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Introduction: With the continuous progress of the automotive industry, the safe
driving of intelligent vehicles has received increasing attention. Traditional
obstacle avoidance techniques are not accurate enough in dealing with fuzzy
information encountered in high-speed driving. Therefore, this study aims to
improve the obstacle avoidance ability of intelligent vehicles through fuzzy
control theory.

Methods: The study employs fuzzy control theory to enhance the ability of
intelligent vehicles to process fuzzy information, thereby improving conventional
obstacle avoidance techniques. A combination of visual sensing and ultrasonic
detection equipment was used to comprehensively plan the real-time obstacle
avoidance routes of the intelligent vehicle.

Results andDiscussion: The improved obstacle avoidance technique achieves an
accuracy of 96.11%, which is better than the comparison avoidance technique.
In the absence of interfering signals, the running time and overshoot were 2.4 s
and 7%, respectively, again superior to the comparison technique. The
experimental results show that the obstacle avoidance technique proposed in
this study can improve the recognition ability of intelligent vehicles on fuzzy
information, so as to improve the accuracy of obstacle recognition and provide
certain guarantee for the safe driving of intelligent vehicles.
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1 Introduction

The history of automobiles has been over a hundred years, from the initial steam three-
wheeled vehicles to the current new energy four-wheeled vehicles. After continuous
innovation and improvement, convenience, safety, and green are the basic requirements
for automobiles (Xie et al., 2022; LiW. et al., 2020). The development of automobiles cannot
be separated from the technical support of various industries. With the widespread
application of intelligent technology, intelligent cars have begun to enter people’s vision
(Song and Li, 2022; Thomas et al., 2020; Colombaroni et al., 2020). Various countries attach
great importance to the development of intelligent vehicles, especially its safety. The ability
to avoid obstacles on the road is a crucial aspect of safe driving for intelligent vehicles.
However, traditional obstacle avoidance technologies have insufficient recognition and
detection capabilities for fuzzy information encountered by intelligent vehicles during the
driving process, which cannot ensure that intelligent vehicles can successfully avoid
obstacles with fuzzy information. At present, there are many studies on obstacle
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avoidance in drone technology. Yasin J N et al. monitored the
surrounding environment of the drone in real time through visual
sensing. The drone’s route in dynamic environments was planned
using collision theory, achieving effective obstacle avoidance during
drone navigation (Yasin et al., 2020). Huang et al. utilized visual
collision avoidance technology to improve the navigation stability of
unmanned aerial vehicles and ensure the safety of operating routes.
Therefore, visual obstacle avoidance had a good application effect on
obstacle avoidance route planning for dynamic routes (Huang et al.,
2019). Regarding the route control of intelligent vehicles, this study
focuses on the strong processing ability of fuzzy information based
on fuzzy control theory. It uses fuzzy control theory to compensate
for the shortcomings of traditional obstacle avoidance techniques
and improve traditional intelligent vehicle obstacle avoidance
techniques. By combining visual sensing and ultrasonic detection
equipment, the real-time obstacle avoidance route of intelligent
vehicles is comprehensively planned. The braking safety distance
is adjusted by limiting the distance to the front vehicle, and the
obstacle recognition ability in the front area is optimized using fuzzy
control theory. Based on the offset angle control, the obstacle
avoidance route planning is achieved to improve the obstacle
avoidance ability of intelligent vehicles, providing better
guarantees for the safe driving of intelligent vehicles and
promoting further development of automobiles. The first part of
this study introduces the current research status of intelligent
vehicles obstacle avoidance and fuzzy control theory. The second
part provides a detailed introduction to intelligent vehicles obstacle
avoidance, as well as its shortcomings. Fuzzy control theory is used
to improve the obstacle avoidance technology. The third part
conducts comparative performance testing and actual application
effect analysis on the improved technology. The fourth part is to
summarize the research results.

