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Introduction: The excessive uncertainty of in modern manufacturing systems is
caused bymachine failures, changes inmaterial information, and other factors. In
addition, the organizational production mode conflicts brought about by
economic and technological development further exacerbate the perception
of workshop interference in manufacturing systems.

Method: In order to further improve the adaptability of manufacturing systems, a
control technique based on recursive control structure is proposed, which
introduces an immune working mechanism to design the framework network
of multi-agent manufacturing systems. Meanwhile, a negative selection
algorithm is used to construct an antibody training system that considers
perturbation problems.

Result: The results indicate that immune sensing nodes can effectively monitor
manufacturing systems, reducing false alarm rates by over 4%. In the scheduling
experiment, the completion time and equipment load improvement rate
demonstrated by the research model were 3.29% and 12.38%, respectively.
The production balance optimization rate exceeded 90%, far exceeding the
results of traditional scheduling schemes, greatly improving the adaptive
control capability of manufacturing system production.

Discussion: The regulatory approach proposed in this study can provide
reference and assistance for improving the level of industrial production
intelligence and establishing a sustainable economic system. However, the
research results have not been applied to actual production processes, and
the autonomy and coordination of intelligent manufacturing units in actual
production processes still need to be further improved. In the future, research
models and algorithms will be further explored in this area.
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1 Introduction

Manufacturing plays an important role in economic change, and its rise and fall is
related to the comprehensive strength of a country. It is one of the important symbols to
measure the international competitiveness of a country. Countries with strong
manufacturing capacity are more likely to gain a leading position in the global market.
At the same time, manufacturing products are a major part of international trade, and play
an important role in promoting international trade and strengthening international
cooperation. In recent years, with the rapid development of computer, information, and
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control technologies, the market requires enterprises to provide
products to short delivery time, higher product quality, and after-
sales service. Among enterprises, more and more competitive,
enterprise manufacturing mode from mass production to small
batch or even a single personalized production way, greatly
promote manufacturing enterprise manufacturing mode
innovation. In this case, the manufacturing process gradually
appears high concurrency, mixing and difficult to predict features
(Bi et al., 2021; Seitz et al., 2021; Dittrich and Fohlmeister, 2020). The
operating environment of the manufacturing system often produces
uncertain events such as machine tool failure and new emergency
orders, which leads to the emergence of dynamic and non-linear
manufacturing systems. Among them, discrete factories are the first
manufacturing environment (Latsou et al., 2021; Vogel-Heuser et al.,
2020) affected by various variable factors. Under the situation of
economic development and consumption concept change, there are
some problems of weak real-time scheduling and slow workshop
layer disturbance response in the current mixed line production
environment. In view of this problem, improving the existing
organizational production mode is an important basis for
realizing the new manufacturing mode (Yahouni et al., 2021).
With the development of computer and network technology, the
multi-agent manufacturing system (MAMS) based on the industrial
Internet of Things, artificial intelligence, and cloud computing has
been considered as an effective means to solve the current and
manufacturing difficulties.

To this end, many scholars have conducted related research on
the MAMS. To address issues such as dynamic task arrival, machine
downtime, and abnormal task identification, D’Aniello et al.
designed a multi-agent system in a cloud manufacturing system
based on additive manufacturing technology to address these issues
(D’Aniello et al., 2021). To allocate resources reasonably based on
production needs and effectively avoid the impact of external
interference on manufacturing systems, Nie et al. proposed an
intelligent digital dual-workshop framework consisting of
physical workshops, virtual workshops, and digital twin service
systems. The results show that the intelligent digital dual
workshop can effectively allocate resources and handle
interference (Nie et al., 2022). To optimize the collaborative
workflow of multi-agent systems in warehouses,
Dusadeerungsikul et al. proposed a new network collaborative
warehouse collaborative workflow protocol. The results show that
this method can reduce total operating costs by 5.70% and total
weighted completion time by 10.11% (Dusadeerungsikul et al.,
2022). Johnson et al. proposed a multi-agent reinforcement
learning (MARL) system based on a second-order temporal
difference error dual-network algorithm to schedule dynamically
arriving assembly tasks in robot assembly units. The system
demonstrated better performance compared to rule-based
heuristic methods (Johnson et al., 2022). To improve the
flexibility and adaptability of product agents and their control
strategies, Kovalenko et al. proposed a direct and active
collaborative framework for product agents (Kovalenko et al., 2022).

