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Dynamic vibration absorbers (DVAs) have been widely employed in vibration
suppression applications for decades. While DVAs offer an effective solution, they
are limited by the need for a high mass ratio between the DVA and the primary
system to achieve significant vibration attenuation. To overcome this, researchers
have introduced lever mechanisms, allowing for enhanced vibration suppression
without increasing the mass ratio. However, levers, commonly used as
amplification mechanisms, suffer from high inertia and limited amplification,
particularly in larger applications. Another limitation is when DVAs are
employed for energy harvesting as a secondary objective, they exhibit high
sensitivity to system parameter variations, requiring extensive optimization.
Various optimization techniques have been applied to DVAs for multi-
objective optimization, including fixed-point theory, which is complex and
requires intensive mathematical derivation, and simple metaheuristic
techniques such as genetic algorithms (GA). This study proposes four novel
DVAs using a hydraulic amplifier (HA) to address the limitations of traditional
lever mechanisms and a mechanical inerter to improve the vibration damping.
Also, multi-objective optimization was performed using particle swarm
optimization (PSO) which is considered innovative in this application and
compared with commonly used genetic algorithms (GA). The governing
equations were derived using Newton’s second law and solved numerically
with the Runge-Kutta method. An AI-based approach was utilized for HA
design. The results show that integrating HA and mechanical inerters
significantly enhances vibration attenuation and broadens the frequency
response. Additionally, the location of the mechanical inerter is critical in
reducing vibration amplitude. Also, the multi-objective PSO outperforms GA in
solution diversity and quality. The proposed integration of HA in DVAs offers
potential applications across various engineering fields.
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Introduction

Vibration control mechanisms are typically employed to adjust
and attenuate vibrations within a system, utilizing both passive and
active control methodologies (Balaji and Karthik SelvaKumar,
2020). One such innovative approach is the DVA. The DVA
design incorporates an additional mass that interacts with the
primary system. The resultant system will exhibit two resonance
frequencies instead of one. However, at the primary system’s
resonance frequency, the excitation will be minimized. This
differs from conventional damping methods, which seek to
dissipate vibration energy by using dampers that convert it into
heat through fluid friction. DVAs have been the subject of extensive
research in the last decades (Martins et al., 2020a; Auleley et al.,
2021; Sun et al., 2023). Initially, DVA is primarily employed to
attenuate vibrations at the resonance frequency of the primary
system. Then, several proposed designs aim to expand the
frequency range of DVA absorption, such as the system
introduced in (Wang et al., 2019). However, the effectiveness of
DVA at non-resonance frequencies is inherently constrained by the
mass ratio between the primary and secondary systems. Engineers
often seek to overcome these limitations by utilizing amplification
techniques to adjust the mass and natural frequency ratios. Su et al.
(2023) proposed an innovative inerter-lever type DVA that offers
superior control characteristics, making it a more efficient and
feasible solution. Shen et al. (2019) introduced a model that
integrates ground stiffness and amplification mechanisms,
successfully reducing the maximum amplitude and broadening
the effective frequency range. Similarly, Shi et al. (2022)
investigated a novel DVA design featuring a lever, ground
stiffness, and an inerter, achieving significant amplitude
reduction and an expanded frequency range. Li et al. (2023)
proposed an optimized novel Maxwell DVA, which demonstrates
superior absorption performance.

In mechanical engineering, leverage systems and Hydraulic
systems serve as the most common amplification mechanisms.
Leverage systems encounter challenges with high inertia in
systems with significant masses or large arm ratios, leading to
inefficient response and control difficulties. Conversely, hydraulic
systems demonstrate superior control and generate substantial force
outputs in heavy systems. HA, operating on Pascal’s principle of
confined fluid, finds widespread application in various fields for
amplifying displacement or force (Bartnicki and Klimek, 2019; Xu
et al., 2021). Energy loss in HA primarily arises from friction
between the fluid and pipe walls, as well as between the piston
ring and the inner wall of the pipe (Qin et al., 2023). Traditionally, a
mass, spring element, and damping mechanism constitute the mass-
spring-damper system, forming the core of a vibration absorber.
Recently, engineers have uncovered the mechanical inerter as one of
the damping mechanisms. A mechanical inerter, designed to
produce force proportional to the relative acceleration between
its terminals, enhances system damping with minimal added
mass (Jangid, 2021) Numerous studies have been dedicated to
enhancing the capabilities of mechanical inerters (Zhang et al.,
2020), finding applications in various DVAs to improve overall
system performance. These inerter devices have found applications
within various DVAs with the intent of enhancing the overall system
performance. In another study, Li et al. (2022) introduced a novel