2 Related works

With the reform of the automotive industry and the
continuous progress of science and technology, intelligent
vehicles have become one of the focuses, among which the
safe driving of intelligent vehicles has received the most
attention. Based on this, some scholars have conducted in-
depth research on the intelligent vehicle obstacle avoidance
technology. Liu et al. proposed a parameterized spatio-
temporal curve interpolation model based on a layered
collision avoidance strategy to address the low accuracy of
intelligent vehicles in high-speed motion. Through empirical
analysis, it constructed accurate collision avoidance
conditions, thereby improving the obstacle avoidance accuracy
of intelligent vehicles during high-speed driving (Liu et al., 2020).
Wahid et al. proposed an adaptive motion planning strategy
based on the regional change of obstacle position and collision
speed to solve the low ability of intelligent vehicles to avoid speed
changing obstacles. Through comparative test analysis, the
results showed that the error of intelligent vehicles to avoid
speed changing obstacles was reduced by 26% (Wahid et al.,
2020). Ferraz et al. proposed a three-stage architecture based on
convolutional neural network and transfer learning to solve the
low accuracy of intelligent vehicles in detecting obstacles. The

results showed that the average accuracy using this architecture
in detecting obstacles increased by 3.96% (Ferraz et al., 2020).
Chen and Zhang proposed a dynamic pedestrian intelligent
vehicle collision avoidance path planning based on a joint
attention mechanism long and short memory network to
address the poor pedestrian detection and avoidance ability of
intelligent vehicles when there was no signal. The results showed
that this path planning could improve the ability of intelligent
vehicles to avoid pedestrians and ensure safe driving (Chen and
Zhang, 2022). Pan et al. proposed a multi-target recognition
method based on the single line LiDAR and monocular vision to
address the low accuracy in identifying obstacles in intelligent
vehicles. Through comparative experimental analysis, the results
showed that this method could effectively and accurately identify
obstacles in intelligent vehicles, improving their ability to
recognize obstacles (Pan et al., 2021).

Fuzzy control theory is a nonlinear intelligent control that can
solve uncertainty problems in complex systems or processes by
establishing language analysis. Therefore, it is widely applied in
various fields. Abbasi and Jalali proposed a second-order
dynamical system based on fuzzy control theory to address
traditional dynamical systems being unable to accurately
determine parameters. After empirical analysis, the results
showed that the system had fuzzy parameters, which could
output views more comprehensively and better control the
system (Abbasi and Jalali, 2020). Tong et al. proposed an
adaptive fuzzy feedback control system based on fuzzy control
theory to solve the unknown virtual functions in the feedback
nonlinear system. Through simulation analysis, the results showed
that the system could control the unknown virtual functions to be
constant, and ensure that the error was within the small
neighborhood of the origin (Tong et al., 2020). Ahanda et al.
proposed a virtual adaptive control scheme that integrated fuzzy
control theory to address the poor finite time stability in robot
closed-loop systems. After comparative experiments, the results
showed that this scheme could effectively improve the finite time
stability of the closed-loop system (Ahanda et al., 2020). Li et al.
proposed a fuzzy containment control method integrating fuzzy
control theory to solve the containment control input delay in
nonlinear multi-agent system. The results showed that this control
method could reduce the input delay of containment control, thus
improving the working efficiency of nonlinear multi-agent system
(Li Y. et al., 2020). In view of the high grain loss rate in traditional
combine harvester, Xu et al. proposed a control strategy using
fuzzy theory to reduce the loss rate. Through comparative test
analysis, the results showed that the combine harvester using this
strategy could significantly reduce the grain loss rate, which was
reduced by 29.6% at most (Xu et al., 2020).

In summary, many scholars have applied various high-tech
technologies to improve the obstacle avoidance ability of
intelligent vehicles. Meanwhile, fuzzy control theory has also
shown excellent performance in various fields. The research value
of combining the two is enormous. However, the research that
combines these two is not common nowadays. In order to fill the gap
in this research field, the research combines fuzzy control theory
with intelligent vehicle obstacle avoidance strategies. It is hoped that
this study can improve the obstacle avoidance ability of intelligent
vehicles and provide some data support for its further development.
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3 Intelligent vehicle obstacle avoidance
technology integrating fuzzy
control theory

With the development of science and technology, intelligent cars
are gradually entering the public eye. People are very concerned
about the development of intelligent vehicles, and traditional
intelligent vehicle obstacle avoidance technology has a low
accuracy in identifying fuzzy information. Based on this research
background, this chapter combines traditional obstacle avoidance
technology with fuzzy control theory to design an intelligent vehicles
obstacle avoidance.

