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Cage instability in ball bearings can lead to torque fluctuations and significant
noise. In machine tool spindles, which require high rotational precision, outer
ring-guided cages are often preferred over common ball-guided cages. While
outer ring-guided cages suppress instability modes caused by sliding friction
between the cage and balls, increased interaction between the cage and outer
ring can introduce other instability modes, leading to noise. Despite the critical
implications of these findings, prior research into this specific type of cage
instability, incorporating both experimental and analytical perspectives,
remains limited. Therefore, in this study, we utilized a high-speed camera
system to conduct visualization tests on cage behavior in grease-lubricated
angular contact ball bearings used in machine tools. Through detailed image-
processing of the results, we identified specific behaviors associated with cage
noise. To facilitate the optimal design of the cage to stabilize these behaviors, we
developed a dynamic analysis model focusing on the friction between the cage
and the outer ring under grease lubrication, considering fluid pressure effects.
The validity of this model was confirmed through experiments at various
rotational speeds. This analytical model enabled us to elucidate the underlying
mechanisms driving cage instability. The insights gained from this research are
expected to significantly enhance the fundamental understanding of cage design
principles aimed at eliminating cage noise.
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1 Introduction

In typical rolling bearings, a cage is utilized to maintain equal spacing among the rolling
elements. Interaction occurs between the rolling elements and the cage, where sliding
friction between these elements and the rotating cage can induce cage whirl (Kingsbury,
1965). This whirl, when occurring at high speeds, may lead to collisions with the rolling
elements, causing deviations from their equidistant arrangements. Such non-repetitive
runout compromises the rotational accuracy of the bearing, which is critical in machine tool
spindles that require high precision. To mitigate this issue, bearings are often designed with
an outer ring-guided cage. This design integrates two distinct types of clearance, as shown in
Figure 1. However, challenges arise when the pocket clearance (cp) exceeds the guide
clearance (cg), causing the interaction between the cage and outer ring to become dominant.
This results in a cage whirl along the shoulder of the outer ring owing to increased sliding
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friction (Nogi et al., 2018). This whirl is a primary source of severe
noise, commonly referred to as cage noise, which significantly
degrades the quality of the bearing.

To address and mitigate cage instability, extensive research has
been conducted through both experimental (Kingsbury, 1965;
Stevens, 1980; Gupta et al., 1986; Boesiger et al., 1992; Kingsbury
and Walker, 1994; Stacke and Fritzson, 2001; Servais et al., 2013;
Palladino et al., 2017; Chen et al., 2019; Choe et al., 2019; Schwarz
et al., 2021; Gao et al., 2022a; Gao et al., 2022b; Liao et al., 2023;
Russell, 2023) and analytical methods (Walter, 1971; Kannel and
Bupara, 1978; Meeks, 1985; Meeks and Ng, 1985; Gupta et al., 1986;
Boesiger et al., 1992; Stacke et al., 1999; Ghaisas et al., 2004;
Weinzapfel and Sadeghi, 2009; Ashtekar and Sadeghi, 2012; Nogi
et al., 2018; Niu, 2019; Schwarz et al., 2021; Gao et al., 2022a; Gao
et al., 2022b; Liao et al., 2023; Russell, 2023). Kingsbury (1965) and
Kingsbury and Walker (1994) explored the influence of cage
instability on torque variation in rolling bearings. They
highlighted the rigid body motion of the cage owing to the
sliding friction between the ball and cage as a primary factor
causing torque variations. Walter (1971) utilized Euler’s
equations of motion to describe the non-steady-state dynamics of
ball bearings. Kannel and Bupara (1978) investigated the evolution
of the cage’s rigid body motion without temporal integration,
assuming no sliding between the ball and raceways and
neglecting the out-of-plane motion of the cage. Their results
aligned with the experimental findings of Kingsbury (1965).

Further, Meeks (1985) and Meeks and Ng (1985) performed
dynamic analyses on the six degrees of freedom of the cage, assessing
the effect of clearance on cage stability. Gupta et al. (1986) developed
a comprehensive dynamic analysis program that modeled all the
components of a rolling bearing with six degrees of freedom.
Boesiger et al. (1992) investigated the impact of a biased cage
and operational conditions on cage instability using both
experimental and analytical methods. They conducted a dynamic
analysis of the rigid-body motion of the cage, considering only
planar motion, and confirmed a strong correlation between these

results and the experimental results. Ashtekar and Sadeghi (2012)
integrated a three-dimensional finite-element model of the cage into
a general six-degree-of-freedom bearing dynamics model to
examine the effect of elastic deformation of the cage. Servais
et al. (2013) developed a method to evaluate cage materials that
could potentially reduce cage instability, utilizing the stability map
constructed from the coefficients of restitution and friction between
the ball and cage.