Although the research on MAMS has achieved some research
results, but in the face of large-scale complex manufacturing, the
control decision response time is longer, and it is difficult for the
current MAMS to achieve better control effect. To improve the
regulation effect of intelligent manufacturing system, scholars have

introduced biometric features into the field of manufacturing system
research in recent years. For example, ElMaraghy et al. studied BMS
from the perspective of Agent, and used biological characteristics to
improve the production performance of manufacturing system for
(ElMaraghy et al., 2021). However, most of these scholars carried out
research from the perspective of biological genetic evolution, which
are still in the conceptual discussion stage. They failed to apply the
excellent regulatory mechanism of organisms (such as
neuroendocrine regulation) to the manufacturing system, and
could not be applied (Turner, 2021; Karbalaei et al., 2020) in the
production process. With the development of information
technology, computer technology and artificial intelligence, each
intelligent manufacturing unit in the manufacturing system has a
certain intelligence and information interaction ability. The
manufacturing system will encounter a variety of disturbances in
the process of operation, and the system is basically dynamic and
nonlinear (Vanbecelaere et al., 2020; Wang et al., 2022). How to
introduce the excellent characteristics of the biological system into
the manufacturing system to evaluate the health status of the
manufacturing system in real time, how to learn from the
biological multi-layer immune response mechanism and use the
corresponding artificial immune algorithm to quickly sense and
process the perturbations in the system, and how to combine the
biological immunity mechanism with reinforcement learning
theory, apply it to production scheduling optimization, improve
the system self-organization, adaptive ability and robustness, and
then improve the operation efficiency of manufacturing system are
important directions and difficulties in the field of manufacturing
system research (Simon et al., 2023; Zeng et al., 2020). Based on this,
the study combines biological immune theory and innovatively
introduces artificial immune algorithms into intelligent
manufacturing systems, constructing a control model for
intelligent manufacturing systems based on recursive
control structure.

2 Methods and materials

Research introduces the negative selection algorithm (NSA) in
artificial immune system theory to construct an intelligent
manufacturing system regulation model based on recursive
control structure, achieving rapid perception and processing of
disturbances in manufacturing systems.

2.1 Construction of intelligent
manufacturing system control model

The current manufacturing industry is plagued by dynamic
scheduling and workshop level disturbance perception problems
in complex environments, especially the significant impact on
flexible discrete job manufacturing workshops (Xu et al., 2024).
In response to this issue, a new workshop level regulation model is
designed by combining artificial immune system theory and multi-
agent system theory. An intelligent agent is a program that can
perceive the surrounding environment, operate autonomously, and
act on a specific environment. The current cognitive and reactive
intelligent agent structures are widely used mainstream structures.
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Aiming at flexible discrete job manufacturing workshops, this study
combines the basic structure of cognitive intelligent agents, stores
intelligent agent software programs on its own processor, and
designs an intelligent agent structure for physical entity devices,
as shown in Figure 1.

In Figure 1, the study divides the intelligent agent into
adaptation layer, intelligent analysis layer, and communication
development layer. For simplicity and ease of implementation,
research is being conducted on modifying the device processor
by adding an embedded industrial computer, which is connected
to the device itself through customized hardware interfaces.
Intelligent agents are encapsulated in a specific way and can be
mapped to entities in the production and manufacturing
workshop. Multiple intelligent agents form a loosely coupled
organizational structure, laying the foundation for the

development of workshop control systems. Starting from the
system layer, the study represents the material flow and
information flow resources in the manufacturing system as
different intelligent agent structures, and then connects
independent intelligent agents into an MAMS through intelligent
agent protocols and network facilities, as shown in Figure 2.

