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Pump-controlled actuators, or more generically, hydrostatic actuators, have the
significant advantage of not relying on valves to control the cylinders. This results
in much better energy usage compared to traditional valve-controlled systems.
However, it is possible to further increase energy efficiency by storing load energy
inmotoring quadrants and subsequently releasing the stored energy back into the
circuit or making it available for other applications. Much work is needed to
practically study energy storage in hydrostatic actuators. In this note, we review
the two basic ways hydraulic energy can be saved in circuits using accumulators,
emphasizing their advantages and drawbacks. The review is followed by a brief
description of the current research being carried out at the University of Manitoba
in Canada. We aim to show that research in this field is promising and
demonstrates that hydraulic power transmission can not only be made
efficient but also be used to regenerate load energy that would otherwise go
to waste.
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1 Introduction

This paper focuses on pump-controlled actuators, where flow changes are produced
exclusively at the pump (Costa and Sepehri, 2015). This is particularly important when the
hydraulic circuit is closed, as in Figure 1A. In the figure, we observe that the cylinder can act
both as an energy consumer (actuator) or as an energy supplier (pump). Hydraulic
actuators, including hydraulic cylinders, can be controlled by adjusting the oil flow into
and out of their chambers. Assuming fluid incompressibility, flow and piston velocity are
directly proportional. The most common way to control speed is by gradually throttling the
oil flow into or out of the cylinder chambers through directional and flow control valves.
However, the added flow resistance significantly reduces the overall energy efficiency of the
system. An alternative method is to change the oil flow directly at its source by adjusting the
pump flow, either by altering its displacement or the pump shaft speed. This approach
eliminates throttle losses and optimizes the system’s energy performance. These two
methods of controlling the hydraulic actuator are generally described as “valve-
controlled” and “pump-controlled” systems. When the cylinder becomes the energy
supplier, the pump (P) operates as a hydraulic motor. The weight, W, thus produces an
input power, Pi, when descending at a velocity, v, as expressed by the following equations:

W � mg
P i � Wv

{ (1)
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wherem is the mass of the combined actuator rod and load, g is the
gravitational acceleration and v is the cylinder rod velocity. Ideally,
Pi, would reach the pump in its entirety. However, due to losses
along the way, only a fraction, Po, of this input power is converted
into mechanical energy at the pump shaft.

Focusing on the closed circuit shown in Figure 1A, we observe a
directional valve (C) connecting each side of the cylinder to a low-
pressure (LP) source. Valve C has been referred to as “compensation
valve” (Costa and Sepehri, 2019), whose function is to match the
flows coming from the cylinder to the flows going into and out of the
pump. The control of valve C depends on the pressures on the piston
and rod sides of the cylinder, pc and pr, respectively. Given the ratio
between the piston as annulus area, α, it has been shown (Costa and

Sepehri, 2019) that, whenever αpc >pr, solenoid y should be
activated while solenoid z should be deactivated. Otherwise,
solenoid z should be activated and solenoid y, deactivated.

Figure 1B shows another circuit, now using a 4 × 2 valve (V) to
control the cylinder. There is more energy dissipation between the
cylinder and the pump due to the losses within valve V. However,
the circuit is simpler, as no special design is needed to match the
flows coming out of the cylinder to the flows coming into and out
of the pump.

As mentioned before, in both cases, Figures 1A, B, the input
power at the cylinder,Pi (Equation 1), is carried into the pump ports
and then to the pump shaft. However, only a fraction of the input
energy,Ph, reaches the pump in the form of hydraulic energy, that is

FIGURE 1
Load energy recovery: (A) closed-circuit and (B), open-circuit.
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Ph � ηcP i (2)
where ηc < 1 is the circuit efficiency. Here, we have an important
difference between the circuits in Figures 1A, B. In the circuit in
Figure 1B, the efficiency, ηc, is considerably smaller, due to throttling
losses at valve V.

