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In factory automation applications, the embedded control system components
are often available as off-the-shelf products, while the mechanical components
and environment in which they will work are still under development. Thus, the
need arises to test control systems without the final assembly. This paper
introduces a hardware-in-the-loop (HIL) virtual environment for control
system testing, design planning, and operator training. Controller hardware
and software are configured as in the actual application, whereas electro-
mechanical components are virtually constructed using Unreal Engine 5 and
Matlab Simulink. Motion data from the model can be used to optimize the
actuator controller, make physical design assessments, and predict possible
failure scenarios such as software/hardware malfunctions. The environment is
used to validate an industrial gantry robot’s control systems and structural design.
The testing is successful in using real-time controller inputs to generate visual
display and physical assessments of the robot’s design. Similar techniques can be
applied to simulate different robot configurations using Codesys and Unreal
Engine 5 or similar programs.

KEYWORDS

robotics, digital-twin, embedded controller, CoDeSys, MATLAB, simulink, unreal engine

1 Introduction

Motion control testing can be expedited through Hardware-in-the-Loop (HIL) testing.
This process utilizes simulations that interface with the embedded controller without
needing most of the physical machinery. HIL offers many advantages, including the ability
to bypass delays in obtaining or operating physical components and saving time and
resources. It also enables thorough system testing without the need to physically test in
potentially unsafe environments, thus ensuring safety and reliability.

In recent years, the term “digital twin” has become popular for describing simulations
that resemble and interface with the same control logic as the device they represent. HIL
implementation requires real-time communication between the software and hardware
components and a two-way flow of information (IBM, 2024). In some cases, the simulation
communicates in real-time with the existing actuators or mechanisms available, crossing
into Vehicle in the loop territory. These aspects, among others, are what distinguish a digital
twin from an ordinary simulation. Figure 1 shows the five major stages of embedded
software testing and validation (Park et al., 2020). There are popular tools for developing
digital-twins or visualizing robotic motion, some requiring a greater degree of programming
understanding than others. For example, Unreal Engine 5 enables users to choose between
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C++ or blueprints, which function similar to ladder logic diagrams.
Below is a table with tools that were considered, which that can
achieve similar visualization and communication functions as
Unreal Engine 5:

The software development and testing start with the model-
in-the-loop (MIL) phase, where initial predictions about the
system’s behavior are assessed. Gradually, the in-between
stages, software in the loop (SIL), hardware in the loop
(HIL), and vehicle in the loop (VIL), are included in the
testing. SIL/HIL aims to test the system accurately and
thoroughly at low cost and risk. The final stage is where
testing includes the vehicle under actual operating
environment conditions (Hwang et al., 2006). This
comprehensive testing approach builds confidence in the
control system and is crucial for safety and reliability.

This paper focuses on SIL/HIL testing, with a PLC, servo drives,
and servo motors acting as the controlled hardware. To perform the
testing, a digital twin environment was developed according to the
specifications in the next section, “System Definition.

2 System Definition

By incorporating the digital model of the gantry in testing before
deploying the actual gantry, the team is able to tailor specific
scenarios for testing that validate the structural integrity and

functionality of the gantry without requiring expensive facilities
and the finalized mechanical device.

The system is designed to perform several vital functions:

• Real-time Virtual Representation: Display a real-time virtual
representation of a described mechanical device powered by
actuators and the environment it will operate in. This is
performed using Epic Games’ Unreal Engine 5 (Epic
Games, 2024) and MathWorks’ Simulink
(MathWorks, 2024a).

• Servo Drive Control: Control servo drives that interface with
both hardware and software components, facilitating precise
motion control. This is achieved with Codesys Development
System (Codesys Group, 2024) and Ethercat protocol.

• Integration and Communication: Link the motion of the virtual
representation to the embedded controller and servo drives,
ensuring seamless interaction between virtual andphysical elements.

• Data Transmission: Control data packets are sent from one
computer to another via Transmission Control Protocol/
Internet Protocol (TCP/IP), facilitating communication
between different system components.