In Figure 2, when a new order task enters in the system, the task
agent is activated by the order agent and sends processing
information to each device agent through a distributed network.
The device agent decides whether to accept the task according to its
own processing ability. Finally, various production tasks are
completed together through the autonomy and coordination of
multiple agents. Based on the research results of biological
immune system and combining with the structural characteristics
of intelligent manufacturing unit, the regulatory model of intelligent

FIGURE 1
Basic architecture of intelligent agents for physical devices.

FIGURE 2
Architecture of intelligent manufacturing system.
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manufacturing system based on immune mechanism is constructed,
as shown in Figure 3.

The model consists of a perceptron (various immune organs), a
decision maker (immune recognition, cell differentiation learning,
memory), and an executor (the executor of antibodies). At the same
time, the immune regulation unit can also communicate and
communicate with other immune regulation units, forming a
complete immune regulation system, which can achieve good
immune regulation function. For the workshop production
activities, the monitoring system based on the immune
mechanism is composed of multiple machine tools, intelligent
processing, intelligent detection, intelligent logistics (Automated
Guided Vehicl, AGV), etc. The hardware entity of the agent is
constructed by the embedded industrial control machine, and the
corresponding immune monitoring mechanism is embedded to
constitute the immune monitoring function of the intelligent
manufacturing unit. The main functions regulated by the MAMS
based on the immune mechanism include immune assessment,
recognition, learning, and regulation.

2.2 The control mechanism of intelligent
manufacturing systems

After constructing an intelligent manufacturing system
regulation model, the study analyzes its regulation mechanism.
The control method of the intelligent manufacturing system
proposed in the study is similar to the immune control structure
of organisms, and also adopts a recursive control structure. It draws
inspiration from the inherent immune response process and

adaptive immune response process of organisms and adopts
double-layer regulation. For the workshop layer disturbance
perception problem in the intelligent manufacturing system, the
research adopts the NSA algorithm, and the NSA realizes the
judgment of the normal and abnormal state of the workshop
layer by comparing the randomly generated mode with the “self
mode, whose state space is represented by a set of feature vectors ti

that describe the system state, as shown in Equation 1.

ti � t
i

1
, t

i

2
, ..., t

i

n
( ), T � ti i � 1, 2, ..., u|( ) (1)

In Equation 1, T represents the state space, and for ease of
application, ti is usually normalized and mapped to [0, 1]n. The self
space represents the characteristic state of the system under normal
conditions. The non-self space represents the space outside of one’s
own space in the state space. The research defines the state space as
T, the self space as self, and the non-self space as Nonself. The
relationship equation is shown in Equation 2.

self ∪ Nonself � T
self ∩ Nonself � ∅{ (2)

The definition of our own sample S can be found in Equation 3.

S � 〈si, rs〉 si ∈ self, rs ∈ R
∣∣∣∣{ } (3)

In Equation 3, rs represents the radius of one’s own sample.
With the rapid development of science and technology, NSAs for
computer virus detection are gradually being widely used in device
detection. At the same time, real-valued negative selection algorithm
(RNSA) is also proposed, with its core technology being the

FIGURE 3
Control model of intelligent manufacturing system based on immune mechanism.
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mechanism or process of antibody (diagnostic) generation. To
further improve the coverage of diagnostic devices and reduce
redundant diagnostic devices, scholars have made improvements
to algorithms based on variable diagnostic devices, such as hybrid
diagnostic devices, hyper ellipsoidal diagnostic devices, and variable
radius hyper spherical diagnostic devices, which have been proposed
by researchers. However, the fixed-boundary negative selection
algorithm (FB-NSA) has the same detection rate as traditional
variable hypersphere diagnostic algorithms while achieving
diagnostic simplification. The schematic diagram of the FB-NSA
detection is shown in Figure 4 (González and Dasgupta, 2003).

