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Introduction: This paper aims at the control problem of nonlinear systems with
uncertainty in general, and avoids the deviation of sliding mode controller from
the preset constraint region during the convergence process.

Methods: A sliding mode control method based on fuzzy adaptive technique was
proposed by constructing obstacle Lyapunov function (BLF). Design problem of
fuzzy adaptive second-order sliding mode controller considering output
constraints. The Lyapunov function of the cutting barrier is designed, and the
fuzzy adaptive second-order sliding mode controller is constructed by
combining the Lyapunov function with the regression method. A second-
order finite output sliding mode controller is designed for the inverted
pendulum system. In the case of unknown external disturbance, the
mathematical modeling and force analysis of the first order inverted
pendulum system are carried out, and the design problem of the fuzzy
adaptive second-order sliding mode controller with output restriction is studied.

Results andDiscussion: The proposed fuzzy adaptive second-order slidingmode
controller has a good control effect in the inverted pendulum system. The fuzzy
adaptive second-order controller stabilizes the sliding mode at 0.1 in 1.25 s, while
the fuzzy adaptive second-order controller makes the system state reach
equilibrium in 15 s. The accuracy of fuzzy adaptive second-order sliding mode
controller reaches 99.2%, which is superior to other methods in terms of balance
accuracy and recall rate. The controller not only has a fast response speed, but
also can effectively suppress system flutter and ensure the rapid stability of the
system after constraints. This researchmethod lays a foundation for the design of
fuzzy adaptive sliding mode control algorithm.
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1 Introduction

Non-linear systems are widely used in practical complex engineering, often exhibiting
characteristics of multi-variable, high-order, and strong coupling. The internal uncertainty and
external interference make the traditional control methods difficult to deal with, resulting in
system performance degradation and even instability (John et al., 2023). In practice, the changes
in system parameters and external environmental disturbances inevitably affect the control
effect, so it is very important to develop a robust control method that can adapt to uncertainty.
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As a classical control theory verification platform, the inverted
pendulum system is often used to test and verify the effectiveness of
control algorithms due to its under-actuation, non-linearity, and
instability (Kavikumar et al., 2022; Zare et al., 2022). SMC, also
known as variable structure control, is a special form of non-linear
control characterized by the discontinuity of control. The main
difference of the sliding mode controller (SMC) lies in its ability to
dynamically adjust the system structure, guiding the system to move
along the designed sliding trajectory (Fei et al., 2022). In addition, SMC
is widely used in non-linear control fields, such as robot control, path
tracking, and motor control, thus becoming an important control
method in the field of automatic control (Wu et al., 2022). Qiao
and Wang artificially enhanced the speed control effect of the direct
drive system of permanent magnet synchronous motors using a gentle
conversion function instead of the conventional switching function. An
SMC based on fuzzy logic was constructed. Through simulation
experiments, the controller was validated in handling sudden loads
and simulating actual operating loads. Compared with traditional SMC,
its overshoot was smaller and its robustness was better (Qiao andWang,

2024). Chen et al. put forward an adaptive SMC to address the
challenges of conventional SMC in jitter and obtaining sliding
surface derivative data. Sliding mode variables were incorporated
into the super twisting algorithmic parameters while retaining the
discontinuous terms within the integrated function to reduce system
vibration. This research method significantly improved the side slip
angle compared with traditional SMC (Chen et al., 2024). Sun et al. put
forward a hybrid controlling scheme that integrated the torque
allocation method and SMC technology to reduce torque
fluctuations and improve the dynamic response efficiency. SMC was
improved to further reduce torque fluctuations at high speeds and
accelerate the response speed. It enhanced the system adaptability and
verified the effectiveness of the hybrid control scheme (Sun et al., 2022).

Dong et al. put forward a stepped SMC using Lagrange law to avoid
accidents caused by oscillation during container handling. Its steady state
was established using Lyapunov’s theorem and Babarat’s theorem. This
researchmethod quickly reduced swing and attitude tilt, which had good
fault tolerance for parameter changes (Dong et al., 2023). Zhao et al.
proposed a non-singular fast SMC strategy that combined adaptive
algorithms and super distortion technology to reduce the impact of
disturbances on the permanent magnet linear synchronous motor servo
system. A control rule for stable convergence of position signals was
constructed. The control method effectively improved control accuracy
and system anti-interference performance (Zhao et al., 2023). Mendoza
et al. proposed a small UAV trajectory tracking controlmethod based on
the FANPID controller. The method used the adaptive characteristics of
the FANPID–Lyapunov controller to estimate the rotation angle. The
UAV parameters were identified by the fuzzy adaptive neuron method.
The simulation results showed that the control system had advantages in
self-tuning and optimization, and the error was significantly reduced
compared with other PID controllers (Mendoza and Yu, 2023). Chen
et al. put forward a novel tracking means for autonomous vehicles. An
adaptive system adjusted the SMC gain to ensure accurate and stable
tracking of vehicle speed under various conditions. After simulation
verification, the proposed scheme had significant advantages compared
with other existing control strategies (Chen et al., 2022). Moudoud et al.
put forward a fuzzy adaptive SMC for tracking to address the uncertainty
and disturbance issues faced by electric wheeled robots. This controller

FIGURE 1
Basic structure of the fuzzy logic system.