• Remote Visualization and Control: This feature allows users to
visualize and test servo motion controls remotely using
wireless connectivity, enhancing accessibility and flexibility
in testing scenarios.

The system architecture is composed of several hardware and
software elements:

• Embedded Controller: Responsible for communication
between hardware components and controller software,
facilitating inter-process communication (IPC). The
primary embedded controller used during testing was
Advantech’s AMAX-5580 (PLC, 2024), due to its ease of
interfacing with Windows computers.

• Server Computer: This computer configures servo driver
behavior, hosts a TCP/IP server, and provides a virtual
Human Machine Interface (HMI). It manages sending
target positions and receiving real-time positions.

• Servo Driver/Motor: Receives target and real-time positions
and sends real-time positions back to the embedded
controller.

• Client Computer: Receives real-time positions from the
embedded controller, then routes signals to Unreal Engine

TABLE 1 Types of visualization software which can achieve similar functions as Unreal Engine 5 and their respective pros/cons.

Software Latency Error margin Resource usage Simplicity Scalability

Unreal Engine 5 (TCP/IP) Moderate Low to moderate High (GPU-intensive) Moderate High

NVIDIA Isaac Sim Low Very Low High (requires GPU) Moderate High

Unity Moderate to Low Moderate Moderate to high High High

Gazebo Low Low Moderate Moderate High

V-REP (CoppeliaSim) Low Low Moderate High Moderate

Webots Moderate Low Moderate High High

MATLAB/Simulink Low to Moderate Very Low High Moderate Moderate to High

FIGURE 1
Embedded control software testing and validation stages. A
digital twin shares characteristics between HIL and VIL functionality.
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5 and Simulink for visualization and analysis. The server and
client computers can often be the same machine. However, it
may be beneficial to utilize multiple computers due to the
intensive resources the applications utilize.

3 System setup

The HIL testing configuration, shown in Figure 2, utilizes a
server computer running CODESYS with a built-in Human
Machine Interface (HMI) system to program the embedded
controller. Servo drives interface with the EtherCAT (EtherCAT,
2024) protocol for enhanced feedback response time and precision.
Commands are transmitted from the embedded controller to the
servo drives and the client computer.

Unreal Engine receives the servo’s actual positions on the client
computer and uses them to power a virtual representation of the
machine. In the same client computer, a Matlab Simulink session
performs dynamic calculations of the system and records the
positions of the servo drives for analysis. In this manner, a
combination of 3D visuals, motion data processing, and real-time
display aids the designer in validating the motion controller, as well
as the physical design of the machine. Sections 3.1-3.3 detail the
functionality of the three programs.

3.1 Controller software

The motion control signals originate from IEC-61131-3 (IEC 61131-
3, 2024) code written in Codesys on the server computer. The code

establishes a TCP/IP server and configures servo drive dynamic behavior
and the sequence of movements to be performed by the servos. These
functions are written in a program, downloaded via Inter-Process
Communication (IPC) to the embedded controller, and controlled via
a user interface. A combination of jog and absolute position commands is
used to achieve meaningful sequencing of the servos.

A Human-Machine Interface (HMI) was created to allow
communication between the user and the system. The HMI seen in
Figure 3 allows the user to enable or disable the server and servo drives,
send homing and jog signals, and trigger paths from a user-
programmed sequence. The desired position of the servo defined by
user input is referred to as the Target Position.

When running the motion sequence, the embedded controller
signals the servomotors to reach the target position, respecting behavior
and limits imposed by the user, such as maximum velocity and torque.
The target position is not necessarily the actual position of the servo. In
the case of a physical impedance of the servo motor or a simulated
impedance by locking the actual position value, there will be amismatch
between the target and actual positions. Therefore, it becomes crucial to
consider the actual position values rather than the target values when
transmitting the data to the client computer.

Then, the need arises to send the actual position signals to
the client’s computer. To do this, two TCP/IP server programs
are written in Codesys (Codesys CAA Net Base Services
Library), each operating on a separate port. One server
communicates with a TCP client in Unreal Engine
(SpartanTools–Code Plugins, 2024), and the other with a
TCP client in Simulink (Simulink TCP/IP Plugin) for
sending the same motion signals simultaneously. This retains
independence between the two software, allowing for only the

FIGURE 2
HIL Testing configuration with real-time visualization.
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simulation or the data plotting tools to be used if desired. The
two servers send discrete data in the form of periodic arrays,
triggered every 20 milliseconds, with size and data types
configured by the user.