In Figure 4, it is difficult for FB-NSA to determine the
mutual positional relationship between the diagnostic
devices. Therefore, traditional RNSA algorithms cannot
perform self/non-self recognition and can only calculate the
distance from the test sample t to the center of the diagnostic
device, but cannot determine which side of the diagnostic device
the test sample is located on. From this, the definition equation
for the FB-NSA diagnostic device can be found in Equation 4.

D � 〈di, ri, pi〉 di ∈ Rn, ri ∈ R|{ } (4)

In Equation 4, ri represents the recognition radius of the
diagnostic tool di. di represents the center point coordinates of
the FB-NSA diagnostic tool, while pi represents the position
information of the diagnostic tool di. Compared to hyperspheres,
the positional relationship between hypercubes is easier to
determine. According to the limit theory in mathematics, if a
more uniform and suitable cube is filled into the non self space
of the system, theoretically it can approach the non self space
infinitely, as shown in Equation 5.

VNonself � lim
Vhypercube→0

∑∞
i�1

Vhypercube( )
i

(5)

The diagnostic layer is composed of multiple hypercubes
adjacent to the self sample space, and the center position of each
hypercube is used as the center position of the diagnostic device. In
this way, the relative position relationship between the diagnostic
device and the self space can form the FB-NSA diagnostic device. At

this time, the diagnostic layer can be regarded as the outer boundary
hypercube layer, and each outer boundary hypercube is an FB-NSA
diagnostic device. After evenly dividing the state space T into mn

hypercubes, the description of the outer boundary hypercubes hi can
be found in Equation 6.

T � ∪ hi

mn

i�1
, hi ∩ hj � ∅ i ≠ j( ) (6)

In Equation 6, m represents the number of segments in each
dimensional space, and n represents the dimension of the space. If
one’s own sample cannot cover or be outside the hypercube hi, the
study defines hi as an empty cube hi � o, otherwise it is considered a
non empty hypercube hi � Θ. Research defines the recognition
radius r and calculates whether one’s own sample can cover all
hypercubes, as shown in Equation 7.

f hi( ) � Θ, d≤ r
o, dfr

{ (7)

In Equation 7, d represents the distance from the center of
the hypercube to the center of a sample. The research defines the
location information of the diagnostic tool as the information on
whether each adjacent hypercube on the outer boundary is non
empty, which is determined by the information of the
hypercubes before and after each dimension. By calculating
the information of hypercubes before and after each
dimension, a collection of diagnostic tool position
information is obtained.

2.3 Disturbance identification in
manufacturing systems

By constructing an intelligent manufacturing system model and
explaining its regulatory mechanism, this study proposes a
manufacturing system disturbance recognition model based on
artificial immune algorithm, as shown in Figure 5.

In Figure 5, the manufacturing system first performs disturbance
feature selection to determine the state space corresponding to a certain

FIGURE 4
Schematic diagram of FB-NSA detection. (A) FB-NSA. (B) FB-NSA Detection diagram.
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disturbance. Secondly, based on the FN-NSA algorithm, a disturbance
diagnostic tool, namely, antibodies, is generated and mature antibodies
are trained. Next, mature antibodies and disturbance samples extracted
from the manufacturing system are detected, and antibodies with high
matching degree are extracted for storage. Finally, when the
manufacturing system encounters uncertain disturbances, the
disturbance samples to be recognized are matched with the
antibodies in the system. If the antibodies in the system can be
activated, the corresponding disturbance is identified. To verify the
effectiveness of immune algorithms in machine tool fault detection in
manufacturing systems, the study uses real number encoding to
represent antigen antibodies and describes the extracted feature
values using p variables. The various internal and external
influencing factors encountered by the manufacturing system are
mapped to antigens, and a single antigen is composed of the feature
vectors of the data to be tested, as shown in Equation 8.