3.1 Sensor-based obstacle avoidance
technology

Smart cars detect the surrounding environment through sensors
and issue commands to avoid obstacles based on the detected
information. The commonly used sensors for smart cars include
infrared sensors, visual sensors, and ultrasonic sensors. Infrared
sensor uses infrared for signal detection, which can detect objects
based on the infrared light wavelength. Its ranging function can
detect the distance between cars and obstacles (Suto et al., 2021). The
distance measurement diagram is shown in Figure 1.

As shown in Figure 1, the transmitter in the infrared sensor
emits infrared light wavelength first. When the infrared light
encounters an obstacle, it reflects back. The CCD detector
automatically detects the reflected infrared light. The distance
between the infrared sensor and the obstacle can be calculated, as
shown in Equation 1.

D � f L +X( )
L + fctg 90o − α( ) (1)

In Equation 1,D is the distance between the infrared sensor and the
obstacle. X is the center distance between the infrared emitter and
the CCD detector. L is the infrared offset value. f is the focal length
of the filter. α is the emission angle of infrared light. c is the light
speed. From Figure 1 and Equation 1, when the obstacle is too close

or too far away from the car, it may be difficult to determine the
obstacle. Visual sensors are used to collect visual information and
have wide information detection range and comprehensive
information (Chen et al., 2020). Through infrared sensing
information, longitudinal control of vehicles can be designed, and
corresponding safety distances can be developed for different vehicle
speeds. At the same time, the following distance between the vehicle
and the preceding vehicle is set to maintain obstacle avoidance space
during driving, ensure the braking performance of the vehicle, and
coordinate the longitudinal driving speed through visual sensing
devices. The workflow of constructing a visual system based on
visual sensors is shown in Figure 2.

In Figure 2, the dual frame difference method is commonly used
in image processing, and its calculation process is shown in
Equations 2, 3.

Dk x0, y0( ) � fk x0, y0( ) − fk−1 x0, y0( )∣∣∣∣ ∣∣∣∣ (2)

In Equation 2, (x0, y0) is the pixel coordinate. fk and fk−1.are any
two consecutive image sequences. Dk is the image after
differentiation.

Rk x0, y0( ) � 1 if x0, y0( )>TH( )
0 else

{ (3)

In Equation 3, TH is the set value during threshold processing. Rk is
foreground target after threshold processing, which needs to meet
the requirements of Equation 4.

fk x0, y0( ) − fk−1 x0, y0( )∣∣∣∣ ∣∣∣∣> τ1
fk x0, y0( ) − fk−2 x0, y0( )∣∣∣∣ ∣∣∣∣> τ2

{ (4)

In Equation 4, τ1 and τ2 are two different thresholds. Ultrasonic
sensors calculate the distance between a car and an obstacle by
recording the moment when ultrasonic waves are emitted and
reflected back when they hit the obstacle (Qin et al., 2021). The
calculation is shown in Equation 5.

D1 � v × t2 − t1( )
2

v � v0

������
1 + T

273

√
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (5)

In Equation 5,D1 is the distance between the car and the obstacle. t1
is the moment when the ultrasonic wave is emitted. t2 is the moment
when ultrasonic waves reflect back. v is the speed of ultrasound in
the current environment. v0 is the speed of ultrasound at 0°C.T is the
ambient temperature. The least squares method of relative error is
used to compensate for ultrasonic ranging error, as shown in
Equation 6.

min � ∑ Δxi

xi
[ ]2

y � ax + b

⎧⎪⎪⎨⎪⎪⎩ (6)

In Equation 6, Δxi is the error value after fitting processing; xi is the
measured values after fitting processing. y is the actual distance
between the car and the obstacle. x measures the distance between
the car and the obstacle. a is the coefficient representing the linear
relationship between the measured distance and the actual distance.
b is a constant that represents the linear relationship between the

FIGURE 1
Schematic diagram of the infrared ranging principle.
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same. The above sensors require very clear data information when
identifying obstacles, and cars often face much fuzzy information
during driving. Improving the processing capability of intelligent
vehicles for fuzzy information is very important.