Choe et al. (2019) conducted an experimental study on the
dynamic behavior of a ball bearing cage with mass imbalance in
cryogenic environments. Their findings underscore the significant
impact of mass imbalance on whirling motion and wear, which align
with existing literature. The study also highlights the role of hydraulic
forces and suggests that future research should explore the combined
effects of mass imbalance and hydraulic forces to enhance
understanding of bearing performance. Gao et al. (2022a)
developed an advanced dynamic model focusing on cage flexibility
and three-dimensional whirling motion in angular contact ball
bearings. The model, which neglects fluid pressure effects, divides
the self-lubricated cage into segments to assess flexibility and uses
multiple coordinate systems to describe ball-cage interactions. The
study highlights the need to consider cage flexibility and motion and
suggests that future research should address lubricating modes and
the impact of varying lubricant amounts on cage behavior.
Additionally, Gao et al. (2022b) developed the KH-TEHD model
to analyze bearing skidding and cage whirling behavior, incorporating
advanced factors such as thermal deformation and elasto-
hydrodynamic lubrication, which enhance predictive accuracy in
dynamic simulations. This model provides more detailed insights
into cage dynamics, particularly under varying operational conditions.
However, experimental validation of the cage whirling behavior
remains a future research priority to fully confirm the model’s
effectiveness. Russell (2023) presents an innovative study on the
lubrication mechanisms of deep groove ball bearing cages. He
introduces the Bearing Cage Friction Test Rig, enabling detailed
measurements of friction and lubrication under realistic
conditions. The research notably includes a comprehensive model
for cage lubrication that addresses cage pocket starvation and varying
lubrication environments. Russell’s work incorporates extensive
computational fluid dynamics (CFD) simulations to analyze
lubricant flow and fluid drag within ball bearings, revealing the
impact of cage shape on performance. Future challenges include
refining lubrication models for high-speed applications and
integrating thermal effects into CFD analyses. Nogi et al. (2018)
further refined the understanding of cage instability by establishing a
critical friction coefficient that determines its occurrence. In addition,
it asserts that cage instability could manifest as positive whirl (cage
whirls in the direction of its rotation) when cp < cg owing to sliding
friction with the rolling elements or as negative whirl (cage whirls
opposite to its rotation) when cp > cg owing to sliding friction with
the outer ring.

To optimally design cages that effectively suppress noise in
machine tool spindles, it is crucial to utilize a bearing dynamic
analysis model that accurately replicates real-world phenomena.
Previous research on the generation mechanisms of cage instability,
particularly negative whirl in outer ring-guided cages, has been
limited. Moreover, these studies have rarely employed a
combination of experimental and analytical methods. This study

FIGURE 1
Schematic of cage clearance in outer ring-guided type.
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focuses on grease lubrication, where fluid pressure effects are non-
negligible, and includes the experimental validation of a friction
model between the cage and the outer ring, which had not been
sufficiently verified previously. We intend to achieve this by
conducting visualization tests to observe cage behavior directly
and applying dynamic analysis.

2 Visualization test of cage behavior

2.1 Test method

Figure 2 presents a schematic of the testing apparatus used in
this study. The apparatus employed an open-type angular contact
ball bearing as the test bearing, specified by the bearing dimension
series 70. The cage’s dimensions include an outer diameter of
110 mm, an inner diameter of 70 mm, and a width of 20 mm.
The cage material is phenolic resin with a density of 1,250 kg/m3 and
Young’s modulus of 9.61 GPa. The cage is a cylindrical type guided
by the outer ring, with pocket clearance cp of 0.555 mm and guide
clearance cg of 0.427 mm. The lubrication was provided by extreme
pressure grease, comprising 2.6 g of barium complex soap thickener
andmineral oil with a kinematic viscosity of 105 mm2/s at 313 K and
12 mm2/s at 373 K.

The inner ring was mounted on a shaft supported by an angular
contact ball bearing of the same series. The outer ring was secured in
a fixed housing to restrict its movement. Noise measurement was
conducted using a microphone positioned 40 mm from the
housing’s end face, while a high-speed camera coaxially aligned
with the shaft visualized the cage’s rigid bodymotion. High-intensity
LED lighting ensured adequate exposure for the camera. An air
cylinder attached to the housing exerted a constant axial load (Fa),
and a motor provided a constant angular velocity (ωz).