Ati � xi
1, x

i
2, ..., x

i
p{ } (8)

Among them, Ati represents a single antigen, and x represents
the data to be tested. The expression for the antigen set is shown in
Equation 9.

At � Atj{ } (9)

The diagnostic device generated by the immune system is the
antibody, and a single antibody targeting a certain disturbance can
be represented as Abi � Di. The diagnostic device Di has a unique
spatial center di. To simplify the calculation, the study uses the
spatial center of the diagnostic device to represent a single antibody,
as shown in Equation 10.

Abi � di � yi
1, y

i
2, ..., y

i
p{ } (10)

The antibody set can be found in Equation 11.

Ab � Abj{ } (11)

The study defines the degree of antigen and antibody binding in
immune algorithms as immune affinity. The affinity between
antigen and antibody is denoted as A(Ati, Abj), the degree of
mutual promotion or inhibition between different antibodies is

called similarity, and the similarity between antibody and
antibody is denoted as S(Abi, Abj). Both affinity and similarity
are expressed by space vector affinity as shown in Equation 12.

A X,Y( ) � 1
1 + d X,Y( )

d X, Y( ) �
����������∑n
i�1

xi − yi( )2√⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (12)

In Equation 12, X and Y represent normalized n dimensional
vectors in space, and d(X,Y) represents the Euclidean distance
between two vectors. The disturbance recognition process of the
artificial immune algorithm in the manufacturing system first
requires the input of normal data under undisturbed conditions.
The system will automatically extract various feature parameters
under normal operating conditions to form initial antigens, and at
the same time, generate corresponding antibody sets. The immune
system will detect samples and match them with self antibodies. If
the matching affinity value exceeds the matching threshold, it
indicates that the current system is in a normal state. Otherwise,
it is necessary tomatch the test samples with other fault classification
diagnostic devices to determine what kind of disturbance it is.

In response to the basic disturbance problem in discretemechanical
machining workshops with high levels of automation, research is
conducted on the segmentation of state vectors. After segmentation,
several independent state spaces will appear, and the manufacturing
system will be monitored separately. Based on the device as the core, it
uses Agent technology to construct control nodes with immune
monitoring and scheduling functions. A recursive structure is
adopted to construct an artificial immune monitoring structure for
manufacturing systems, as shown in Figure 6.

In Figure 6, using Agent technology and a distributed structure, a
monitoring unit based on immune mechanism is constructed. The
immune monitoring structure in the system adopts a recursive control
form, which not only completes the acquisition and processing of its
own state information, but also feeds back relevant information to the
main control unit and accepts coordinated control from the main
control unit. The health status of the immune monitoring unit is also
influenced by the monitoring status factors of each unit. The study
defines the main controller of this monitoring unit as an immune

FIGURE 5
Artificial immune recognition model.
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perception node. Each immune perception node in the manufacturing
system monitors the real-time operation status of the system (status
information of each machine tool), and verifies whether the system has
deviations (i.e., whether it is affected by uncertain disturbance factors)
by comparing it with normal operation status information. Once a
deviation is detected by the corresponding immune perception node,
the immune perception node will perform an immune response
operation, transmit perception information to the decision maker,
and generate corresponding scheduling strategies (antibodies) based
on different disturbance types, indicating possible operations to be
performed and interference recovery. Drawing inspiration from the
hierarchical defense mechanism of the biological immune system and
the interaction between levels, a two-layer immune adaptive regulation
model for fault diagnosis is proposed, as shown in Figure 7.