Although the control system is currently written in Codesys, the
server’s TCP/IP capability is present in relevant programming
languages and similar development suites, allowing the system’s
connectivity to be expanded to fit the user’s needs. Plans are in place
to test the system’s functionality on alternate hardware and
communication protocols.

3.2 Visualization

Unreal Engine 5 is a video game creation engine with
networking capabilities that favor its integration in a TCP/IP
chain. The ability to import CAD models and retain their
dimensions is also taken advantage of. In this example, an
industrial gantry provided by Oak Ridge National Laboratory
is used to demonstrate the visualization capabilities of the
system, as seen in Figure 4. The gantry has two trolley and
girder assemblies that allow movement in the x and y-axes,
while a hook tool and robotic mount move vertically in
the z-axis.

Unreal Engine 5 development is free to use and has state-of-the-
art graphics capabilities, which are superior to those of other robotic
digital twins such as Delmia or Twinmotion. Finally, Unreal Engine
5 has an active community that develops plugins and tools that
facilitate the development of digital twins, such as TCP/IP
connections and Real-time plotting tools.

The gantry’s CAD assembly is loaded into Unreal Engine 5 and
retains its dimensions and organization, creating meshes for each part.
Actual position inputs from the embedded controller are then mapped
onto the meshes to simulate the gantry’s mechanical actuation. The

workflow for incorporating a new CADmodel andmapping its meshes
to actual position signals is shown in Figure 5.

Blueprints, Unreal Engine’s convenient script-building tool, was
used for many functionalities, including receiving messages and rigging
the gantry. The TCP/IP client is configured to read messages as soon as
received, storing them to variables output to the mesh positions or
angles. In this manner, the sequence of discrete position signals
generates the animation of the simulated model. It is important to
note that accurate representation of the motion signals requires a stable
framerate and a server that can handle the frequency and size of signals
sent. This is one of the reasons for considering running server and client
computers as separate machines: splitting the resource load of the
motion controller to one machine and visuals to another. It is notable
that Unreal Engine 5 also supports scripting in C++ and Python to
accomplish the same functions as blueprints.

Although the physics engine of Unreal Engine 5 is sufficient
for simple interactions with the environment, intrinsic properties
such as material failure and strain are less straightforward to
convey. However, this is a required functionality that would offer
valuable insights into the interaction of the controls with the
structural integrity of the physical design. MATLAB Simulink
software is used to accomplish this, as discussed in the
next section.

3.3 Dynamic model

While Unreal Engine 5 focuses on interactions with the
environment and visual representation of the operation, Simulink
can be used in conjunction to take advantage of the many toolboxes
available for validating mechanical systems. As seen in the paper,
Simulink allows for plotting a variety of parameters while reflecting
the physical position observed in Unreal Engine 5. Together, the
tools complement each other.

FIGURE 3
CODESYS Human Machine Interface (HMI) to control the gantry.
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Some aspects of a digital twin are challenging to represent in a
visual model only. For instance, plotting and tables better visualize a
structure’s surface temperature or internal stresses. This is where
Simulink excels by allowing real-time recording, display, and
manipulation of the embedded control signals.

To demonstrate, Simulink is employed to analyze the
structural behavior of the industrial gantry’s trolley and
beam interface. A simplified diagram of the gantry’s
components can be seen in Figure 6. For testing, beam “A,”

trolley “1,” and tool “3” are considered, with the trolley being
the pressure application point. The beam is modeled as a double
fixed support beam, with a point force that changes position
along the x-axis (Budynas-Nisbett, 2024), (Stress Analysis
Manual, 1986). First, a shear model is developed following
the equation:

V x( ) �
Pb2sa
L3 , x≤ a

−Pa
2sb
L3 , x> a

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1)

Where a = beam section to the left of the trolley, b = beam section to the
right, x = point where the shear is analyzed, L = full length of support
beam, and P = Force. Sa = L+2a and Sb = L+2b. Next, the reactions and
moments of the supports are calculated as seen in Equation 3 and
Equation 4, respectively, using the variables already established.