FIGURE 2
Working process of the linear inverted pendulum system.
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utilized fuzzy logic to enhance the system resistance to changes and
disturbances while optimizing the convergence efficiency of vibration
mitigation and positioning errors. The performance of the proposed
method was validated on the MATLAB/Simulink platform (Moudoud
et al., 2022). To suppress the chattering effect and maintain robustness
under load variation and parameter uncertainty, Kaplan O et al.
proposed a second-order sliding mode control (SOSMC) to adjust
the output voltage of DC/DC step-down converters by input cpll.
The results show that the controller has high tracking accuracy and
strong robustness, and can effectively reduce the chattering effect of the
system under any input voltage or CPL power interference (Kaplan and
Bodur, 2023).

In summary, although the above methods perform well under
certain conditions, they may not be stable and robust enough to cope
with sudden loads and parameter changes. For example, the control
strategies in Sun et al. (2022) and Dong et al. (2023) have
shortcomings in fast convergence and precise control. In Zhao
et al. (2023) and Mendoza and Yu (2023), adaptive algorithms
and fuzzy logic were used to improve the control accuracy, but i both
needed improvement under strong interference. Chen et al. (2022)
and Moudoud et al. (2022) performed well on trajectory tracking,
but their methods may be unable to deal with complex systems and
strong coupling problems. The overtorque control strategy proposed
in Kaplan and Bodur (2023) still needs to improve the tracking
accuracy and robustness under the conditions of load variation and
parameter uncertainty. The advantage of this method is that it
combines fuzzy adaptive technology and second-order sliding
mode control to improve the robustness and adaptability of the
system by dynamically adjusting the control gain and introducing
the barrier Lyapunov function (BLF), which focuses on suppressing
chatter and dealing with output constraints.

Inverted pendulum (IP) systems are a typical class of under-
actuated mechanical systems that are multi-variable, high-order,
non-linear, strongly coupled, and naturally unstable. IP is a typical
algorithm validation platform in the field of control, which can
effectively detect the feasibility and practical value of algorithms
(Chotikunnan et al., 2022). Traditional SMCs perform well in
dealing with non-linear systems, but the buffeting problem still
exists. Under output constraints, it is difficult for traditional control

methods to ensure the stability of the system. In particular, in the fast-
response scenario, the design complexity increases. It is usually
necessary to combine fuzzy logic, adaptive mechanism, and other
technologies. It is a typical under-actuated, highly non-linear, and
unstable system commonly used to verify the effectiveness of control
algorithms. In order to solve the uncertainty problem in non-linear
systems, especially the inverted pendulum control problem, a second-
order SMC combining fuzzy adaptive technique and the backstep
method is designed. The fuzzy logic system is used to approximate
the uncertainty, and the adaptive mechanism is used to adjust the
control gain to ensure the stability and accuracy of the system. The
effectiveness of the controller in the inverted pendulum system is
verified under output constraints and unknown interference conditions.

The contribution of the research is as follows. In this paper, an
innovative fuzzy adaptive second-order sliding mode control
method is introduced, which combines the approximation ability
of the fuzzy logic system with the robustness of second-order sliding
mode control to provide new theoretical support for non-linear
control systems. This method approximates the system uncertainty
dynamically by fuzzy adaptive technology, effectively reduces the
buffeting problem of traditional sliding mode control, and improves
the smoothness and accuracy of control. To solve the problem of
output limitation, the barrier Lyapunov function (BLF) technology
is used to ensure that the system state converts to the equilibrium
point within a limited time and does not exceed the predetermined
constraints, which enhances the security and reliability. At the same
time, the finite-time stability proof of the fuzzy adaptive second-
order sliding mode controller is provided, which is crucial for
predicting and understanding the system’s behavior.

2 Methods and materials

2.1 The second-order sliding mode control
method based on fuzzy adaptive control

Traditional SMC has attracted much attention due to its
robustness to parameter changes and external disturbances in the
field of control. In practical operation, due to factors such as the

FIGURE 3
Force analysis of the small car and pendulum. (A) Force analysis diagram of the small car. (B) Analysis diagram of pendulum force.
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component structure and the system itself, it is not possible to obtain
an accurate mathematical model of the system in advance. This
limits the applicability of traditional SMC in describing complex or
difficult-to-quantify non-linear systems. The application of fuzzy
logic can overcome this problem by estimating quasi unknown non-
linear functions through language descriptions that rely on
comprehensive expert experience. The study combines fuzzy
control methods with robust adaptive laws to reduce the error
between fuzzy approximation and actual readings. A fuzzy
adaptive traditional SMC is constructed by approximating the
unknown function of a non-linear system through a fuzzy logic
system (FLS) and combining it with the traditional sliding mode.
Figure 1 shows the proposed FLS.

In Figure 1, the fuzzy logic controller design mainly includes the
following content: first, the input and output of the fuzzy controller
are determined. Then, the control rules of the fuzzy controller are
summarized. The methods for fuzzification and anti-fuzzification
are determined. Second, the domain is chosen, and relevant

parameters are determined. The initial design can be simulated.
If the control performance does not meet the requirements, the
membership function needs to be redefined. Sometimes, the input/
output quantities need to be redefined. The knowledge base based on
fuzzy rules is composed of IF-THEN rules (Gauder et al., 2023). The
multiple input single output (MISO) rule is used to formulate
control laws (Soukkou et al., 2023). Based on the extension of
implication in multi-valued logic, the implication rule using the
t-norm operator is defined in Equation 1.