DVA incorporating an inerter mass, broadening the frequency range
while mitigating peak excitation levels. Alotta and Failla (2021)
proposed an inerter-based DVA integrated into a rhombus truss
structure, which offers mechanical amplification and facilitates
frequency adjustment through geometric configuration
alterations. Additionally, Barredo et al. (2020) developed an
inerter-based DVA specifically designed for civil engineering
structures, effectively attenuating stochastic vibrations. In
addition to that the application of hydraulic systems in dynamic
vibration absorbers (DVAs) has attracted significant interest among
researchers. For instance, Rong et al. (2024) have developed a
nonlinear gas-spring dynamic vibration absorber (NGSDVA),
which exhibits broad-spectrum vibration suppression capabilities
across different excitation amplitudes. Additionally, through
experimental studies, Brötz et al. (2024) have designed a fluid-
based dynamic vibration absorber (FDVA) specifically for
automotive suspension systems, achieving a 3.5% improvement
in ride comfort and a 4.3% reduction in wheel load fluctuations.

Vibrational energy harvesting involves capturing vibrational
energy and converting it into usable energy (Zhou et al., 2022).
This method overcomes many limitations of renewable energy
sources, which often rely on specific weather or environmental
conditions (Muscat et al., 2022). The primary methods of energy
harvesting include piezoelectric, electrostatic, and electromagnetic
(Ahmad and Khan, 2021). Piezoelectric materials, with their
mechanical-electric coupling characteristics, can convert strain
into voltage. Due to their ability to both dampen vibrations and
harness energy, DVAs have garnered attention from numerous
researchers in the context of energy harvesting. Wang et al.
(2023) introduced a quasi-zero-stiffness DVA for energy
harvesting and low-frequency vibration mitigation. Their model
effectively dampened vibrations within the ultra-low frequency
range. By optimizing DVA parameters, they observed an increase
in peak power output. In a similar study, Wang et al. (2020) utilized
a non-linear spring element to broaden the effective bandwidth in a
dual-function vibrational apparatus (DVA), serving both energy
harvesting and vibration damping purposes. Zoka and Afsharfard
(2019) proposed a double-stiffness DVA for energy harvesting and
vibration suppression. The proposed DVA exhibited a higher
Perfection Rate (PR) parameter compared to traditional DVAs,
enhancing its energy harvesting capabilities while effectively
dampening vibrations.

Numerous techniques have been employed in optimizing DVAs,
with two prominent methodologies taking the lead: fixed-point
theory, described in (Shen et al., 2019; Baduidana and Kenfack-
Jiotsa, 2022) and more recently the adoption of meta-heuristic
algorithmic techniques (Kassem et al., 2021; Wang et al., 2022;
Xu et al., 2024). Meta-heuristic techniques, such as GA, DE, and
PSO, are stochastic methods that navigate the solution space in
search of the optimal solution. These approaches prove invaluable
when tackling problems characterized by immense complexity or
lacking a well-defined mathematical structure, a common scenario
in vibrational system optimization. Among the meta-heuristic
techniques, GA, DE, and PSO are the most prevalent. DE
functions as a population-based meta-heuristic method that
evaluates differences among candidate solutions (Bilal et al.,
2020). Renowned for its efficiency and resilience (Ahmad et al.,
2022), DE generates vast volumes of optimized datasets for training
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purposes and finds extensive application in engineering systems
optimization, as evidenced in (Kim et al., 2019; Arthur et al., 2020).
The PSO technique represents a meta-heuristic optimization
approach inspired by the collective behavior of birds (Gad, 2022).
In this approach, each solution dynamically adjusts its position by
integrating its historical performance and the collective experiences
of other solution particles (Wang et al., 2017). This mechanism
allows PSO to have a distinctive capacity for enhancing both global
and local exploration. PSO offers several key advantages, such as its
ease of execution and minimal requirement for controlling
parameters (Shami et al., 2022).