3.2 Improved obstacle avoidance
technology based on fuzzy control theory

Fuzzy control theory is a computer-based digital control
approach that relies on fuzzy set theory. It dispenses with the
need to establish a comprehensive mathematical model system
for the controlled object. Therefore, fuzzy control theory is often
used to simplify systems and control nonlinear, time-varying and
other systems. Given the strong processing ability of fuzzy
control theory on fuzzy data, it is applied to improve the
obstacle avoidance technology of intelligent vehicles and
improve their accuracy in identifying obstacles when facing
fuzzy data. Fuzzy control uses fuzzy mathematical
relationships to identify and judge fuzzy objects, and then
apply the fuzzy set obtained through fuzzy reasoning to the
controlled object (Ejegwa and Agbetayo, 2023). The
relationships between all objects in the fuzzy set are fuzzy and
uncertain, and the relationships between objects can be expressed
by membership functions. In other words, the fuzzy performance
of a fuzzy set is reflected by membership functions (Saeed et al.,
2022). There are four commonly used membership functions, the
first of which is a triangular function, as shown in Equation 7.

f1 x1, a1, b1, c1( ) �

0 x1 ≤ a1

x1 − a1( )
b1 − a1( ) a1 < x1 < b1

x1 − c1( )
b1 − c1( ) b1 < x1 < c1

0 x1 ≥ c1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(7)

In Equation 7, a1, b1 and c1 are the parameters for determining the
function graph, where the highest point of the function can be
determined by the point b1. x1 represents the parameters of the
modulus object. The second type of membership function is a
Gaussian function, as shown in Equation 8.

f2 x1, σ, c1( ) � e− x1−a1( )2/2σ2 (8)

In Equation 8, the center of the function graph can be determined by
a point c1. σ represents a normal number. The third type of
membership function is the generalized bell function, as shown
in Equation 9.

f3 x1, a1, b1, c1( ) � 1

1 + x1 − c1
a1

∣∣∣∣∣ ∣∣∣∣∣2b1 (9)

In Equation 9, the center of the function graph can be determined by
a point c1. The fourth type of membership function is an S-shaped
function, as shown in Equation 10.

f4 x1, a1, c1( ) � 1
1 + e−a1 x1−c1( ) (10)

In Equation 10, the opening direction of the function graph
can be determined by point a1. The relationship between
different objects in a fuzzy set can be represented by
membership functions, while the relationship between
different fuzzy sets needs to be represented by fuzzy
matrix representation. The fuzzy matrices are shown in
Equations 11, 12.

rij � μR xi′, yj′( ) (11)

In Equation 11, xi′ and yj′ respectively represent fuzzy points in two
fuzzy sets. μR indicates the membership degree.

R �

r11 r12 r13 ... r1j
r21 ... ... ... r2j
r31 ... ... ... r3j
... ... ... ... ...
ri1 ri2 ri3 ... rij

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (12)

In Equation 12, R represents the fuzzy matrix. When the fuzzy
relationship between two sets is unclear, a third set can be
introduced to obtain the fuzzy relationship between the two sets
through the synthesis method. The calculation method is shown in
Equations 13, 14.

μP′+Q′ x′, z′( ) � ∨ x′, y′( ) ∧ y′, z′( ) (13)

In Equation 13, x′, y′, and z′ are fuzzy point Q′ in the matrix P′,
where y′ is duplicate data in the two matrices.

R′ � P′+Q′
μR′ x′, z′( ) � μP′+Q′ x′, z′( ){ (14)

FIGURE 2
Visual system workflow.
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In Equation 14, R′ represents the ambiguous combination of these
two fuzzy relationships. A fuzzy control system based on fuzzy
control theory is designed, and the workflow of the system is shown
in Figure 3.