In Figure 7, the first layer is the inherent immune regulation layer,
which mainly realizes rapid response and processing of known
uncertain factors. The second layer is the adaptive immune
regulation layer, which realizes intelligent detection and self-learning
of unknown disturbances. The adaptive immune regulation layer
utilizes the FB-NSA algorithm to regenerate diagnostic devices in
local regions without retraining all diagnostic devices. This enables

the immune system to adjust diagnostic devices in real-time according
to certain rules and changes in its own space during operation, enabling
the immune system designed andmanufactured by the research to have
continuous learning capabilities. Assuming there are 4 samples, their
relationship can be found in Equation 13.

t1, t2, t4 ∈ Self, t3 ∈ Nonself (13)
Assuming that t1 is the training sample set at this time,

antibodies are generated, and t2 and t4 are correctly recognized
during system operation. Assuming that t2 meets the FB-NSA online
learning conditions, FB-NSA antibodies that overlap with t2 are
regenerated. To reduce the possibility of decreased detection rate
due to incorrect learning, a deviation value λ is introduced to
describe the degree of deviation between the test sample and the
self space. The relationship equation is shown in Equation 14.

λ � d − ri
rs

(14)

In Equation 14, ri represents the recognition radius of the nearest
diagnostic device to the test sample, rs represents the radius of one’s

FIGURE 6
Hierarchical structure of immune health system.
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own sample, and d represents the distance between the test sample and
the center of the nearest diagnostic device.

3 Results

3.1 Algorithm performance analysis

The study acquired error data from different measurement
components post-operation via experimental simulation and
divided the resulting dataset into two subsets—A and B—based
on the size of the error data. In the two datasets, 80% was designated
as the test set, 10% as the validation set, and 10% as the training set.
In the experiment, genetic algorithms (GAs) and simulated

annealing (SA) were introduced as experimental comparisons.
The performance of the algorithms was compared and analyzed
based on precision and area under the curve (AUC) values as
evaluation indications. Figure 8 depicts the precision comparison
under different methods.

In Figure 8, the experimental results of the proposed algorithm
on the two datasets were similar. After 100 iterations, they remained
stable with an accuracy of 0.7. As the amount of iterations increased,
the change in stability became smaller and more stable. GA had a
precision of 0.5 in both datasets, but had better iteration times in
dataset 1. The precision of dataset 1 was about 0.5, which was
0.1 higher than that of dataset 2, but its convergence speed was
slightly reduced. The proposed algorithm improved convergence
speed, operational efficiency, and the precision of error prediction.

FIGURE 7
Inherent and adaptive immune regulation layers.

FIGURE 8
Precision comparison under different methods. (A) Dataset 1. (B) Dataset 2.
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The comparison of AUC values under different methods is denoted
in Figure 9.

Figure 9 illustrates the results of the training and testing of
dataset 1. The proposed algorithm achieved an AUC value of 0.849,
which was 0.076 higher than the AUC value of GA. SA exhibited the
lowest AUC value, which was 0.740. In the training and testing of
dataset 2, the AUC values of the proposed algorithm, GA, and SA
were 0.824, 0.764, and 0.736, respectively. It can be observed that the
AUC value of the proposed algorithm is the highest in both datasets,
indicating that the proposed algorithm has the best performance.

3.2 Analysis of the application effect of
intelligent manufacturing system
control model

To verify the effectiveness and application effect of the research
model, the experimental verification platform of MAMS based on
immune mechanism was built. According to its functions, the
platform was divided into four levels, namely, human-computer
interaction layer (human-machine interface), physical platform
layer (hardware device layer), immune regulation layer (control
software and database), and communication layer (communication
protocol). The hardware equipment in the system could be used for

the actual production of the workshop, including: 2 CNC lathes,
2 CNC milling machines, 2 engraving machines, 2 AGVs, 2 six-DOF
manipulator with ground rail and 1 automatic three-dimensional
warehouse AS/RS. Among them, 6 CNCmachine tools were allocated
on both sides of the system, and each processing equipment had
4 workpiece buffer areas. The system was developed by using C #
programming language, and it was composed of human-computer
interaction interface, software system and physical unit (processing
equipment, AGV and three-dimensional warehouse). The software
platform mainly included user management, data information
management, immune monitoring, immune evaluation, immune
learning and immune decision. Human-computer interface could
observe the running status of AGV, working process of processing
equipment, immune monitoring related form, etc.,. The experimental
platform provided processing tests for three types of workpieces: plate
parts, flange parts, and shaft parts. The process type, labor cost, and
other parameter information of each machine tool are shown
in Table 1.