After a 2 h break-in period, sound pressure levels recorded by
the microphone and optical images captured by the high-speed

camera were synchronously documented. The recording spanned at
least 50 shaft rotations, with the camera operating at up to
12,800 frames per second. The recorded area was a 93.75 mm
square, equivalent to the diameter of the outer ring shoulder,
with an image resolution of 1,024 × 1,024 pixels. This study
analyzes results under test conditions of Fa = 687 N and ωz

ranging from 50 to 8,000 rpm.
It should be noted that, given that the tests were conducted

with grease lubrication, the results may be influenced by the
characteristics of the grease, such as its viscosity, consistency,
and distribution. Therefore, approximately five trials per
condition were performed to obtain the data reported in this
paper. Within the same test, the occurrence and disappearance of
cage noise were repeated, leading to some variability in the
frequency of these occurrences. However, it was confirmed
that the sound pressure levels during the occurrence of cage
noise and the cage whirl velocities, as detailed in Section 2.3,
remained relatively consistent under the same conditions.
Consequently, this paper presents the most reliable data,
including average values and ranges, for comparison with the
computational results.

2.2 Trajectory of the cage center

To determine the trajectory of the cage center from the test
results, image-processing techniques were applied to multiple
optical images captured by the high-speed camera. The cage’s
center of gravity, calculated from its contour in each image, was
used to establish the cage’s center. This method provided the
trajectory data depicted in Figure 3. For each cage rotation,
between 200 and 660 optical images were processed. The contour
extraction involved binarization, setting a constant brightness
threshold for each pixel to ensure the area of the cage contour
remained consistent across different frames.

FIGURE 2
Schematic of experimental apparatus.
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In Figure 3, the radial directions of the cage center’s inertial
coordinates are represented on the vertical and horizontal axes.
This presentation shows the results over a single rotation of the
cage, including a circle representing the guide clearance
diameter. In the present tests, where the rotational speed
(ωz) was incrementally increased in steps, no cage noise was
observed at speeds below 100 rpm, whereas cage noise was
observed at speeds above 500 rpm. Therefore, the trajectories
for conditions at rotational speeds of 100, 500, and 3,000 rpm
are shown as representative samples. Notably, the reference
origin for each condition is the center of gravity coordinates
of the cage trajectory rather than the center of the shaft,
considering the convenience of the image-processing
technique used.

The observed trajectories suggest that the cage center can exceed
the guide clearance owing to the elastic deformation caused by
centrifugal forces because of the orbital motion of the cage. At ωz =
100 rpm, the cage center exhibits a wobbling motion, forming a
crescent-shaped trajectory without generating any detectable noise.
At higher speeds, ωz = 500 and 3,000 rpm, the cage performs a
circular motion within the guide clearance. During one cage
rotation, multiple revolutions of orbital motion occurred, with
the orbital direction opposite to the rotation direction, indicating
negative whirl. Noise associated with the cage was detected under
these conditions.

The forces acting on the cage include contact and friction from
the rolling elements and outer ring, as well as gravity. In particular,
when the relationship between pocket clearance cp and guide
clearance cg is cp > cg, the interaction with the outer ring
becomes dominant. At ωz = 100 rpm, the cage’s wobbling is
interpreted to center around an equilibrium position where the
friction force from the outer ring counterbalances gravity acting in
the negative y-axis direction. The wobble radius closely aligns with
half of the guide clearance (cg/2), suggesting it wobbles along the
outer ring shoulder. At ωz = 500 and 3,000 rpm, similar forces act,
but increased centrifugal force at higher rotational speeds increases
the contact and friction forces from the outer ring, thereby making
the friction force predominant over gravity, resulting in
negative whirl.

2.3 Effect of cage whirl on cage noise

Analysis of Figure 3 involved calculating the angle between the
time-varying cage center coordinates and the origin. The derivative
of this angle with respect to time was then used to compute the cage’s
whirl velocity. These calculations allowed us to determine the time-
averaged whirl velocity and time-averaged sound pressure during a
single rotation of the cage, as shown in Figure 4. The graph plots
time-averaged whirl velocity on the horizontal axis against time-
averaged sound pressure on the vertical axis. Positive whirl velocity
values indicate the cage orbiting in the same direction as its rotation,
whereas negative values indicate an orbit in the opposite direction.
Data points are marked with an “x” for cases where cage noise was
audibly detected and with an “o” where noise was absent. Given the
intermittent nature of the cage noise observed, data points at the
beginning, middle, and end of each test condition were plotted.