μAj
1×/×Aj

n→Cj X, y( ) � μAj
i
x1( )p/pμAj

n
xn( )pμCj y( ). (1)

In Equation 1, μ represents a fuzzy set. X �
(x1, x2, . . . , xn)T ∈ P ⊂ Rn represents the input. y ∈ Q ⊂ R

represents the output. Aj
i and Bj represent fuzzy sets. *

represents the t-norm. n represents the state number in a FLS.
Fuzzification is a process of mapping a clear point into a fuzzy set B.
Single-instance fuzzy mapping is shown in Equation 2.

FIGURE 4
Response curves of the sliding variable s under the action of controllers u1 and u2. (A) Controller u1. (B) Controller u2.

FIGURE 5
Response curve of u under the action of controllers u1 and u2.
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μB X′( ) � 1, X′ � X
0, others

{ . (2)

Fuzzy reasoning is a mapping from a fuzzy set P to a fuzzy set
R. Assuming that B is a fuzzy set in V, the fuzzy relationship
formula is B+Rj. Product inference can be obtained using the
t-norm operator and product operation. Deflurring is the process
of mapping a fuzzy set from R to a clear point in R. The central
average method used is a FLS with a central average deblurring
device, a product inference device, a singleton fuzzer, and a fuzzy
basis function (FBF) (Ziyu et al., 2024).M represents the number
of fuzzy sets. If μAj

i
is fixed and yi is considered an adjustable

parameter, then y(X) � θTξ(X), θ � (y1, . . . , yM)T. Before
designing the FBF, all parameters in ξj(X) can be fixed. The
only variable parameter is θ. The FLS is used to construct a FBF
with adaptive parameter vectors to replace unknown functions.
To make the first-order non-linear system controllable, the
tracking error is set to e, and the sliding surface is designed as
s � e. From an initial condition e � 0, track issue x � xd. xd

represents the expected state. All t≥ 0 maintain a state error
vector on the sliding surface s � e � 0. By setting s2(e) as the
Lyapunov function, the sliding condition can be replaced by
Equation 3.

s · _s≤ − η · s| |or _s · sgn s( )≤ − η. (3)

After deriving Equation 3, Equation 4 can be obtained.

_s � _e � f t, x( ) + b t, x( )u,
f t, x( ) � a t, x( ) − _xd t( ).{ (4)

In Equation 4, a(t, x) and b(t, x) both represent unidentified
continuous functions. u represents the system input. Equation 5 is
the SMC input u*.

u* � b−1 −f t, x( ) − h · sgn s( ) · ηΔ( ), h � 1, s ≠ 0,
0, s � 0.

{ (5)

In most practical situations, functions f(t, x) and b(t, x) are in
an unknown state. Therefore, an adaptive method for FLSs is
proposed. f(t, x) is replaced by FLS f̂(t, x). The disturbance
caused by unknown control gain is reduced through
b−1sgn(s)|A1|. Assuming that 0< b≤ b(t, x) and
b(t, x) � B + Δb(t, x), B is a known normal number. Δb(t, x)
refers to an unidentified positive function. A controlling input in
Equation 6 is obtained.

u1 � B−1 −f x θ|( ) − h · sgn s( ) · ηΔ( ) − B−1sgn s( ) A1| |. (6)
θ* is the optimal parameter vector for FLS. The upmost
approximation error ω is defined. The Lyapunov function is
V1 � 1

2 (s2 + 1
κ1
ϕTϕ). κ1 is a constant. By taking the derivative,

Equation 7 is obtained.

V
·
1 � s _s + 1

κ1
ϕTϕ

� sϕTξ x( ) + sω − s · h · sgn s( ) · ηΔ + sΔb t, x( ) · B−1A1

− s · b t, x( )B−1sgn s( ) A1| | + 1
κ1
ϕT _ϕ≤

1
κ1
ϕT κ1 · s · ξ x( ) + _ϕ( )

+ sω + sΔb t, x( ) · B−1A1 − s| | · h · ηΔ
− s| | · b t, x( )B−1 A1| |< 1

κ1
ϕT κ1 · s · ξ x( ) + _ϕ( ) + sω

− s| | · h · ηΔ − s| | · A| |.
(7)

In Equation 7, _ϕ � − _θ. According to the general approximation
theorem, s · ξ is the order of magnitude of the maximum
approximation error. In adaptive fuzzy systems, if ξ is not equal
to 0, then ξ should be very small. Therefore, _θ � κ1 · s · ξ(x) is

FIGURE 6
Phase plane trajectory and response curve of the controller during operation. (A) Phase plane trajectory of s-s^during the operation of the controller.
(B) Response curve of s during controller operation.
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selected as the adaptive law. Assuming that the upper bound of ξ is
unidentified, robust controlling means are contemplated. Equation 8
represents a control input design process at this time.

u2 � B−1 −~f x θ|( ) − h · sgn s( ) · ηΔ + ~Q( ) − B−1sgn s( ) A2| |( ). (8)

In Equation 8, A2 � (−f̂(x | θ) − h · sgn(s) · (ηΔ + ∂̂)), ∂̂ �
∂* − ~∂, ∂* � |ω|max. Assuming that the new Lyapunov function is
V2 � 1

2 (s2 + 1
κ1
ϕTϕ + 1

κ2
ρ̃2), the derivative of V2 is taken. Equation 9

is the designed adaptive law.