Despite the various amplification mechanisms employed in the
design of DVAs, the implementation of a HA offers distinct
advantages. Traditional methods, such as lever mechanisms, often
necessitate high lever arm ratios for large vibration suppression,
leading to larger, less efficient systems with challenges related to
rigidity and high inertia. In contrast, amplification in DVAs
equipped with HAs relies only on the diameter’s ratio. It provides
the capability to absorb vibrations at alternative locations, thereby
enhancing design flexibility and efficiency. In addition to that, the
inertia in HA-based systems can be readily adjusted by modifying
the hydraulic fluid, further improving their adaptability. These
characteristics position HA-equipped DVAs as superior to those
utilizing traditional amplification mechanisms.

The integration of AI into vibration applications has significantly
advanced the field, particularly in optimization and data training.
Although existing optimization methods have shown effectiveness,
they are often limited by complexity and a lack of adaptability. PSO
is recognized for its efficiency and often outperforms GA in various
applications. However, many researchers, such as Martins et al. (2020),
have employed GA formulti-objective optimization of DVAs, while the
application of PSO, as seen in the works of Song et al. (2022) and Zhe-
Ming et al. (2019), has primarily focused on single-objective
optimizations. However, multi-objective optimization, which aims to
maximize output voltage while minimizing the maximum amplitude of
the main system within a designated operating frequency range,
remains underexplored. In this research, PSO and GA are used as
the multi-objective optimization methods for the proposed. Then,
Artificial Neural Networks (ANNs) are utilized to predict the
parameters of the HA.

This research makes significant contributions by introducing the
novel application of HAs in DVAs to overcome the limitations of
traditional lever mechanisms. Additionally, it utilizes AI in
structural dynamic systems, focusing on the multi-objective
optimization of DVAs using PSO and GA, and includes a
comparative analysis between the two methods. Together, these
innovations offer a more adaptive and efficient approach to
vibration absorption and energy harvesting. Click or tap here to
enter text. Click or tap here to enter text. Click or tap here to enter
text. The structure of the paper is outlined as follows: Section 2 1
presents the mathematical model of the proposed systems and
describes the HA modeling and optimization using the DE
algorithm to minimize friction loss and reduce pipe weight. It
also includes the training process of ANN for predicting the
optimal HA design based on input parameters. Sectio 2 2 presents
the derivation of the governing equation of the integrated DVA with
piezoelectric components. Additionally, it investigates the utilization
of a multi-objective weighted sum approach using PSO and GA to
determine the optimal parameters of the DVA, with the dual objective
of minimizing vibration amplitude and maximizing output voltage.
Finally, Section 3 and Section 4 discuss the results and conclusions,
respectively.

Methodology

DVA proposed systems

Mathematical modeling
Four DVAs have been proposed with the implementation of the

HA and the mechanical inerter to improve the performance of the
DVA as illustrated in Figure 1. Only the HA was introduced to the
system at the beginning. Then mechanical inerter has been
introduced in different configurations to find the best locations.
The equation of motion of the four proposed systems is generated.

Propose 1:

m1
€X1 + Rk2 RX1 − X2( ) + k1X1 + cR R _X1 − _X2( ) � Fsin ωt( ) (1)

m2
€X2 + k2 X2 − RX1( ) + c _X2 − R _X1( ) + k3X2 � 0 (2)

FIGURE 1
Proposed DVA configurations.