RA � Pb2sa
L3

, RB � Pa2sb
L3

(2)

MA � −Pab
2

L2
,MB � −Pa

2b

L2
(3)

Equation 4 is used to calculate the deflection at point any point x
along beam “A” due to pressure F at x = a.

d x( ) �
−RAx

3

6EI
− MAx

2

2EI
, x≤ a

−RAx
3

6EI
− MAx

2

2EI
+ P x − a( )3

6EI
, x> a

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(4)

FIGURE 4
Industrial gantry model loaded in Unreal Engine 5 for real-time
visualization of the controller signals. The model was provided by Oak
Ridge National Laboratory.

FIGURE 5
Visualization software functionality for linking actual position signals to a loaded CAD model in Unreal Engine 5.
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Where a, b, x, L, and F are the same as Equation 1, E = Modulus of
Elasticity of beam material, and I = Moment of Inertia of beam (Fixed
Beam Formulas, 2024), (Support reactions of a simply supported beam,
2024). Using the equations above, it becomes possible to construct a
Simulink function block diagram that takes in the actual position from
the embedded controller and plots the deflection and shear when the
trolley is at that position. The user inputs the weight, material, and
geometry of the materials affected and should be known beforehand. In
the case of the beam, the elastic modulus of 1,040 steel is chosen, while
the Force is calculated from the theoretical weight of the trolley and tool,
as well as the vertical acceleration of the tool. The actual position signals
are received by the TCP/IP Receive function and then fed into Matlab
function blocks, where custom scripts perform the calculation and
plotting. The function block diagram can be seen in Figure 7, while the
shear and deflection functions are in Figure 8. The plots generated and
comparison with the visual model are found in Section 5, Results. The
equations above showcase how custom dynamics can be implemented
and adapted to model different mechanical systems. The following
section explains the criteria for testing the functionality of the
overall system.

4 Methods

To test the system, a sequence of commands is written to the
embedded controller using Codesys and visualized in the

simulation and dynamics model, and the results of the
simulation and dynamic models are recorded. A relation
between the servo’s actual position value and the trolley’s linear
travel is established, where one servo tick = 1 cm. The trolley begins
resting at the center of the beam, or x = 100 cm. Then, it travels to
the length of 70 cm on the beam, using an absolute position
command. Then, another command is given to the trolley, moving
it to the length of 150 cm.

The velocity, acceleration, and jerk of the servo are known
because it was previously chosen by the user in codesys to be ten
ticks each. This means that its maximum velocity of 10 cm per
second and the maximum acceleration of 10 cm per second squared
should be displayed in Simulink. The recorded data is then used to
generate figures that allow visualization of the sequence and
comparison to the Unreal Engine 5 sequence. Plotting results
against time is done with a “scope” block, while plots of x
against y data are generated using the “plot” function.

Using the same formulas, the deflection and shear calculations
were compared with handwritten and Excel spreadsheet solutions,
as seen in Datasheet 2.1. The trolley weight is 5000N, while its elastic
modulus is 2 * 1011 pa, and calculated beam moment of inertia is
500 kg *m2. The comparison showed no difference between the
script calculations and analytical solutions, establishing confidence
in the Simulink model. The results are examined with the maximum
permissible deflection being L/700 (Allowed Vertical Deflection,
2024), or in this case 28 * 10−4 meters. Should the deflection

FIGURE 6
Layout ofmovements possible by each component of the gantry. The components considered for the analysis are the trolley “1” and beam “A”, with a
length of 2 m. The weight of the trolley and tool are considered when calculating shear force and deflection on the beam.
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observed exceed this value, changes should be made to the beam
design to reduce deflection.