The power, Ph, is conveyed through the pump to its rotating
shaft. As a result, a mechanical power, Po, is finally output,
according to the following equation:

Po � ηpPh (3)

where ηp is the mechanical-hydraulic efficiency at the pump.
Power coming from the load is therefore transformed into

hydraulic power and, subsequently, into mechanical power at the
shaft. At both stages of power transformation, there may or may not
be load energy recovery. In circuits where energy recovery is desired,
two possible paths can be followed, as shown in Figure 2. In path A,
an accumulator is connected in parallel to the hydraulic line coming
from the cylinder, whereas in path B, mechanical energy flowing
from the pump shaft is converted into hydraulic energy before

loading the accumulator. Note that although two accumulators are
shown in the Figure, only one is needed, depending on the path that
has been chosen. In the first case, we circumvent the losses at the
pump, thus allowing more energy to be recovered. The drawback is
that the “hydraulic stiffness” of the circuit is reduced, creating a
cushion effect that is undesirable in some situations. Energy stored
in the accumulator can either be returned to the circuit or used for
other purposes, as indicated in the Figure.

From this point on, we shall refer to circuits following path A as
“Internal Storage Circuits” (ISCs), while those following path B will
be referred to as “External Storage Circuits” (ESCs).

2 Internal storage circuits (ISC)

A typical ISC is represented in Figure 3, where the accumulator,
A, communicates with lines 2–3 and 4–1 through a directional valve,
V1, activated by two solenoids, y and z in an alternate manner. Valve
V2, on the other hand, directs the hydraulic energy stored within A
to “other uses,” through the activation of solenoid x. The figure
shows a very generalized circuit, where variable displacement, fully
reversible pumps are connected at both ends of the transmission.
Some other elements are added to the circuit for sound operation.
The relief valves, R1 and R2 are for pressure overshoot protection
and the check valves, C1 and C2, operate as anti-cavitation valves.
Both relief and check valves are connected to a low-pressure source,
LP, which can be an oil tank or a low-pressure accumulator.

Because of the differential cylinder area in single-rod hydrostatic
actuators, energy storage in hydrostatic actuators is not as popular as
in hydrostatic transmissions. In fact, a lot of research has been
directed to single-rod pump-controlled actuators through the years
(Costa and Sepehri, 2019; Frankenfield, 1984; Hewett, 1994;
Rahmfeld and Ivantysynova, 1998; Wang et al., 2012; Altare and
Vacca, 2015; Calıskan et al., 2015; Heybroek et al., 2012; Karvonen,
2016; Williamson, 2010; Williamson and Ivantysynova, 2008; Imam
et al., 2017; Stelson, 2011; Ivantysynova, 2008) and, although
considerable progress has been made, these circuits are still
subject to much research (see, for example, Ketelsen et al., 2019).

Examples of ISCs for hydrostatic transmissions can be found in
(Pourmovahed et al., 1992a; 1992b; Hippalgaonkar and
Ivantysynova, 2016a; 2016b; Bertolin and Vacca, 2021; Sprengel
and Ivantysynova, 2013; Feng et al., 2023). Energy storage through
accumulators have also been used in circuits with valve-controlled
cylinders (Xia et al., 2018; Ranjan et al., 2020; Li et al., 2022; Casoli
et al., 2016; Li et al., 2015; Lin et al., 2016; Li and Zhao, 2021).
However, to the best of our knowledge, nothing has been published
about hydrostatic actuators (pump-controlled actuators). In fact,
only a single reference about an ESC (Wendel, 2002), besides an
explanation of its operational principles (Costa and Sepehri, 2015)
are all that can be found for pump-controlled actuators. The reasons
for this have been explained at the beginning of this section: it is
important to, first, solve the differential cylinder problem, before
exploring load energy management.

One drawback of ISCs is that, whenever the accumulator is
loading there is a considerable reduction of the effective bulk
modulus of the circuit, reducing its hydraulic stiffness (Costa and
Sepehri, 2015). Problems arising from this effect have been reported
in hydraulic hybrid vehicles (Sprengel and Ivantysynova, 2013).

FIGURE 2
Energy flow paths in a typical hydraulic circuit operating in a
motoring quadrant.

FIGURE 3
Typical Internal Storage Circuit for a hydrostatic transmission.
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Another drawback is the fact that the circuit pressure frequently
needs to be risen to a higher level at the accumulator, so that it may
be effectively used to help driving the load (Xia et al., 2018). Circuits
with a variable-displacement motor at the load-end are
advantageous, in this case, due to their capacity for changing the
circuit pressure by adjusting the motor displacement (an example
can be found in Hippalgaonkar and Ivantysynova, 2016a; 2016b).