Frontiers in Mechanical Engineering frontiersin.org03

Shamseldin et al. 10.3389/fmech.2024.1464692

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1464692


Propose 2:

m1
€X1 + Rk2 RX1 − X2( ) + k1X1 + cR R _X1 − _X2( ) � Fsin ωt( ) (3)
m2 + b( ) €X2 + k2 X2 − RX1( ) + c _X2 − R _X1( ) + k3X2 � 0 (4)

Propose 3:

m1
€X1 + bR R €X1 − €X2( ) + Rk2 RX1 − X2( ) + k1X1 + cR R _X1 − _X2( )
� Fsin ωt( )

(5)
m2

€X2 + b €X2 − R €X1( ) + k2 X2 − RX1( ) + c _X2 − R _X1( ) + k3X2 � 0

(6)
Propose 4:

m1 + b( ) €X1 + Rk2 RX1 − X2( ) + k1X1 + cR R _X1 − _X2( ) � Fsin ωt( )
(7)

m2
€X2 + k2 X2 − RX1( ) + c _X2 − R _X1( ) + k3X2 � 0 (8)

In Equations 1–8 m1 and m2 denote the masses of the primary and
secondary systems, respectively, c represents the damper coefficient,
k1 and k2 represent the stiffness of the springs in the primary and
secondary systems respectively, b is the mechanical inerter
coefficient, and R is the amplification ratio A1/A2 (A1 and A2 are
the area of the first and the second piston respectively).

HA analysis
HA is modeled with a circular cross-section tube, and the

total loss within the HA is constrained to be less than 10% of the
applied force. This constraint was established following a
parametric study in the second part of the analysis, which
revealed that an increase in the damping coefficient ξ1 (as
depicted in Supplementary Figure S2 of the Supplementary
Material) leads to a proportional increase in the vibration
amplitude of the primary system. Although the friction loss
attributable to oil seals is difficult to quantify, seal
manufacturers estimate this loss to range between 1% and
5% (Friction Loss In Hydraulic Cylinder, 2017). For a
conservative estimate, a 5% friction loss due to oil seals is
assumed. The friction within the HA is modeled as the flow
of a Newtonian fluid through a pipe, with the Darcy-Weisbach
equation and the Swamee-Jain equation employed for the
calculations. The optimized HA is designed to ensure that
the total loss remains below 10% of the input force. The
relevant Darcy-Weisbach and Swamee-Jain equations are
provided below.

h � f Lv2

2dg
(9)

f � 1.25

log ε
3.7d + 5.74

Re0.9( )[ ]2 (10)

where h is the friction loss, f is the friction factor, L is the pipe
length, v is the fluid velocity, d is the pipe inner diameter, g is the
gravitational constant, Re is the Reynolds number, and ε is the
friction coefficient of the pipe, which is assumed to be 45x10−6 m
(typical for commercial-grade piping). The HA illustration is shown

in Figure 2. Then DE was used to optimize the diameters (D1) and
lengths (L1 and L2) in Equations 9, 10 to obtain the minimum
friction loss and the minimum pipe weight. The input parameters
which are selected randomly each time between specific ranges are
the vibration force (250–1000N), the velocity of the primary system
(1–4m/s), the kinematic viscosity of the hydraulic oil
(10−6–10−3m2/s), the amplification ratio (R≥ 2), and the total
length (1–4m). The optimization process is iterated 10 times,
with each iteration employing varied mutation factors and
crossover probabilities. The optimal solution is then determined
from these iterations. The stopping criteria for each run is to match
the maximum number of generations, which is 300.

Following the flowchart in Figure 3, the optimized dataset is
filtered to exclude penalty results. Initially, a reduction in inputs and
outputs is initiated, where vibration forces aremultiplied by the velocity
to derive a single input (power). Additionally, a ratio is computed
betweenD1 and L2, as well as between L1 and L2. This process resulted
in streamlining the network to four inputs (Power, kinematic viscosity,
pipe length, and amplification ratio) and two outputs (D1/L2 and
L1/L2). After that, all data were normalized by rescaling the values
to a range between 0 and 1. Then, the normalized data are trained
using an ANN (70% training and 30% testing). An extensive
analysis followed, involving varied configurations of ANN layers
and neurons, along with testing different sample sizes to identify
the best ANN configuration with minimal error. The absolute
error is chosen as the error metric, calculated by subtracting the
target data (testing data) from the trained data for each iteration.
A total of 750 iterations are investigated with a different number
of samples, hidden layers, and neurons in each run. The optimal
ANN is identified at iteration number 128, achieving a minimum
absolute error of 0.3, as depicted in Figure 4.