FIGURE 3
Trajectories of cage center during one rotation at Fa = 687 N and ωz = 100, 500, and 3,000 rpm in experiment.

FIGURE 4
Relationship between cage whirl velocity and sound pressure
level by microphone at ωz = 50–8,000 rpm in experiment.
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From the data represented in Figure 4, test results can be
categorized into two distinct types of cage behavior, detailed in
Table 1. This categorization has allowed for the clear identification
that negative whirl significantly contributes to the generation of cage
noise. For a representative condition where negative whirl was
observed, we further analyzed the time variations of whirl
velocity and sound pressure. These findings are illustrated in
Figure 5, where the upper panel shows the time variation of the
whirl velocity, and the lower panel shows the corresponding sound
pressure variations. The timing of fluctuations in these two
measurements generally aligns, corroborating that negative whirl
is a principal factor in the generation of cage noise.

3 Analytical method

3.1 Equations of motion

This section outlines the analytical model developed to replicate
the negative whirl observed in experimental settings, effectively
capturing the essence of the phenomenon. This approach is
instrumental in fundamentally addressing cage noise. To simplify

the understanding of the phenomenon and reduce computational
costs, a streamlined mechanical model comprising minimal
elements is employed. For dynamic analysis of bearing focusing
on cage behavior, Kannel and Bupara (1978) and Boesiger et al.
(1992) investigated the in-plane motion of a rigid cage, validating
this assumption through experimental data. According to Nogi et al.
(2018), negative whirl primarily results from sliding friction between
the cage and the outer ring. Therefore, this study focuses on the in-
plane motion of a rigid cage, disregarding the interaction between
the rolling elements and the raceways, with each rolling element
theoretically orbiting at equal intervals. Thus, the equations of
motion are confined to those of the cage.

The motion of a rigid cage, with two degrees of freedom for
translation and one for rotation, is governed by the following
equations based on Newton’s laws:

m€x � Fx, (1)
m€y � Fy, (2)
Iz€θ � Mz, (3)

wherem is the mass of the cage, Iz is the moment of inertia about its
rotational axis, Fx and Fy are the resultant forces in the x and y
directions, respectively, and Mz is the resultant moment about the
axis of rotation.

A moving coordinate system, fixed at the cage center, facilitates
analysis of the forces acting on the cage. The direction of cage
eccentricity is denoted as the ε-axis, while the orthogonal direction is
termed the φ-axis. The transformation from the moving coordinate

TABLE 1 Definition of two types of cage motion in this experiment.

Type of cage motion Cage noise

Steady:
Absolute value of cage whirl velocity is less than 500 rad/s

Inaudible

Negative whirl:
Cage whirl velocity is less than −500 rad/s. Direction of cage rotation and cage whirl is different

Audible

FIGURE 5
Comparison between temporal changes in whirl velocity (first
row) and sound pressure level (second row) at ωz = 3,000 rpm
(negative whirl generation) in experiment.

FIGURE 6
Schematic of forces on cage.
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system to the inertial coordinate system is expressed by the following
Equation 4 for the rotation matrix:

Fx

Fy
[ ] � cos φ −sin φ

sin φ cos φ
[ ] Fε

Fφ
[ ], (4)

where φ is the angle between the ε-axis and the y-axis (0<φ< 2π).
Figure 6 shows the forces acting on the cage, encompassing

contact and friction forces from the rolling elements and outer ring,
as well as gravity, as outlined in Section 2.2.

3.2 Interaction between the cage and
rolling elements

The contact state between the cage and rolling elements is
effectively modeled by a series connection of the contact stiffness,
as determined by Hertzian contact theory, and the deflection
stiffness of the cage (Boesiger et al., 1992). Given that the contact
stiffness substantially exceeds the deflection stiffness, only the latter
is considered significant. A linear Voigt model, consisting of a spring
and a dashpot in parallel, is employed as the contact model. The
Coulomb friction model is used for the friction calculations.

3.3 Interaction between the cage and the
outer ring

When examining the interaction between the cage and the outer
ring, relying solely on solid contact and Coulomb friction was found
to predict a negative whirl velocity approximately ten times greater
than what was observed experimentally. Furthermore, to induce
negative whirl using a solid friction model, an unrealistically high
Coulomb friction coefficient of at least 0.6 was required. Thus, the
impact of fluid friction in this interaction cannot be ignored. As
shown in Figure 7, the case where the cage center is eccentrically

displaced by ε is considered. Given the study’s focus on grease
lubrication, it is not assumed that the clearance is consistently filled
with grease. It is assumed that a uniform thickness, hL, of lubricant
exists on the shoulder of the outer ring, with hL treated as a constant
input value. This model does not account for changes in film
thickness due to side leakage or scooping. The presence of
lubricant subjects the cage to film pressure and shear force,
assumed to act within the geometrically contactable region
between the cage and the lubricant (from ∠POQ to ∠POQ′). To
simplify the representation of cavitation, the film pressure is
considered zero in regions of negative pressure.