_θ � κ1 · s · ξ x( ),
_̂ρ � κ2 · h · s| |.{ (9)

Equation 9 is substituted into the derivative of V2 to obtain
_V≤ |s| · h · ηΔ, which proves the asymptotic convergence of the
system. The controller is designed as shown in Equation 10.

u1 � B−1 −~a x θ|( ) − h · sgn s( ) · ηΔ + ~Q( )( )
−B−1sgn s( ) −~a x θ|( ) − h · sgn s( ) · ηΔ + ~Q( )∣∣∣∣∣ ∣∣∣∣∣. (10)

The non-linear system _x � f(t, x) + g(t, x)u is considered. x
represents the system status. u1 represents the control input of the
system. f(t, x) � 0.2x(t) − sin(t) + ex(t), g(t, x) � 1.3|x(t)|·
cos 2(x(t)) + 0.1. The simulation verification is to design a
controller to act on the system. Then, x can trace the signal
xd � 0.5 sin(4t). For FLS â(x | θ), a first-order SMC is
constructed for comparison, whose form is represented by
Equation 11.

u2 � −1
B

a t, x( ) + h · sgn s( ) · ηΔ( ). (11)

The fuzzy logic system solves the uncertainty control problem of
non-linear systems. Due to the estimation of system uncertainty, the
controller gain selected does not need to be too large, thereby
weakening the chattering caused by the traditional sliding mode.
Based on the robust adaptive law, the error between actual
uncertainty and fuzzy approximation is reduced to improve the
system control accuracy and performance. To cope with the external
interference caused by the magnetic field and improve the

FIGURE 7
Time-dependent motion trajectory of the system state x1 under the action of fuzzy adaptive second-order SMC and the control input signal in the
initial state. (A) Response curve of x1 during controller operation. (B) Response curve of the controller.

FIGURE 8
Simulation results under the action of controllers u3 and u4. (A) Response curve of controller u4 at x1. (B) Response curve of s under the action of
controllers u3 and u4.
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robustness of the inverted pendulum system, the research method
uses fuzzy logic rules to map the non-linear dynamics of the system
to appropriate control parameters and then flexibly adjust them
according to the current state changes. The control gain in real time
is adjusted according to the different operating states of the system
to improve the immunity. When the system state approaches the
constrained edge, the controller increases the control input to
prevent the state from deviating too much and avoid entering the
unstable region. The process is completed by fuzzy logic reasoning,
that is, the optimal control strategy is selected automatically
according to the error and its change rate. The gain parameters
are adjusted adaptively near the sliding mode surface to improve the
control precision and system response speed. The optimized fuzzy
adaptive SMC can realize precise control in a complex external
environment and effectively resist non-linear factors such as
magnetic field interference.

2.2 Fuzzy adaptive second-order sliding
mode control means for the inverted
pendulum system

Although the fuzzy adaptive first-order SMC strategy has some
effectiveness in reducing oscillations, it still has shortcomings in
eliminating vibrations compared with the second-order sliding
mode. For uncertainties in non-linear systems, the traditional
second-order sliding mode may no longer be applicable when
there are safety and actuator structure limitations in the system.
Output limitation is a challenge, whichmeans that the system output
must remain within a specific range. Otherwise, it may cause damage
or performance degradation. To address these issues, research is
being conducted to meet the requirement of system output
limitation by referring to BLF. Then, adaptive fuzzy technology is
used to dynamically approximate the uncertainty function. Finally, a
new fuzzy adaptive second-order SMC is designed using adaptive
control and power integral techniques. Fuzzy control has the
powerful ability to approximate unknown terms in non-linear
systems. The basic components of FLS include fuzzification,

fuzzy reasoning, and de-fuzzification (Guo and Zhao, 2023).
Equation 12 is the single-instance fuzzification mapping used.

Pi x( ) � e−
xi − ϑi
Qi

( )2

. (12)

In Equation 12, Qi, i � 1, 2, . . . , n represents the width of the
function. ϑ represents a center vector. Ai

1, . . . , A
i
n and Bi represent

fuzzy sets in U and V, respectively. x1 ∈ U ⊂ Rn and y ∈ V ⊂ R

represent the input and output variables of FLS, respectively.
Equation 13 is the obtained FLS.

y x( ) � θTψ x( ). (13)

In Equation 13, ψ(x) represents the FBF. θ ~m and θ~n represent
adaptive parameter vectors. ψ ~m(x) and ψ~n(x) represent fuzzy basis
functions.R represents the compact region for x. Equation 14 is the
minimum estimation error.

Z � m t, x( ) − ~m x θ ~m
*

∣∣∣∣( )( ) + n t, x( ) − ~n x θ ~m
*

∣∣∣∣( )( )v. (14)

In Equation 14, v represents the controlling item. Equation 15 is
the fuzzy adaptive second-order SMC design process.

u � − 1
~n x θ~n|( )

β1
12

ϕ s( ) · _s
a
r2[ ] + β

a
r2
1 s[ ] a

r1[ ] r3
a

+ ~m x θ~n|( ) + β2 + γ( ) · ϕ s( ) · _s
a
r2[ ] + β

a
r2
1 s[ ] a

r1( )
− β2 + γ

~n x θ~n|( ) · sign _s
a
r2[ ] + β

a
r2
1 s[ ] a

r1( ).
(15)

In Equation 15, β1 and β2 represent appropriate normal

numbers. ϕ(s) � sec2(π|s|
2a+τ
r1

sδ 2a+τ
r1

). θ ~m and θ~n are regulated using an

adaptive law, as shown in Equation 16.