FIGURE 2
HA optimization parameters.

Frontiers in Mechanical Engineering frontiersin.org04

Shamseldin et al. 10.3389/fmech.2024.1464692

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1464692


The chosen ANN configuration consisted of 560 patterns,
featuring 2 hidden layers with 3 hidden neurons each, as
delineated in Figure 5.

DVA multi-objective optimization

The second proposed system was used for the analysis. Then, the
piezoelectric material is attached to the secondary mass for energy
harvesting. The equation of motion of DVA after attaching the
piezoelectric material are:

m1
€X1 + Rk2 RX1 − X2( ) + k1X1 + cR R _X1 − _X2( ) � Fsin Ωt( ) (11)

m2 + b( ) €X2 + k2 X2 − RX1( ) + c _X2 − R _X1( ) + k3X2 − vθ1 � 0

(12)
cp _v + v

R
+ θ2 _X2 � 0 (13)

where θ1, and θ2 are the mechanical electrical coupling of the
piezoelectric material. After that, the Equation 11–13 have been
transferred into dimensionless form. The dimensionless
equations are:

€x1 + x1 + Rμβ2 Rx1 − x2( ) + ξ1 R _x1 − _x2( ) � f 0 sin ωτ( ) (14)
€x2 + x2 − Rx1( ) + ξ2 _x2 − _x1( ) + αx2 − Qv � 0 (15)

_v + λv + k _x2 � 0 (16)

FIGURE 3
DE and ANN methodology flow chart.
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where x is the normalized dimensionless displacement excitation,
and v is the normalized dimensionless voltage. The dimensionless
parameters are:

μ � m2

m1
, β � ωn2

ωn1
,ωn1 �

���
k1
m1

√
,ωn2 �

���
k2
m2

√
, ξ2 � R c

m2 + b( )

������
k2

m2 + b

√
,

ξ1 � R c

m1ω1
, f0 � F

k1xs
ξ2 � c

m2 + b( )

������
k2

m2 + b

√
, ξ1 � c

m1ω1
,

f0 � F

k1xs
, τ � t

ts
, α � k3

k2
, x � X

Xs

The dimensionless parameters have been optimized using PSO
and GA, the number of populations was set to 20, and the stopping
criteria were defined as reaching the maximum number of
generations (equal to 100 generations). The study integrates two
objective functions: minimizing the maximum vibration amplitude
and maximizing the output voltage. The output voltage is calculated
as the average value over the study dimensionless frequency range

(0.5–1.5). The weight sum optimization method is employed for the
multi-objective optimization process. This approach converts the
multiple objectives into a single objective, thereby transforming the
problem into a minimization or maximization scenario. In this
study, energy harvesting is considered a secondary objective, while
vibration reduction serves as the primary objective. Consequently,
the minimum weight for the primary objective is set at 0.5. The
weight sum method is utilized with varying weights assigned to the
primary objective (w1 = 0.5, 0.6, 0.7, 0.8, 0.9, and 1), aiming to
minimize the maximum vibration amplitude, and weights assigned
to the secondary objective (w2 = 0.5, 0.4, 0.3, 0.2, 0.1, and zero),
targeting the maximization of the average output voltage.

ObjectiveFunction � w1 p min Maximum x1( )( )
− w2 p Mean v( )( ) (17)

where w1 and w2 represent the weights of the primary and the
secondary objective respectively. Parametric studies of the system
parameters were conducted to obtain their influence on the
vibration amplitude and output voltage of the system and to
specify the range of the parameter values for the multi-objective
optimization. The parametric studies of the system parameters are
available in the (Supplementary Material). Figure 6 shows the
convergence sample of weight sum PSO (inertia weight = 1.4,
cognitive parameter = 2, social parameter = 2, and decrement
constant = 0.99) and GA (tournament probability = 1, crossover
probability = 0.8, mutation probability = 0.05, b = 2, and elite
solution = 2) optimizations with w1 = 0.8 and w2 = 0.2. Despite the
implementation of a GA with 2 elite solutions, the curve exhibits
fluctuations. These fluctuations arise from the normalization process
carried out within each generation.