We have seen that ISCs have the advantage of being able to store a
greater fraction of the energy coming from the load. However, due to
the difficulties concerning the construction of closed circuits with a
single rod actuator, most of the applications so far have been applied to
hydrostatic transmissions and valve-controlled actuators. In recent
years however, some new developments have been made towards
solving the differential area problem of the cylinder in hydrostatic
actuators. In particular, we cite reference (Costa and Sepehri, 2019),
where excellent and promising results were shown. In the following
section, we briefly present the current research that has been carried out
in the tele-robotics laboratory of the Mechanical Engineering
Department, in the University of Manitoba, Canada, where a new
proposal of an ESC is under investigation.

3 External storage circuits

The greatest difference between ISCs and ESCs is the smaller
capacity for storing energy of the latter. This is simply because a
fraction Po (Equation 3), and not Ph (Equation 2) ends up being

available for storage. On the other hand, the versatility of ESCs, which
can be mechanically coupled to any kind of circuit, is a considerable
advantage. Basically, once a separate energy storage circuit is developed,
it can be used to store and reuse energy regardless of the hydraulic
application. To compensate for the smaller storage capacity, ESCs are
better coupled with pump-controlled actuators, where throttling losses
due to valve control are not present.

Figure 4 shows how an ESC, similar to one, currently mounted
in the Tele-Robotics Laboratory of the Mechanical Engineering
Department of the University of Manitoba. The test rig, in the
laboratory, drives a cylinder attached to a dangling weight, as shown
in the small picture at the low-right corner. The hydraulic circuit,
therefore, can operate in a four-quadrant mode, with the load
alternatively pushing and pulling the cylinder rod. In the circuit,
an electric motor drives a pump, connected to the cylinder, and
another pump which is responsible for loading the accumulator. A
power hub, H, is responsible for splitting the power coming from the
electric motor between the main pump and the accumulator
pump. It also can divert power coming from the main pump,
connected to the cylinder, to the pump connected to the
accumulator. Means of mechanically engaging and disengaging
the three shafts (clutches, for example) may be available, but are
not shown in the figure for convenience.

The circuit in Figure 4 uses a novel ESC (Chithravelpillai, 2022;
Chithravelpillai et al., 2024). Besides the excellent energetic
efficiency in pumping quadrants, which is inherent to the main
circuit configuration described by Costa and Sepehri (2019),

FIGURE 4
External Storage Circuit (ESC) connected to a hydrostatic actuator.
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preliminary experiments have shown that stored energy from the
load during motoring quadrants has almost doubled the circuit
efficiency in pumping quadrants, where the stored energy is reused
to assist the electric motor, M (Chithravelpillai, 2022), as shown in
Figure 5. Figure 5A shows the results (from both simulations and
experiments) where no energy storage device was used and,
therefore, no load energy could be recovered. Figure 5B shows
efficiency for the same circuit incorporating an ESC. We see that
the maximum efficiency has nearly doubled in quadrant III, where
the stored load energy is reused to drive the load.

The ESC Pump 2 in Figure 4 may be substituted with a variable
displacement pump, allowing for adjustment of the accumulator
pressure. As it stands, the circuit enables the reuse of the
accumulated energy to assist the cylinder in pumping quadrants.
Variations of the circuit could include using the accumulated energy
to drive an external device (“other uses” in Figure 2).

4 Conclusion

Reutilization of load energy in hydraulic circuits has already
become a reality and it is increasingly necessary in a greener minded
society. Pump-controlled, single-rod, actuators have come into play.
This note has shown that there is great prospect and expectation that
hydraulics will play a decisive role in energy recovery systems.
Recent experiments carried out at the University of Manitoba
have been very encouraging in this respect. Expectations are that
in a near future, a fully functional circuit can be developed and
industrialized. Until then, more experiments are expected, and more
advances can be anticipated.
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FIGURE 5
Efficiency comparison using experimental results: (A) circuit without load energy recovery; (B) circuit incorporating ESC as in Figure 4
(Chithravelpillai, 2022).
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