The analysis also necessitates addressing collision phenomena.
The pressure dependency of viscosity in the fluid lubrication model
is described by the following equation (Barus, 1893):

η � η0 exp αP( ), (5)
where η0 is the base oil viscosity, and α is the pressure-viscosity
coefficient. Furthermore, owing to potential interference between
the cage and the outer ring, contact and friction models are adapted
based on the cage’s eccentricity, ε. Given that both solid contact and
fluid lubrication can occur owing to the surface roughness of the
cage, the metal contact ratio λr, as defined by Aihara (1987), is
employed in the following Equation 6:

λr � 1 − exp 1.8Λ1.2( ), (6)
where Λ represents the film thickness ratio, calculated as the
minimum film thickness between the cage and the outer ring
divided by the surface roughness.

Table 2 outlines the friction model between the cage and the
outer ring, considering the following three contact states:

1. When cg/2 − hL ≥ ε:

In this pattern, the cage and lubricant do not geometrically
contact, resulting in no interaction between the cage and the
outer ring.

2. When ε> cg/2 − hL and Λ> 0:

This scenario involves geometric contact between the cage and
lubricant where the film thickness ratio Λ> 0. Here, both solid
contact and fluid lubrication occur owing to the surface roughness of
the cage, linked via the metal contact ratio λr.

3. When ε> cg/2 − hL and Λ≤ 0:

This signifies geometric contact with a film thickness ratio Λ≤ 0,
indicating interference between the rigid cage and the outer ring.
This is considered a transient state where only solid contact
is modeled.

The forces acting on the cage, as delineated in Table 2, are
formulated under various conditions. Under solid contact, the Voigt
model and Coulomb friction, as outlined in Section 3.2, are applied.
For fluid lubrication scenarios, the forces derive from Reynolds’
equation, considering the dominance of axial flow due to the cage
width being typically less than one-fourth of the outer diameter. This
scenario applies the theory of short-width journal bearings. The

FIGURE 7
Schematic of lubricant forces on cage/race (balls were excluded
for visibility).
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validity of this approach was confirmed through point contact
elastohydrodynamic lubrication analysis, focusing on the
interaction between the cage and the outer ring, which
demonstrated that oil film pressure and tangential forces due to
shear do not significantly affect the results.

The Reynolds equation is derived under this assumption, based
on Cameron (1971), in the following Equations 7 and 8:

∂

∂y

h3

η

∂p

∂y
( ) � 6 u1 + u2( ) ∂h

∂x
+ 12

∂h

∂t
, (7)

h � C 1 + ε cos θ( ), (8)
where h is the oil film thickness, u1 and u2 are the surface velocities
of the cage and outer ring, C is half the guide clearance, and ε is the
eccentricity, respectively.

Assuming η as defined in Equation 5, Equation 7 cannot be
solved algebraically using the approach for short-width
journal bearings. Based on Cameron (1971), we apply Equation 9
to transform Equation 7. This transformation necessitates the
case distinctions described in Equation 10, but the resulting
modified Reynolds Equation 11 can then be solved algebraically.

q � 1 − e−αp( )/α. (9)

p � −1α ln 1 − αq( ) at q< 1/α

q at q≥ 1/α
⎧⎪⎪⎨⎪⎪⎩ (10)

∂2q

∂y2
� 6η0

h3
u1 + u2( ) ∂h

∂x
+ 2

∂h

∂t
( ). (11)

Integrating Equation 11 with boundary conditions from
Equation 12 yields Equation 13.

p L/2( ) � p −L/2( ) � 0 (12)

q � −3η0
h3

u1 + u2( ) ∂h
∂x

+ 2
∂h

∂t
( ) L2

4
− y2( ) (13)

To simplify the representation of cavitation, the pressure is set to
zero in regions of negative pressure. From Equations 10, 13, the oil
film pressure is derived as

p �
max 0,−1

α
ln 1 + 3αη0

h3
u1 + u2( ) ∂h

∂x
+ 2

∂h

∂t
( ) L2

4
− y2( )( )[ ] at q< 1/α

max 0,−3η0
h3

u1 + u2( ) ∂h
∂x

+ 2
∂h

∂t
( ) L2

4
− y2( )[ ] at q≥ 1/α

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
.