Results and discussion

DVA analysis results

The four proposed systems are compared with different R values
as illustrated in Figure 7. At R � 1, systems 3 and 4 exhibit the

FIGURE 4
Absolute error of the train data.

FIGURE 5
Best neural network configuration.
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highest maximum vibration amplitudes, which are nearly identical.
At the resonance frequency (ω � 1) of the primary system, system
3 demonstrates the lowest amplitude, while other systems show
similar amplitudes near ω � 1. When R � 1.5, the frequency of
maximum vibration for all systems shifts to the left, with system

3 displaying the highest amplitude. Notably, system 4 experiences a
20% reduction in maximum vibration amplitude, whereas systems
1 and 2 demonstrate negligible changes. At ω � 1, all systems
experience a decrease in vibration amplitude, anticipated due to
the amplification process, and the amplitude gap between proposal
3 and others increases. At R � 2, the maximum vibration excitation
of system 3 increases, alongside leftward shifts in the systems’
frequencies. At ω � 1, the system’s amplitude is nearly
equivalent, and the frequency range exhibiting low amplitudes is
expanded, thereby extending the operational frequency range. This
results in reducing vibration across a broader range compared to
R � 1 and 1.5. As R further increases, systems continue to follow a
general trend, with leftward shifts in maximum amplitude-
frequency and expansions in the working frequency band.
Proposal 2 consistently exhibits the lowest maximum amplitude
for varying R.

ANN results

The ANN model depicted in Figure 5 serves as a predictive tool
for determining the design parameters of the HA (L1, L2, and D1).
Through testing with 80 samples from data not utilized in the
training phase, the ANN’s performance is evaluated. Figures 8, 9

FIGURE 6
PSO and GA weight sum convergence sample (w1 � 0.8
and w2 � 0.2).

FIGURE 7
System frequency-response of the proposed systems for different R.
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present the outputs of the tested samples for L1/L2 and L1/D1,
respectively. These figures demonstrate a predominant clustering
of values in close proximity, indicating a high level of agreement
between the predicted and actual values. However, certain
instances reveal significant errors, highlighting the inherent
variability in the analysis. Such discrepancies can be attributed
to the complex nature of the system under study. While the ANN
generally demonstrates robustness in approximating the
relationships between inputs and outputs, occasional
deviations may occur, particularly in scenarios characterized
by complexity.

Multi-objective PSO and GA optimization

The proposed system in Equation 14–16 is optimized to
minimize the maximum vibration amplitude and maximize the

average output voltage. The weight sum method with different
weights using PSO and GA is used for the optimization. The
vibration amplitude of the primary system and the output
voltage of the optimized system with different weights are
illustrated in Figure 10. The black circles and the red stars
represent the optimization points of PSO and GA respectively.
Since the step value of ω controls the optimization’s
computation time a value of increments of ω equal to 0.1 is
used throughout the analysis. The solid red and black lines are
drawn through quadratic interpolation between these points.
The optimal values obtained from the optimization process are
summarized in Tables 1, 2. The values of parameters β, α, f0,
and μ are set at 1, 0.02, 0.7, and 0.1, respectively, to achieve
these results.

To compare PSO and GA in this multi-objective problem, the
Pareto front is conducted for the two techniques. The Pareto
front which contains the best solutions is illustrated in Figure 11.

FIGURE 8
L1/L2 trained and target results.

FIGURE 9
D1/L2 trained and target results.

Frontiers in Mechanical Engineering frontiersin.org08

Shamseldin et al. 10.3389/fmech.2024.1464692

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1464692


FIGURE 10
PSO and GA frequency-response results of x1 and v for different weights: optimization points (black circles PSO–red stars GA) and quadratic
interpolation (solid line red PSO–solid line black GA).
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The results show that the multi-objective optimization using
PSO gives a better solution than GA in general. The results
manifest as nondominated between PSO and GA with the
same weights.

