insights into the relationship between metabolic

changes and lipid biosynthesis in differentiating stem cells (Chang
et al., 2013). Meanwhile, Straub et al. used Multifocal Multiphoton
Microscopy to achieve non-invasive, high-resolution live cell
imaging, which significantly enhanced the understanding of cell
dynamics and morphology in three dimensions. This method used
an array of high numerical aperture foci for parallel multiphoton
excitation, allowing rapid and detailed 3D reconstructions of live
cells at speeds up to video rate. This approach is particularly
advantageous for dynamic cellular processes that require fast
imaging techniques. For instance, they were able to visualize the
detailed morphology of neurites and the dynamics of membrane-
associated processes, which were not as comprehensively
understood with previous imaging technologies due to slower
acquisition times and greater photodamage (Straub et al., 2000).
To image 3D engineered neuronal networks, a hybrid multiphoton
microscope combining scanning-line temporal-focusing with
laser-scanning two-photon microscopy have been introduced.
This dual approach allows for both rapid volumetric imaging
and detailed structural analysis within a single system, which is
crucial for investigating dynamic neuronal activities and
interactions in 3D cultures. The primary achievement of this
method is highly detailed three-dimensional imaging at a
microscopic scale across a volume of tissue and at high speeds
(tens of volumes per second). This has enabled the observation of
over 1,000 developing cells and their complex spontaneous activity
patterns within millimeter-scale structures. This system use a
regeneratively amplified ultrafast laser to enhance two-photon
absorption significantly, which improves the signal-to-noise
ratio (Dana et al., 2014).

Super-resolution Stimulated Emission Depletion (STED)
microscopy has been used for 2D and 3D cell culture methods
to study the molecular organization of apical and lateral membrane
domains of epithelial cells. By using an inverted filter mounting
strategy, Maraspini et al. were able to gain better access to the
apical membrane domains, allowing them to effectively image and
resolve the densely packed micro-villi of human enterocytes.
Additionally, the optimization of 3D organotypic cell culture
enabled the detailed visualization of adhesion complexes in the
lateral membrane domain of kidney-derived cells which
significantly contributed to our understanding of epithelial
membrane organization (Maraspini et al., 2020). Moreover,
STED microscopy was utilized to visualize dynamic
morphological changes in dendritic spines with a resolution of
about 70 nm, significantly enhancing the understanding of
synaptic function and plasticity beyond what is possible with
confocal microscopy (Nägerl et al., 2008), and STED nanoscopy
was used for detailed visualization of mitochondrial dynamics and
interactions at high resolution (Liu et al., 2022).

Multicolor three-dimensional stochastic optical reconstruction
microscopy (3D STORM) has been used to examine cellular
structures and their interactions at nanoscale resolution. By this
method Huang et al. were able to image entire mitochondrial
networks in mammalian cells, which shows detailed mitochondrial
morphologies and their spatial relationships with microtubules
that were not visible through epifluorescence microscopy (Huang
et al., 2008b). Moreover, STORM was used to examine the
nanoscale distribution and clustering characteristics of
Angiotensin II Receptor Type 1 (AT1R) on the membrane of
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PC12 cells. Aldossary et al. found that exposure to hypoxia for 24 h
increased the maximum cluster area, suggesting a formation of
superclusters. This change in the clustering behavior of AT1Rs
under hypoxia might influence the receptor’s function and cell
signaling pathways, indicating a potential mechanism by which
cells respond to low oxygen levels (Aldossary et al., 2023). Lastly,
STORM was used to visualize the endothelial surface glycocalyx
(ESG) of cultured endothelial cells, revealing its molecular
components and ultrastructure with high spatial resolution (Xia
and Fu, 2024).

6 Conclusion

In this review, we have highlighted the growing importance of
high-resolution sub-cellular imaging in the field of tissue
engineering. These complex structures offer a more realistic
environment for studying cellular behavior and disease compared
to traditional 2D cultures. However, obtaining high-resolution
images of these dense tissues presents a challenge due to
limitations in light penetration and accessibility. Fortunately,
advancements in microscopy techniques (like light sheet
fluorescence microscopy), fluorescent probes, and material
processing are paving the way for us to overcome these
limitations. This allows for detailed visualization of sub-cellular
structures within 3D tissues, providing valuable insights into
critical cellular processes and their response to engineered
environments.

We have also discussed the importance of balancing various
factors like spatial and temporal resolution, signal-to-noise ratio,
and photobleaching to achieve optimal image quality. This review
serves as a comprehensive guide for researchers navigating the
growing toolbox of imaging techniques available for studying 3D
engineered tissues and organoids, ultimately leading to a deeper
understanding of cell-cell interactions, disease mechanisms, and the
development of improved in vitro models for drug discovery
and therapy.

7 Future work

High-resolution sub-cellular imaging in tissue engineering
has a bright future ahead of it. For the purpose of investigating
larger and more complex 3D tissues, it will be important to
continue developing improved microscopy techniques with even
deeper tissue penetration and decreased phototoxicity. One of
these emerging methods is Single-Molecule Orientation-
Localization Microscopy that uses fluorogenic probes that
specifically bind to the structure of interest; thus, it detects
and analyzes signals from individual molecules to achieve
higher resolution by capturing detailed orientation and
positional data (Zhou et al., 2024). Additionally, Single-
Molecule Orientation-Localization can use a radially and
azimuthally polarized multi-view reflector microscope to
enhance the precision of measuring 6D spatial and

orientational coordinates (3D position and 3D orientation) of
single molecules within engineered tissues (Zhang et al., 2023).
Lattice Light Sheet Microscopy is another emerging optical
technique which uses a rapidly moving thin plane of light
sheet. Unlike light-sheet fluorescence microscopy, in which the
light sheets are uniform, the light sheet here is structured into a
lattice pattern (Daugird et al., 2024). Also, the investigation of
fluorescent probes to improve luminosity, biocompatibility, and
multi-color capabilities will enable the concurrent imaging of
several cellular structures and functions using these optical
methods. Lastly, in order to process the massive amounts of
data produced by these high-resolution imaging techniques
efficiently, the development of automated image analysis
techniques will be necessary. Likewise, approaches to glean
useful information from these massive data sets, including
machine learning, will be crucial (Kalkunte et al., 2024).
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