_θ ~m � Q1 _s[ ]a/r2 + β
a/r2
1 s[ ]a/r1[ ] 2a−r3

a ψ ~m x( ),

_θ~n � Q2 _s[ ]a/r2 + β
a/r2
1 s[ ]a/r1[ ] 2a−r3

a ψ ~m x( )v.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (16)

v is shown in Equation 17.

FIGURE 9
Simulation results of the system state under the action of controllers u3, u5, and u6. (A) Response curves of controllers u3, u5, and u6 at initial values
(x1 (0), x2 (0))=(0.3, 0.8). (B) Response curve of s under the action of controller u3 with additional random noise (2%, 5%, and 10%).
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v � − 1
~n x θ~n|( ) ~m x θ ~m|( ) + β1

12
ϕ s( ) · s[ ] a

r2 + β1
a
r2 s[ ] a

r1[ ] r3
a[ ]. (17)

In Equation 17, Q1 and Q2 represent normal numbers. At this
point, the controller in Equation 9 ensures that the system satisfies
the finite time stability of s � _s � 0. For all t≥ 0, a sliding variable s
satisfies |s|< δ. Parameters a and r1 that satisfy a≥ r1 are to prevent
_V(s1, s2, θ̃ ~m, θ̃~n) singularity. If r1 > a, 2a−r3a may be less than 1, and
_V(s1, s2, θ̃ ~m, θ̃~n) is strange. When the sliding variable moves away
from the origin, the larger the parameter a, the greater the control
force provided by the controller, greatly improving the convergence
ability of the closed-loop system. Parameters r1, r2, r3, and τ must
conform to r2 � r1 − τ ≥ 0, r3 � r2 − τ ≥ 0, and τ > 0. These
conditions ensure the local homogeneity of V(s1, s2, θ̃ ~m, θ̃~n) and
_V(s1, s2, θ̃ ~m, θ̃~n). This is also a sufficient and necessary condition for
the stability of sliding variables within a finite time. The parameter
β1 cannot be selected too low because it will affect the convergence of
sliding variables. If β1 is large, the convergence speed of sliding
variables will be faster. On the contrary, the convergence time of
sliding variables is also longer. In addition, the parameter β2 is
restricted to meet β2 ≥ c1(β1) + c2(β1). This requires β2 > a larger
normal number as the control design employs a technique similar to
backstepping, leading to an overestimation of β2 (Jiang et al., 2023).
The preset value of β2 can be gradually reduced until a good
performance of the closed-loop system is achieved. In other
words, in practical operation, there is no need to be constrained
by the above limitations as long as good performance can be
achieved within a reasonable range. In addition, the parameter
γ > |℘|max is helpful for the stability analysis of the adopted
system. Moreover, ~m(x | θ ~m) and ~n(x | θ~n) must accord with
Equations 15, 17. The research mainly focuses on designing a
fuzzy adaptive second-order SMC for non-linear systems having
no output constraints. According to the actual situation, when the
system does not consider constraints, ϕ(s) � 1. In this case, the
stability proof only needs to change BLF to Equation 18.

V2 s1, s2( ) � ∫
s1

s2

μ[ ] a
r1 − s1

*[ ] 2a−r2
a[ ]dμ. (18)

In Equation 18, s1* � 0. First, the controlled variables of the IP
system are determined to include the car position, car speed,
pendulum angle, and pendulum angular velocity. Then, position
information on the car and angle information on the pendulum are
collected through measuring devices. The car speed and the angular
velocity of the pendulum are calculated through corresponding
calculations. The obtained information is transmitted to the
controller and driver. The controller processes the received
information into control variables and applies them to the motor,
which, in turn, acts on the IP. The measuring device measures the
car information again. The above processes are repeated until the
pendulum can stabilize near the equilibrium position and continue
to maintain a stable state. During the above process, the controller
also transmits the measured information to the upper computer,
which can intuitively observe various variables and make accurate
analysis and judgments. Figure 2 shows the working process of the
IP system.

Without considering air resistance, friction between
components, and friction between the car and the ground, the
linear first-level IP system can be simplified, as shown in
Figure 3A. Figure 3B shows the force analysis of the car and
the pendulum.

In Figure 3, F represents the force applied to the car. mc is the
mass of the small car. m is the mass of the pendulum. x represents
the displacement of the small car. φ represents the angle between the
pendulum and the vertical upward direction. l is the pendulum
center and the distance of the rotation center. N and M represent
the horizontal and vertical components of the interaction force
between the car and the pendulum, respectively. N′ and M′ are
equal to N and M in size, respectively, with opposite directions.
Based on the above analysis, Equation 19 is a motion equation.

FIGURE 10
Simulation results of controller u8. (A) Phase plane trajectory of s-s^during the operation of the controller. (B) Response curve under the action of
controller u8.
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mc +m( ) __x__ −ml · __ϕ__2 sin ϕ � F. (19)

Equation 20 is the torque balance equation for
the pendulum.