(14)

Pressure-induced forces FP−ε and FP−φ acting on the cage center
are calculated from the following Equations 15 and 16:

FP−ε � R ∫
L/2

−L/2
∫

π+θc

π−θc

p cos θdθdy, (15)

FP−φ � R ∫
L/2

−L/2
∫

π+θc

π−θc

p sin θdθdy, (16)

where θc is ∠POQ in Figure 7.
The shear force acting on the cage is calculated based on journal

bearing theory (Cameron, 1971), as shown by Equations 17–20.
Here, FS and MS represent the forces and moments acting on the
cage center, respectively. It is important to note that the parameter p,
which appears in Equation 17, is defined in Equation 14.
Consequently, the calculations for Equations 18–20 necessarily
require numerical integration.

τ � ∂p

∂x

h

2
+ η u1 − u2( )

h
(17)

FS−ε � R ∫
L/2

−L/2
∫
π+θc

π−θc

τ sin θdθdy (18)

FS−φ � R ∫
L/2

−L/2
∫

π+θc

π−θc

τ cos θdθdy (19)

MS � R2 ∫
L/2

−L/2
∫
π+θc

π−θc

τdθdy (20)

Thus, the resultant forces acting on the cage from the interaction
with the outer ring are detailed in Equations 21, 22.

Fε � λr FP−ε + FS−ε( ) + 1 − λr( )FDC (21)
Fφ � λr FP−φ + FS−φ( ) + 1 − λr( )FDF (22)

Here, FDC and FDF represent the contact and friction forces
under solid contact, respectively.

3.4 Analytical conditions

Table 3 lists the analytical conditions, which correspond to those
under which negative whirl was observed in the experiments

TABLE 2 Constructed friction model on cage/race.

Force acting on cage Forces acting in each region

cg/2 − hL ≥ ε ε> cg/2 − hL

Λ>0 0≥Λ

Fluid lubrication
Force due to lubricant pressure (Reynolds equations) —

Coupling by metal contact ratio λr

Adoption —

Force due to shear (Reynolds equations) — Adoption —

Solid contact
Contact force (Voigt model) — Adoption Adoption

Friction force (Coulomb friction model) — Adoption Adoption
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described in Section 2. Here, the angular velocities of ball rotation
and orbit are set to values corresponding to an inner ring rotational
speed of ωz = 3,000 rpm. The initial conditions are set with the cage
center at coordinates x � 0, y � 0 and the cage’s angular velocity at
142.5 rad/s. The analysis period is defined as 100 ms, within which
the cage’s behavior is expected to stabilize. During this interval, the
cage completes approximately 4.5 rotations.

The simulation addresses the dynamic problem of the cage’s
contact or non-contact with the rolling elements and the outer
ring, which varies over time. This variability renders Equations 1–3
as stiff differential equations. To effectively manage these, the
LSODA (Petzold, 1983) numerical integration algorithm was
utilized. LSODA is an algorithm that automatically switches
between the Adams method and the BDF method depending on
the stiffness of the ODE, allowing for efficient and accurate
solutions to ODEs. It is important to note that although the
BDF method selects the optimal scheme to ensure the accuracy
and stability of the solution, higher-order schemes are known to
increase numerical errors. Therefore, we compared the analysis
results obtained using LSODA with those obtained using the
Radau method, which is considered less susceptible to errors
under similar conditions, and confirmed their consistency. In
this study, we adopted LSODA, which has a proven track
record in similar bearing dynamic analyses (e.g., Boesiger
et al., 1992).

4 Analytical results

4.1 Cage motion

Figure 8 illustrates the trajectory of the cage center and the
temporal changes in cage whirl velocity. It also shows the
maximum and minimum whirl velocities observed during
negative whirl events, as detailed in the visualization tests
described in Section 2. The trajectory of the cage center reveals
orbital motion, with trends broadly matching the experimental
results shown in Figure 3 (right). The orbital radius remains
consistently within the guide clearance, suggesting that the cage

stays in contact with the outer ring via the lubricant. It is important
to note that this analysis assumes a rigid cage; thus, unlike the
experimental results, the cage center does not exceed the guide
clearance due to elastic deformation caused by centrifugal force.
From 25 ms onward, the whirl velocity remains generally constant
and negative, signifying a steady-state condition characterized by
continuous negative whirl. A comparative analysis between
experimental and analytical whirl velocities indicates a
discrepancy ranging from approximately 1.2–2.3 times. In
contrast, an analysis based solely on solid contact and Coulomb
friction between the cage and the outer ring resulted in a whirl
velocity approximately ten times higher than the experimental
value, indicating significant enhancements achieved with the
analytical model introduced in Section 3.