There were a total of 6 CNC machine tools in Table 1, and the
parameter information in the table provided data support for the
objective optimization mathematical model. It submitted orders in
the cloud system according to Table 2. To ensure comparability in
each experiment, the size parameters of the same order were
consistent across different instances.

FIGURE 9
Comparison of AUC values under different methods. (A) Dataset 1. (B) Dataset 2.

TABLE 1 Machine tool process capability parameter information.

Lathe Name Process type Labor cost (yuan/hour)

M1 lathe1 Turning\boring holes 59

M2 lathe2 Turning\boring holes 59

M3 Milling machine1 Milling\drilling 60

M4 Milling machine2 Milling\drilling 59

M5 Carving machine1 Carving 58

M6 Carving machine2 Carving 60
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The experimental system subsystem contained two devices of the
same type, and the remaining processing time of the work piece to be
processed by the two devices would form a two-dimensional state space.
Research collected the machine load values within the subsystem under
normal scheduling conditions, normalized them, and input them into
the antibody training program, as shown in Figure 9. As shown in
Figure 9A, the input numerical samples were used to obtain their own
space, and antibody training was performed using the FB-NSA
algorithm. The final results are shown in Figures 10B, C.

According to the method of generating pre position
information, it completed the generation of antibody position
information and obtained the final set of antibody information.

The antibody set was imported into the testing program to test the
antibody performance. When the false alarm rate was less than 3%,
the antibody was qualified and imported into the immune
perception node of the subsystem. The abnormal information
would be fed back to the server-side immune perception node
for artificial immune adaptive regulation.

At runtime, the study conducted targeted scenario testing and
recorded the actual operation situation in two stages, before and
after, to test the antibody performance. The actual antibody
performance is shown in Figure 11A. Then, a scheduling
experiment was conducted on the case design of the study, and
the experimental results are shown in Figure 11B.

From Figure 11A, in the first stage, there were 8 false negatives
and 2 false positives in the immune state space, with a false negative
rate of 18.2% and a false positive rate of 5.2%. According to the
actual situation, the immune perception node updated the
antibodies online based on the adaptive immune processing
mechanism designed by the research, with a total refresh rate of
21.2%. In the second stage of actual testing, the false positive rate was
reset to zero, and the false negative rate decreased to 4.5%,
significantly improving the system monitoring performance. At
the same time, the actual operating results indicated that the
multi-layer immune response mechanism designed by the
research could effectively provide health warning for disturbance
of underlying equipment and avoid accidents when there were no or
few people in the factory. From Figure 11B, the scheduling results of
traditional contract networks for scheduling experiments included
completion time, total cost, and total equipment load of 425, 106.38,
and 1,607, respectively. The scheduling results using the research
model for scheduling experiments were 411, 102.67, and 1,408 for
completion time, total cost, and total equipment load, respectively.
The three scheduling indicators of completion time, total cost, and
total equipment load all improved by nearly 3.29%, 3.49%, and
12.38%, respectively. The comparison results of production balance
rate and smoothness index are shown in Figure 12.

From Figure 12, the production pace of the original production
line was too high and the processes were unbalanced. The
production balance rate was as low as 38.65%, and the
smoothness index was as high as 43.8. The study optimized the
production line using FB-NSA and artificial immune algorithm, and
the production balance rate increased to 92.2%, while the
smoothness index decreased to 4.33. Due to the poor stability

TABLE 2 A set of orders submitted in chronological order.