P′l sin ϕ +N′l cos ϕ � I
d2ϕ

dt2
. (20)

According to Lyapunov theory, the closed-loop dynamics of IP
systems are finite-time stable. Equation 21 represents the fuzzy
adaptive second-order mode controller u3 and the second-order
SMC u4 without considering constraints.

u3 � v − 25.1

~n x θn
∣∣∣∣∣( ) · ϕ s + sign _s[ ]2 + 2.25 s[ ]( )( )[ ],

u4 � v − 25.1

~n x θn
∣∣∣∣∣( ) · sign _s[ ]2 + 2.25 s[ ]( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(21)

In addition, two second-order SMCs are constructed for
comparison to demonstrate the superiority of the proposed
algorithm. Equation 22 represents controllers u5 and u6.

u5 � −β2 · sign _s[ ] a
r2 + β

a
r2
1 s[ ] a

r1( )
u6 � − β+2 + β−2 �amax x( )( ) · sign _s[ ] a

r2 + β
a
r2
1 s[ ] a

r1( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (22)

Then, the reciprocal of time along the system is taken. Equation
23 is the design of the controller.

u7 � v − 9.1

n̂ x θn
∣∣∣∣∣( ) · ϕ s1( ) + 1[ ] · sign ξ2( ). (23)

A fuzzy adaptive second-order SMC u7 without considering
output constraints is constructed in Equation 24.

u8 � v − 9.1

n̂ x θn
∣∣∣∣∣( ) · sign ξ2( ). (24)

v is shown in Equation 25.

v � − 1

n̂ x θn
∣∣∣∣∣( ) ~m x θn

∣∣∣∣∣( ) + 1.3
12

ϕ s1( ) · sign ξ2( )[ ]. (25)

The parameter vectors θ ~m and θ~n satisfy the adaptive law of
Equation 26.

θ ~m � 6 ξ2[ ]2ψ ~m x( ),
θn � 3 ξ2[ ]2ψn x( )v.{ (26)

The fuzzy basis function is shown in Equation 27.

ψl1 l2
x( ) �

∏2
i�1
μ
A
li
i xi( )

∑7
l1�1

∑7
l2�1

∏2
i�1
μ
A
li
i xi( )( )

. (27)

The proposed fuzzy adaptive second-order SMC is applied to IP
systems in research. The proposed fuzzy adaptive second-order SMC
is validated through an IP system. First, the model and force analysis
of the traditional linear primary IP system are presented. Then, a fuzzy
adaptive second-order SMC is designed for the IP system.

To sum up, the steps of fuzzy adaptive control design are as
follows: first, the mathematical model of a non-linear system is
established. Because of the uncertainties in the system, such as
parameter change and external disturbance, it is difficult to describe
them accurately by traditional control methods. Therefore, the fuzzy
logic system is used to approximate these uncertainties. The input of
the fuzzy logic system is usually the error or the error change rate,
and the output is the control signal. The precise values are converted
to fuzzy sets by fuzzification. Then, the central average method is

FIGURE 11
Simulation results of controller u8. (A) Phase plane trajectory of s-s^during the operation of the controller. (B) Response curve under the action of
controller u7.
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used for deblurring to obtain clear control values. The core is based
on the IF-THEN rule base to deal with the uncertainty and non-
linear problems, as well as fuzzy reasoning to achieve input–output
mapping. The fuzzy controller adjusts parameters dynamically
through the adaptive mechanism to improve the approximation
accuracy. The design of the adaptive control law should be based on
Lyapunov stability analysis to ensure the asymptotic stability of
errors. In SMC, by defining the sliding surface and error, the fuzzy
logic system is used to approach the uncertainty term, and fuzzy
parameters are adjusted by an adaptive strategy to reduce the
influence of error and uncertainty.

3 Results

3.1 Experimental analysis of the first-order
sliding mode controller

The first-order SMC parameters are set as follows: B � 2,
ηΔ � 12, κ1 � 5, and κ1 � 6. The initial state is (x(0), _x(0)) �
(−.1, 0.8) and θ(0) � [0.8,/, 0.8]T. The sampling time is
0.0001s. Figure 4 shows the response curve of s.

In Figure 4A, the sliding variable can accurately track the
dynamic expected value, with the maximum and minimum
values of 0.4 and -0.4, respectively. Therefore, the feasibility of
the proposed algorithm was demonstrated. In Figure 4B, based
on SMC variables, it could accurately track and adapt to
dynamically changing expected targets. The motion trajectories of
sliding variables under the action of two controllers were compared
together. This was to verify that the proposed fuzzy adaptive first-
order sliding mode algorithm can inherit the robustness of
traditional sliding modes. It can, to some extent, weaken the
chattering generated by the traditional sliding mode. Figure 5
presents the results.

In Figure 5, the variation range of the traditional sliding mode
and fuzzy adaptive slider was very similar, with both being
within −0.5–0.5. The designed fuzzy adaptive first-order SMC
strategy exhibited the same robust characteristics as the
traditional SMC. On the basis of achieving the same tracking

effect as the common goal, the vibration generated by the newly
proposed controller u2 was obviously lower than that when using
the controller u1. The vibration of controller u1 was
within −35–19 and that of controller u2 was within −45–19.