The model expansion to include more degrees of freedom
provides a nuanced representation of the forces driving the cage,
encompassing contact, friction, and inertia. While the model
discussed in Section 3 initially considered only the radial plane
motion of a two-dimensional cage, extending this model to three
dimensions allows for the resolution of the driving forces in the axial
direction as well. This extension is expected to reduce the absolute
value of the whirl velocity, which has been primarily determined
within the radial plane, thereby aligning it more closely with the
experimental findings.

4.2 Forces acting on the cage

Figure 9 shows the time variation of the tangential force Fφ

acting on the cage center. Under the current analytical conditions,
there was no solid contact between the cage and the outer ring; thus,
only fluid forces were involved. The force Fφ is critical in inducing
cage whirl, leading to positive whirl when positive and negative whirl
when negative. Specifically, the oil film pressure force FP−φ tends to
induce positive whirl, whereas the shear force FS−φ tends to induce
negative whirl. The mechanism by which FS−φ induces negative
whirl is linked to the direction of the shear force, which opposes the
sliding velocity of the cage. This sliding velocity, determined by the
rotational and translational speeds of the cage, predominantly aligns

TABLE 3 Analytical conditions.

Parameter Value Parameter Value

Cage mass 0.01 kg Number of balls 25

Cage moment of inertia 2.05 × 10−5 kg m2 Ball pitch diameter 89.0 mm

Cage outside diameter 93.3 mm Pocket clearance 0.555 mm

Cage inside diameter 87.9 mm Guide clearance 0.427 mm

Cage contact width with outer ring 4.0 mm Frictional coefficient of cage/ball 0.1

Ball diameter 8.73 mm Frictional coefficient of cage/ring 0.1

Contact stiffness of cage/ball and cage/ring 1.5 × 106 N/m Angular velocity of ball rotation 1,587 rad/s

Contact damping ratio of cage/ball and cage/ring 0.2 Angular velocity of ball orbit 142.5 rad/s

Viscosity 87.2 mPa·s Initial oil layer thickness on ring 42.7 μm

Pressure-viscosity coefficient 20 GPa-1 Rms roughness of cage/ring 1.6 μm
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with the cage’s rotation direction. FS−φ acts in the opposite direction
thereby inducing negative whirl.

The positive whirl induced by FP−φ can be elucidated by
Figure 7, where the steady-state oil film pressure is influenced by
the wedge effect. This effect generates positive pressure on the entry
side and negative pressure on the exit side of the cage. Given the
consideration of cavitation, the oil film pressure on the exit side is
effectively zero. By integrating the oil film pressure along the arc
from Q to P, the resultant force aligns with the direction of cage
rotation, causing FP−φ to induce positive whirl.

Figure 8 reveals that for t> 25 ms, a consistent negative
whirl velocity occurs, and the forces acting on the cage reach
equilibrium. However, focusing on t≤ 25 ms in Figure 9, FS−φ

(inducing negative whirl) rises earlier than FP−φ (which
counters negative whirl), indicating the initial cause of
negative whirl.

In the steady state at t> 25 ms, the average value of the resultant
force, as shown in Figure 9, is marginally negative. This suggests the
presence of a counteracting force that moderates an increase in
negative whirl. Figure 10 shows the time variation of the tangential
force resulting from the interactions between the outer ring and the
cage and between the rolling elements and the cage. The interaction
with the rolling elements generates a tangential force that induces
positive whirl, effectively balancing the tangential force that induces
negative whirl owing to the interaction with the outer ring
for t> 25 ms.

FIGURE 8
Trajectory of cage center (left column) and temporal change in cage whirl velocity (right column) in analysis.

FIGURE 9
Temporal changes in fluid forces on cage/race in tangential
direction in analysis.