From Figure 3, in a fuzzy system, the fuzzy values obtained
through fuzzy inference need to be subjected to inverse fuzzification,
that is, to convert the fuzzy values into accurate values. The
commonly used conversion method is the maximum
membership decision method, which weights the maximum
values of multiple membership degrees in the output fuzzy set
and finally outputs the average value, as shown in Equation 15.

z �
∑n
i−1
ziue zi( )

∑n
i−1
ue zi( )

(15)

In Equation 15, z represents the weighted average value. zi
represents the maximum value of membership in a fuzzy set. ue
representation theory domain. In summary, fuzzy control theory has
a strong ability to process fuzzy data. Therefore, the study combines
this theory with intelligent vehicle obstacle avoidance technology to
improve obstacle avoidance ability of intelligent vehicles. The
schematic diagram of intelligent vehicles obstacle avoidance
based on fuzzy control is shown in Figure 4.

As shown in Figure 4, during the driving process of an intelligent
car, sensors are used to collect information around the car, which is
processed and transmitted to a fuzzy control system. The types of

obstacles in this information are calculated and analyzed, and
reasonable obstacle avoidance actions are made based on the
types of obstacles.

3.3 Intelligent vehicle obstacle avoidance
technology integrating fuzzy control theory

The obstacle avoidance technology of intelligent vehicles
improved by fuzzy control theory can accurately identify
obstacles encountered during the driving process, and issue
obstacle avoidance commands to the vehicle based on the type of
obstacle, enabling the intelligent vehicle to make reasonable obstacle
avoidance behavior. The obstacle avoidance behavior of smart cars is
mainly divided into three categories. To ensure the driving stability
of the vehicle, it is necessary to first set the lateral control input
content. The position of the driving vehicle is determined through
visual sensing and ultrasonic sensing. The current road information
and traffic data are obtained through network search. The speed and
angle of travel under different states are set. The obstacle avoidance
behavior of intelligent vehicles during the driving phase is mainly
divided into three categories. When the intelligent vehicle
encounters a sudden dynamic obstacle, it needs to stop driving
immediately. This process is called the emergency obstacle
avoidance behavior of intelligent vehicles. The direct target
behavior of intelligent vehicles refers to the situation where the
road surface is flat and there are no obstacles to prevent the

FIGURE 3
Flow chart of the fuzzy control system.

FIGURE 4
Schematic diagram of obstacle avoidance fuzzy control.
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intelligent vehicle from moving forward. Intelligent vehicle travel is
determined by the direction of the destination. Taking into account
the dynamic factors of the vehicle and the changes in kinetic energy
during driving, the control system of the vehicle is optimized to
improve its smoothness. The schematic diagram is shown in
Figure 5A. The direct obstacle avoidance behavior of intelligent
vehicles refers to the behavior of changing the travel direction
based on the position of obstacles and the destination when
obstacles are detected around the intelligent vehicle during
driving. At the same time, the obstacle avoidance direction of
the research design is mainly aimed at the 180° in front of the car,
combined with visual detection devices to distinguish the vehicles
ahead. The driving obstacle avoidance diagram is shown
in Figure 5B.

In Figure 5A, B(x2, y2) represents the location of the intelligent
vehicle. C(x3, y3) indicates the location of the destination. The line
segment BA represents the direction in which the smart car is
traveling. θ indicates the angle between the direction of intelligent
vehicle travel and the direction of the destination. θ1 indicates the
angle between the destination direction and the coordinate axis.

The relationship between the four can be expressed using
Equation 16.