5 Results

The system is validated by running the components
simultaneously, observing their functionality, and verifying the

data. The first step is to confirm that Simulink is accurately
receiving motion signals. This is done by observing position,
velocity, and acceleration signals to Simulink and confirming that
they match the embedded controller value at that time. This can be
seen in Figure 9, where kinematic signals for a servo drive during the
sequence are shown, validating the acceleration and velocity limits.
A similar process is done for Unreal Engine, confirming the mesh
movements match the incoming motion signals and respect limits

FIGURE 8
MATLAB function block used to model deflection and shear. The input variable “a” takes the actual position of trolley “1” along beam “A” as labeled in
Figure 6. The iteration variables “T” and “t” represent the x value, allowing the user to visualize the effect on the entire beam.

FIGURE 7
A Simulink diagram is used to model the deflection and shear forces on beam A based on the actual position of the trolley along the x-axis.

Frontiers in Mechanical Engineering frontiersin.org07

Leao Moreira et al. 10.3389/fmech.2024.1451042

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1451042


imposed by the control software, stopping before reaching the edge
of the beam. The user can observe the trolley motion in Unreal
Engine 5 and the beam’s corresponding shear and deflection plots, as
seen in Supplementary Video S1. As the trolley moves, the shear
force is minimized and equal on both sides when the load is

centered, and moving the load away from the center
progressively increases the shear force on the closer side, while
decreasing it on the farther side. Utilizing the statics model described
and taking into account the position limits of the trolley, the
maximum shear force predicted during operation is 4100 N,

FIGURE 9
Position, Velocity and Acceleration versus time graphs of the trolley in the x direction.

FIGURE 10
Support Reaction Forces and Moments at the ends of the beam “A”.

Frontiers in Mechanical Engineering frontiersin.org08

Leao Moreira et al. 10.3389/fmech.2024.1451042

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1451042


which is observed when the load is closest to the edge of the beam.
Other valuable data, such as the reaction forces and moments at the
fixed supports, can be seen in Figure 10, achieved similarly to the
velocity and acceleration plots. With the configuration for this
experiment, there is no load being carried by the gantry. In other
words, the predicted weight is based on the geometry andmaterial of
the trolley and hook alone. The maximum recorded deflection was
2*10−12 and therefore did not exceed the testing ceiling of 28*10−4

meters, posing no impedance to trolley movement under the
conditions prescribed. Therefore, using the Simulink testing
environment data presented, the designer can have increased
confidence in the gantry beam’s structural performance under the
simulated conditions. As with any physical modelling, the system
can use assumptions to simplify or represent more complex
problems in real time. In this case, the engineer can use the data
to make appropriate design changes if the shear and deflection
presented are greater than the design can withstand, but only if the
physical model chosen is an appropriate representation to begin
with. In conjunction with the dynamic model, the real-time HIL
element of the system ensures that any malfunctions with the
controller become easily observable via the motion signals and
visual model, providing good evidence of a controller problem.
Furthermore, if there are no major problems but the behavior of
the servo is not as expected, corrections to the velocity and
torque can be made to improve system efficiency or
performance.

6 Conclusion

As mechanical systems become more complex and are utilized
to tackle challenges in unsafe environments, hardware-in-the-loop
(HIL) testing and visualization will be key technologies used to
thoroughly test these systems swiftly, safely, and reliably.
Currently, the main challenges involve increasing the
complexity of dynamics simulation to make more meaningful
physical design assessments and increasing system
compatibility. These challenges are offset by the ease of use of
the system and continuous support from the community,
particularly for Unreal Engine 5 development. By performing
validation in the virtual environment and then connecting it
with the embedded control hardware, the engineer now has
additional tools to ensure the functionality of their design.
Comparing the maximum shear experienced during the
simulation with the permissible shear for the part analyzed, the
user can verify that this value did not exceed limits at any point of
the trajectory where the point-mass is applied. In recent years,
companies like Siemens and Dassault Systems are finding value in
virtualizing their testing, which is often large-scale and requires a
lot of resources. The system developed demonstrates that HIL
testing is possible using free programs while offering more freedom
to the user. With the expanding interest of the community,
lightweight and efficient HIL testing techniques like the ones
presented will continue to make their way into the consumer
market, revolutionizing control systems testing for a large pool of
professionals.
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