3.2 Experimental analysis of the
performance of second-order SMC

The parameters of fuzzy adaptive second-order SMC are set
as follows: ω � 0.1, r1 � 1, r2 � 0.5, r3 � 0, β1 � 1.5, β2 � 25,
τ � 0.5, Q1 � 5, and Q2 � 5 to verify the effectiveness of
fuzzy adaptive second-order SMC. The initial states are
(x1(0), x2(0)) � (0.5, 0.8), (0.4, 0.8), (0.3, 0.8), (0.2, 0.8), (0.1, 0.8),
and θ ~m(0) � [0.8,/, 0.8]T

25
, θ~n(0) � [0.8,/, 0.8]T

25
. The sampling

time is 0.0001s. Figure 6 shows the phase plane trajectory and
response curve of the controller during operation.

Figure 6A presents a phase trajectory of s-ŝ with various initial
states under the action of fuzzy adaptive second-order SMC.
Figure 6B shows the motion trajectory of the sliding variable s
over time under the action of fuzzy adaptive second-order SMC.
Figure 7A shows the motion trajectory of the system state x1 over
time under the action of fuzzy adaptive second-order SMC u3.
Figure 7B shows the control input signal of controller u3 in the
initial state (x1(0), x2(0)) � (0.5, 0.8).

Figure 7A shows that the sliding state s tracked the expected
value. However, the system state x1 did not cross the constraint
boundary |x1| � δ � 0.51. When approaching the specified
constraint boundary, the state x1 was constrained within the
boundary by the action of the controller. This could be obtained
through the gain function ϕ(s). The value of the gain function was
inversely proportional to the distance from state x1 to the constraint
boundary. In other words, as the system state x1 approached the
constraint boundary |x1| � δ, the value of the gain function became
larger, providing greater control values to constrain the variables
within the required range. Figure 7A shows that when the state
x1 approached the boundary, the control input signal became larger.
Figure 8 shows the simulation results under the action of
controllers u3 and u4.

FIGURE 12
Response curves of u under the controllers u7 and u8. (A) Response curve of u under the action of controller u7 at initial values (x1 (0), x2 (0))=(0.5,
0.8). (B) Response curve of u under the action of controller u8 at initial values (x1 (0), x2 (0))=(0.5, 0.8).
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Figure 8A shows that under the initial condition
(x1(0), x2(0)) � (0.5, 0.8), the system state crossed the constraint
boundary under the action of controller u4. Figure 8B shows when
the state x1 approached the constraint boundary, due to the
significant force applied by the controller u3, the state x1 crossed
the constraint boundary. Under the action of controller u4, the
system state x1 crossed the constraining boundary. These results
validate the advantages of the proposed controller u3. Figure 9 shows
the simulation results of the system state x1 under the action of
controllers u3, u5, and u6.

Figure 9A shows the state x1 reached stability under these
controllers. If the control value of the controller u3 was smaller
than that of the other two controllers, its sliding variable reached a
stable state within 1.25 s, with a value of 0.1. This indicates that the
proposed algorithm effectively reduces chattering. Figure 9B shows
the sliding variable s affected by noise interference oscillated near the
equilibrium point within a finite time. As the random noise applied
to the system increased, the system performance also deteriorated.

3.3 Experimental analysis of fuzzy adaptive
second-order SMC

The parameter settings are as follows: a � r1 � 2, r2 � 1, τ � 1,
β1 � 1.3, β2 � 8.5, γ � 0.6, Q1 � 6, and Q2 � 3 to validate the
effectiveness of the fuzzy adaptive second-order SMC. The initial

states are θ�a(0) � [0.6, . . . , 0.5]T and θb (0) � [0.6,/, 0.6]T
49

. The

sampling time is 0.0001s. These initial conditions for selecting
different IP systems are (0.3, 0.5), (−0.3, 0.5), (0.5, 0.8), and
(−0.5, 0.8). Figure 10A shows the simulation results of controller u8.

Figure 10A shows the s − _s phase trajectory under the action of
controller u8. These sliding variables converged to a coordinate
origin. Figure 10A shows the response curve of ϕ under the action of
controller u8. The system state ϕ converged to 0 within a finite time
at different initial values. When the initial values were (x1 (0), x2
(0)) = (0.5, 0.8), ϕ crossed the constraint boundary in the initial
response stage. Figure 11 shows the simulation results of
controller u7.

Figure 11A shows the sliding variable converged to the
coordinate origin. When the initial value was (x1 (0), x2 (0))
=(0.5, 0.8), the system state 0 did not cross the constraint
boundary in the initial response. This is because when ϕ

approaches the boundary, the function ϕ(s1) will generate a large
value that pulls ϕ back from the constraint boundary, ensuring that
the variable does not cross the boundary. Figure 11B shows that
under the action of controller u7, ϕ eventually reached the

equilibrium point within 15s. Figure 12 shows the response curve
of u under the action of controllers u7 and u8.

According to Figure 12, for controller u7, at the beginning, u
became large enough to constrain the state variable that was about to
escape. After being constrained, u gradually decreased. As the
system stabilized, u gradually stabilized within 10. To further
verify the superiority of the research method, the performance of
several SMCs was compared. The results are shown in Table 1.