θ � arctan y3 − y2( )/ x3 − x2( )( ) − θ1 (16)
In Equation 16, when θ is a positive number, the smart car turns left.
When θ is a negative number, the smart car turns right.When θ is zero,
the smart car does not need to change direction. Reasonable obstacle
avoidance behavior during the driving process of intelligent vehicles is
fundamental to ensuring their safe driving. To ensure the safety of
vehicle operation, it is necessary to balance the vehicle’s own balance
and the deviation caused by obstacle avoidance behavior. By detecting
road conditions, the ground friction force can be predicted, and obstacle
avoidance amplitudes can be designed for different road conditions.
When the road friction is low, the safety line setting of the vehicle is
increased, increasing the obstacle avoidance space of the vehicle and
correspondingly reducing the obstacle avoidance level to ensure the
stability of the vehicle itself. Based on the actual driving situation,
combined with the above three intelligent vehicle obstacle avoidance
behaviors, the intelligent vehicles obstacle avoidance technology is
completed based on fuzzy control theory. The workflow diagram of

FIGURE 5
Two types of object avoidance behaviors of intelligent vehicles. (A) Go straight to the target behavior. (B) Direct obstacle avoidance behavior.

FIGURE 6
Flow chart of object avoidance of intelligent vehicles.
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the improved real-time obstacle avoidance technology for intelligent
vehicles is shown in Figure 6.

As shown in Figure 6, during the driving process of intelligent
vehicles, real-time detection technologies such as infrared sensors,
visual sensors, and ultrasonic sensors are used to collect information
around the vehicle. Then, these data information are preliminarily
processed and transformed, and transmitted to the fuzzy control
system. After calculating and analyzing the fuzzy control system, the
type of obstacles is judged and corresponding obstacle avoidance
commands are issued to the intelligent vehicle. After the intelligent
car successfully avoids obstacles, combined with the actual situation
of the intelligent car and the destination situation, it is determined
whether the intelligent car has arrived at the destination. When the
car has already arrived at the destination, the obstacle avoidance
work stops. Otherwise, the above workflow is repeated continuously
until the intelligent car reaches the destination.

4 Performance testing of improved
technology and empirical analysis of
intelligent vehicle obstacle avoidance
technology

In order to validate the obstacle avoidance technology based on
fuzzy control theory proposed in the study, a simulation system for
obstacle avoidance is built using Simulink. Comparative performance
tests of obstacle avoidance technology are conducted on the
Lostandround dataset, and evaluation indicators such as running
time, overshoot, accuracy, PR curve, ROC curve, etc., are used.
Subsequently, to verify the practical application effect of obstacle
avoidance technology proposed in the research, an intelligent test
car is self-made for comparative experiments, with the test car
identifying obstacle types and route planning as evaluation indicators.

4.1 Comparative performance testing of
improved obstacle avoidance technology

Performance comparison tests are conducted on the
improved obstacle avoidance technology. The traditional

obstacle avoidance technology and Proportional Integral
Derivative Control (PID) are used as control groups. These
three technologies are used to identify and detect data in the
experimental dataset. The running time and overshoot results are
shown in Figure 7.

As shown in Figure 7A, when no interference signal is added in
the experiment, the running time of the improved obstacle
avoidance technology was 2.4 s, and the overshoot was divided
into 7%. The lower the overshoot value, the more stable it is. The
running time of traditional obstacle avoidance technology was 5.2 s,
with an overshoot of 35%. The running time of PID was 3.7 s, and
the overshoot was 15%. This means that the improved obstacle
avoidance technology is compared to the obstacle avoidance
technology. In Figure 7B, adding interference signals in the
experiment had an impact on the performance of all three
obstacle avoidance technologies, with the improved obstacle
avoidance technology extending the running time to 3.1 s and
the overshoot increasing to 9%. The running time of traditional
obstacle avoidance technology extended to 7.2 s, the overshoot
increased to 48%, the PID running time extended to 4.9 s, and
the overshoot increased to 22%, indicating that the improved
obstacle avoidance technology had the strongest anti-interference
ability. The recognition accuracy of the three obstacle avoidance
technologies for obstacles after 1,000 iterations is shown in Figure 8.

FIGURE 7
Running time and overshoot of the three object avoidance technologies. (A) No interference signal added. (B) Add interference signal.