FIGURE 10
Temporal changes in tangential forces of cage by ball/cage
interaction and ring/cage interaction in analysis.
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4.3 Effect of rotational speed on cage
instability

In the content up to Section 4.2, we constructed and validated an
analytical model capable of reproducing the negative whirl observed
in the 3,000 rpm experiment. In this section, to examine the
applicability of this model to other rotational speeds, we
evaluated the rotational speed dependency of cage whirl. The
analytical conditions were based on those shown in Table 3, with
only the angular velocity of ball rotation and orbit adjusted to match
the inner ring rotational speed. In the experiment described in
Section 2, the cooling effect was not expected due to the influence of
grease lubrication, and it is considered that the guide surface
experienced heating as the rotational speed increased, potentially
leading to a decrease in the viscosity of the base oil on the guide
surface. Here, two analytical conditions regarding the base oil
temperature were set to identify the parameters needed to
reproduce the cage behavior observed in the experiment.
Specifically, one condition set a constant temperature regardless
of rotational speed, and the other allowed the temperature to vary
depending on the rotational speed. It should be noted that the base
oil temperatures used in the analysis are reference values, as the
guide surface temperatures were not measured in the experiments
described in Section 2. The relationship between temperature and
viscosity was considered using Walther’s equation (ASTM
International, 1993).

The analytical results are shown in Figure 11. The left side of
the figure shows the rotational speed dependency of the whirl
velocity, with the experimental results also included. For each
condition, the average values are plotted, and error bars indicating
the upper and lower bounds are shown. Regarding the temperature
settings in the analysis, the condition of constant temperature used
313 K, as in the content up to Section 4.2, while for the condition
where temperature varies with rotational speed, the temperature
was explored through trial and error to reproduce the cage
behavior observed in the experiment. The right side of the

figure shows the base oil temperatures determined for each
rotational speed.

The analysis with the base oil temperature fixed at 313 K showed
that the cage exhibited stable behavior at rotational speeds below
N < 1,100 rpm, while negative whirl occurred at N ≥ 1,100 rpm. The
absolute value of the whirl velocity also tended to increase with
increasing rotational speed. However, this result qualitatively differs
from the experimental findings, suggesting that the analytical model
requires further refinement.

On the other hand, the analysis with the base oil temperature
adjusted for each rotational speed indicated that the cage behavior
qualitatively matched the experimental results when the
temperature increase was determined through trial-and-error
adjustments. This observation suggests that the base oil
temperature had a significant impact on the experimental
outcomes described in Section 2, underscoring the necessity of
considering this factor when assessing cage instability in grease-
lubricated systems. Additionally, while shear thinning is often
considered in the modeling of grease lubrication, it was
concluded that this effect could be neglected in this analysis due
to the oil film thickness being on the order of tens of micrometers.
However, this conclusion may lack sufficient supporting evidence.
Therefore, future research should focus on measuring the guide
surface temperature, visualizing the lubrication state during testing,
and measuring the torque exclusively on the guide surface. These
approaches are expected to provide a deeper understanding of
cage behavior.

5 Conclusion

This study aimed to elucidate the mechanism of cage noise
generation in outer ring-guided cages of machine tool spindles.
Through visualization tests and bearing dynamic analysis, it was
revealed that negative whirl—where the cage whirls in the opposite
direction of its rotation—is a significant contributor to cage noise.

FIGURE 11
Effect of rotational speed on whirl velocity (left column) and base oil temperature used in analysis (right column).
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These visualization tests showed clear evidence of this phenomenon
during noise-generation events.

To accurately simulate this behavior, friction models between
the cage and the outer ring, identified as the primary cause of
negative whirl, were examined and integrated into a bearing
dynamic analysis model. This model successfully replicated cage
behaviors that qualitatively matched experimental observations and
was validated under various rotational speeds by accounting for the
effects of base oil temperature. Furthermore, an examination of the
time variation of forces acting on the cage clarified the specific
mechanisms responsible for the generation of negative whirl.
Understanding these mechanisms enhances the fundamental
comprehension of cage design and its implications for noise
reduction in machine tool spindles.

Additionally, advancements in analytical methods are expected
to reduce prototyping costs and lower environmental impact. The
ease of conducting parametric studies is a notable feature of this
approach, which could also contribute to shortened development
times. These advancements are anticipated to address fundamental
issues and enhance the maintainability of the developed bearings.

However, this study focused solely on the in-plane motion of a
rigid cage. In practical applications, the three-dimensional motion of
the cage, including its deformation and tilt motion, plays a critical
role. To achieve higher precision in future analyses, these factors
should be incorporated, which can provide a more comprehensive
understanding of cage dynamics. For example, as noted in previous
research (Ashtekar and Sadeghi, 2012; Gao et al., 2022a; Gao et al.,
2022b), treating the cage as an elastic body allows for the
consideration of deformation due to centrifugal forces. This
approach enables the representation of reduced contact pressure
on the guide surface and a decrease in the effective eccentricity of the
cage. By integrating this approach with the analytical method
proposed in this paper, not only can the friction on the cage
guide surface be calculated with greater precision, but this
method may also prove to be a powerful tool for investigating
the impact of cage material on cage instability.
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