Orderform Workpiece Time

O1 Plate 0

O2 Plate 0

O3 Axis 0

O4 Axis 0

O5 Plate 15

O6 Flange 15

O7 Plate 15

O8 Plate 15

O9 Plate 30

O10 axis 30

O11 Flange 30

O12 Plate 30

O13 Plate 45

O14 Plate 45

O15 Axis 45

O16 Axis 45

O17 Plate 45

O18 Flange 45

FIGURE 10
Schematic diagram of antibody generation for subsystem load anomaly diagnosis. (A) Sample. (B) My own space. (C) Antibody generation.
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and convergence of traditional methods, the application of artificial
immune algorithms improved stability and convergence. The
production balance rate was 92.57%, and the smoothing index
was 4.12. According to the research model search for the optimal
individual combination, actual adjustments were made to the
workshop processes, resulting in a production balance rate of
91.11%, a smoothness index of 4.77, and a reduced production
time for one workpiece from 201 s before improvement to 164 s.

4 Conclusion

At present, with the rapid development of Internet+ and artificial
intelligence technology, the market competition is becoming more and
more fierce. The production workshop or modern manufacturing
system has been in the process of dynamic change, often
encountering changes in the internal and external environment such
as emergency orders and machine failures. To improve the dynamic
response capability of intelligent manufacturing systems, this study
fused the biological immune mechanism ideas, and used FB-NSA
algorithm and artificial immune algorithm to construct a recursive
control structure-based intelligent manufacturing system regulation
model. The actual antibody generation experiment results showed
that in the first stage, there were 8 false negatives and 2 false

positives in the immune state space, with a false negative rate of
18.2% and a false positive rate of 5.2%. According to the actual
situation, the immune perception node updated the antibodies
online based on the adaptive immune processing mechanism
designed by the research, with a total update rate of 21.2%. In the
second stage of actual testing, the false negative rate was reset to zero,
and the false positive rate decreased to 4.5%, significantly improving the
system monitoring performance. The actual operation results showed
that the multi-layer immune response mechanism designed by the
research could effectively provide health warning for disturbance of
underlying equipment and avoid accidents when there were no or few
people in the factory. The scheduling experiment results showed that
the completion time, total cost, and total equipment load of the
traditional contract network scheduling experiment were 425,
106.38, and 1,607, respectively. The scheduling results using the
research model for scheduling experiments were 411, 102.67, and
1,408 for completion time, total cost, and total equipment load,
respectively. The three scheduling indicators of completion time,
total cost, and total equipment load all improved by nearly 3.29%,
3.49%, and 12.38%, respectively. The scheduling experiment results
showed that the proposed model could improve workshop completion
time, total cost, and total equipment load, andwas practical and feasible.
In addition, the study optimized the production line using FB-NSA and
artificial immune algorithms, resulting in an increase in production

FIGURE 11
Experimental operation results. (A) Antibody operation results. (B) Scheduling experiment results.

FIGURE 12
Comparison of production balance rate and smoothness index.
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balance rate to 92.2% and a decrease in smoothness index to 4.33. On
the basis of learning from the immune mechanism of biological system,
the paper constructed the regulation model of MAMS, and the
biological immune response mechanism was used to regulate the
MAMS to improve the dynamic response ability of the system.
With reference to the biological immune mechanism, the immune
agent learning model based on reinforcement learning was constructed
to learn the perturbation factors of the manufacturing system
uncertainty, which was a single-step decision problem of
serialization. In the future research work, according to the
characteristics of the MAMS and the immune learning and memory
mechanism of the biological system, it can further explore the learning
model and learning algorithm, and the immune learning mechanism of
the biological system can be better applied to the monitoring model of
the MAMS to improve the coordination ability of the system. At the
same time, because the research results are not applied in the actual
production process, the autonomy and coordination of the intelligent
manufacturing units in the actual production process still need to be
further improved. In the future, the research model and algorithm will
be further explored in this aspect.
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