From Table 1, the fuzzy adaptive second-order sliding mode
controller (FASMC) designed in the research showed excellent
performance in several indicators. In terms of accuracy, FASMC
achieved 99.2%, which was significantly higher than that of other
control methods in the literature. The F1 value of the research
method was 0.95, indicating that FASMC was also superior to other
methods in balancing accuracy and recall rate. The convergence
time was only 1.25 s, which was faster than the method in the
literature, indicating that the controller had a faster response in
practical applications. In addition, the minimum vibration range of
FASMC was only 0.1, which is far lower than that of other methods,
demonstrating the advantages of the controller in terms of stability
and its ability to effectively suppress flutter. Finally, the convergent
state time of FASMCwas 15 s, which was slightly shorter than that of
other methods, further proving the efficiency of the method.

4 Discussion

This paper proposes a fuzzy adaptive second-order SMCmethod
that significantly improves the control accuracy and system
robustness, especially in suppressing chattering. Compared with
traditional fuzzy sliding mode control, this method reduces the
dependence on fixed gain by adjusting sliding mode gain adaptively
and optimizes the control performance in a complex environment.
Compared with the super-twisted sliding mode control in Chen et al.
(2024), this paper achieves system stability within 1.25 s, and the
speed is faster. In addition, this paper verifies its superior control
effect in the inverted pendulum system, and it has a wide application
prospect. Compared with the cascade sliding mode control in Dong
et al. (2023), the adaptive fuzzy strategy proposed in this paper is
more adaptable to system parameter changes and external
disturbances. Although the stepped SMC performs well in
scenarios such as anti-swing control of container gantry cranes,
its adaptability and scalability are relatively insufficient. It is difficult
to apply to complex systems. In this paper, the BLF is introduced to
ensure the asymptotic stability under output constraints. The
proposed method can converge quickly under different initial

TABLE 1 Performance comparison results of each sliding mode controller.

Control method Research method Qiao and Wang (2024) Mendoza and Yu (2023) Chotikunnan et al., 2022

Accuracy/% 99.2 97.5 98.3 98.9

F1 0.95 0.87 0.91 0.93

Convergence time/s 1.25 2.52 1.84 1.53

Vibration range 0.1 0.4 0.3 0.2

Astringency/s 15 20 18 16
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conditions, and the state is always kept within the constraint range,
showing excellent adaptability and anti-interference ability. The
fuzzy adaptive SMC described in Moudoud et al. (2022) has a
good effect in robot trajectory tracking, but its performance
degrades with strong disturbance. In this paper, fuzzy logic and
adaptive mechanism are used to reduce noise interference and
ensure stable operation of the system. Finally, this paper
converges the sliding mode variable to 0.1 within 1.25 s, and the
control input is stable within 10, which is better than that of the
methods in Kaplan and Bodur (2023) and Chotikunnan et al., 2022.

5 Conclusion

A control strategy was proposed to efficiently handle non-linear
systems with uncertainty. This method first designed a first-order
SMC based on fuzzy logic and an adaptive mechanism and analyzed
its stability. It was further extended to second-order SMC. In
addition, to address output limitation issues, BLF was introduced
and applied to the actual system IP. In the simulation experiment,
the new algorithm not only maintained the efficient performance of
the control system but also tracked the sliding variable s over time
under the action of fuzzy adaptive second-order SMC. In summary,
first-order SMC sliding variables accurately tracked the dynamic
expected value. Its maximum and minimum values were
0.4 and −0.4, respectively. The sliding variable s converged
within a finite time, thus proving the proposed algorithm’s
feasibility. The variation between the traditional method and
fuzzy adaptive slider was similar, with both being
within −0.5–0.5. The vibration of controller u1 was within
-35–19, and the vibration of controller u2 was within −45–19.
This is because the fuzzy adaptive technology weakened the
chattering problem in the traditional sliding mode to a certain
extent. When the state x1 approached the boundary, the control
input signal became very large, which verified the effectiveness of the
proposed controller. The state x1 achieved its stability under these
controllers. The control value of controller u3 was smaller than that
of the other two controllers. The sliding variable reached a stable
state within 1.25 s, with a value of 0.1. This indicated that the
proposed algorithm effectively reduced chattering. When the initial
value was (x1 (0), x2 (0)) =(0.5, 0.8), under the action of controller
u7, the system state ϕ eventually reached the equilibrium point at
different initial values. From the simulation results, the system
converged quickly and had small oscillations. The state did not
cross the constraint boundary. For controller u7, at the beginning, u
became large enough to constrain the state variables that were about
to escape. After being constrained, u gradually decreased. As the
system stabilized, u gradually stabilized within 10. In system state
convergence, there was no constraint boundary crossing, and the
convergence speed was fast. Meanwhile, due to unknown system
uncertainty, there was no need to consider controller design issues.
The combination of fuzzy logic, adaptive mechanisms, and sliding

mode control increases design complexity, especially for fast
responses. The adaptive mechanism reduces chatter, but the
high-frequency switch increases actuator wear. The fuzzy logic
system approximates non-linear function, reduces control gain
requirement, and alleviates the flutter problem. BLF is introduced
to ensure that the system state does not exceed the limit and the
system is stable in a limited time. Therefore, the proposed algorithm
has significant effectiveness in dealing with output constrained
problems. Although the current algorithm is effective, there is
still room for improvement. For example, intelligent technologies
combining neural networks may further optimize the performance.
This algorithm is successfully applied to linear IP systems.
Therefore, in the future, this algorithm can be applied to a wider
range of complex control systems, such as robots and drones.
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