Notably, an additional observation emerges regarding the
stability of PSO solutions with weight trends, revealing
fluctuations in PSO compared to GA solutions under
corresponding weight settings as illustrated in Figures 12, 13.
Moreover, a general trend surfaces where PSO yields more
diverse solutions relative to GA, exemplified by the presence
of two repeated solutions at w1 values of 0.9 and 0.8. These
findings are attributed to the inherent complexity of the
optimization problem at hand and the heightened sensitivity
of parameters, which exert a pronounced influence on the
optimization objectives.

Additionally, the existence of resonance constraints within the
problem and intricacies in the simulation steps contribute to the
observed nuances in the optimization analyses.

FIGURE 11
Pareto front for PSO and GA multi-objective.

TABLE 1 PSO multi-objective optimized parameters for different weights.

w1 w2 R ζ1 ζ2 λ Q k Max (x1) Mean (v)

0.5 0.5 2.56 0.10 0.13 0.56 0.58 0.52 3.40 3.20

0.6 0.4 1.61 0.10 0.18 0.02 0.18 0.60 3.90 3.80

0.7 0.3 1.62 0.10 0.30 0.02 0.16 0.60 3.50 3.40

0.8 0.2 2.77 0.10 0.24 0.81 0.64 0.60 2.80 2.80

0.9 0.1 3.00 0.10 0.10 2.00 1.94 0.60 1.90 1.30

1.0 0.0 3.00 0.10 0.10 1.49 1.44 0.60 2.10 1.80

TABLE 2 GA multi-objective optimized parameters for different weights.

w1 w2 R ζ1 ζ2 λ Q k Max (x1) Mean (v)

0.5 0.5 1.20 0.10 0.10 0.02 0.10 0.55 3.87 3.30

0.6 0.4 2.93 0.15 0.21 0.80 0.78 0.44 3.40 2.20

0.7 0.3 2.43 0.10 0.11 1.23 1.01 0.45 2.88 1.70

0.8 0.2 2.96 0.11 0.29 1.16 1.51 0.39 2.50 1.34

0.9 0.1 2.96 0.11 0.29 1.16 1.51 0.39 2.50 1.34

1.0 0.0 2.98 0.11 0.11 1.99 1.96 0.58 1.94 1.20

FIGURE 12
Max x1 in PSO and GA with different weights.
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Conclusion

The proposed model of the DVA incorporating an HA and a
mechanical inerter effectively mitigates the limitation imposed by the
mass ratio necessary to enhance attenuation. Additionally, it broadens the
operational frequency range of the DVA. Also, it has been found that the
location of the mechanical inerter is critical in reducing vibration
amplitude. The proposed HA design systematically addresses the issue
of power loss, and the training data from the ANN successfully facilitates
the selection of optimal HA dimensions for various input parameters,
achieving amaximum friction loss of less than 10% of the vibration force.
In terms of optimization, the multi-objective PSO generally surpasses
Genetic Algorithms GA in both diversity and quality of solutions.
However, fluctuations in stability have been observed in the PSO
weighted sum due to the system’s complexity. Therefore, PSO is
recommended for future optimization processes in multi-objective
vibration system applications.

The characteristics of theDVAwith theHA andmechanical inerter
proposed in this study make it suitable for a wide range of vibration
suppression applications in structural engineering, automotive
engineering, and industrial equipment. However, certain limitations
of the proposed system must be considered during selection. These
include the higher cost compared to lever mechanisms, the need for
regularly scheduled maintenance, and the time response limitation,
which must be factored into the design. This system is typically better
suited for applications involving low-frequency vibrations.

This study demonstrates the effectiveness of meta-heuristic
optimization techniques in optimizing complex systems. Future
research should include experimental analyses of DVA with HA
in vibrating machines and explore the design of an integrated system
that connects a single DVA with vibrating equipment.
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