FIGURE 8
Accuracy of the three objective avoidance technologies.
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As shown in Figure 8, the accuracy of the three obstacle
avoidance technologies increased with the number of iterations.
After running 1,000 iterations, the accuracy of traditional obstacle
avoidance technology remained stable at 75.21%, PID at 85.47%, and
the accuracy of improved obstacle avoidance technology remained
stable at 96.11%. In the three experiments, the overall accuracy of the
improved obstacle avoidance technology was significantly higher,
and the convergence speed of this technology was also faster. When
the iteration reached around 500, the accuracy of this technology
tended to stabilize. The PR and ROC curves of the three obstacle
avoidance technologies are shown in Figure 9.

As shown in Figure 9A, the area under the PR curve of the
improved obstacle avoidance technology was significantly larger
than the other two obstacle avoidance technologies used for
comparison, and the area was 0.81. From Figure 9B, the area
under the ROC of the improved obstacle avoidance technology
was significantly larger than that of comparison obstacle avoidance
technologies, and this area was 0.87. From the evaluation indicators
of PR curve and ROC, the improved obstacle avoidance technology
is the best. Based on all the above evaluation indicators, the
performance of improved obstacle avoidance technology is
superior to that of comparison obstacle avoidance technologies.

4.2 Analysis of the practical application
effect of intelligent vehicle obstacle
avoidance technology

In the comparative experiment of the practical application effect
of the improved obstacle avoidance technology, the driving situation
of a self-made intelligent test car is used to simulate the driving
situation of an intelligent car on the road. 300 obstacle data samples
are randomly selected from the dataset and classified into three
categories based on the direct obstacle avoidance behavior,
emergency obstacle avoidance behavior, and direct target
avoidance behavior of intelligent vehicles, labeled as 1, 2, and 3.
During the driving process of the test car, these 300 obstacle data are
input to observe whether the test vehicle can perform the correct
obstacle avoidance behavior.

From Figure 10A, the test car using traditional obstacle
avoidance technology had 50 incorrect obstacle avoidance
behaviors, and the correct judgment rate for obstacles was
83%. In Figure 10B, the test car using PID obstacle avoidance
technology had 25 incorrect obstacle avoidance behaviors, and
the correct judgment rate for obstacles was 92%, with the most
incorrect judgments for direct obstacle avoidance behavior and
emergency obstacle avoidance behavior. In Figure 10C, the test
car using improved obstacle avoidance technology had
18 incorrect obstacle avoidance behaviors, and the correct
judgment rate for obstacles was 94%, with the most incorrect
judgment for direct obstacle avoidance behavior. Based on the
comprehensive Figures (a), (b), and (c), the improved obstacle
avoidance technology can effectively reduce erroneous
judgments about direct obstacle avoidance behavior and
emergency obstacle avoidance behavior, while maintaining the
lowest erroneous judgment about direct target avoidance
behavior. The results indicate that the improved obstacle
avoidance technology has the best practical application effect.
The driving route planning results of three types of test vehicles
when facing obstacles, combined with the destination position,
are shown in Figure 11.

As shown in Figures 11A–C, the test vehicle using traditional
obstacle avoidance technology chose the route with the least
obstacles but the farthest path when avoiding obstacles during
driving, indicating that the test vehicle was unable to accurately
detect and recognize the specific distribution of surrounding
obstacles. The test vehicle using PID obstacle avoidance
technology, although the obstacle avoidance route was not the
farthest, still improved its ability to recognize surrounding
obstacles. The test vehicle using improved obstacle avoidance
technology selected the optimal obstacle avoidance route,
accurately detected and identified obstacles, and planned the
optimal driving route. The above results indicate that the
practical application effect of improved obstacle avoidance
technology is better than that of control groups. The key
indicators of obstacle avoidance behavior during the driving
process of the test vehicle are scored, with a total score of
100 points. Based on the weights of each indicator, a

FIGURE 9
PR curves and ROC curves of the three objective avoidance technologies. (A) PR curve. (B) PRC Curve.
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comprehensive evaluation is conducted, and the specific scoring
results are as follows.

As shown in Table 1, the final score for traditional technology
was 72 points, the final score for PID obstacle avoidance technology
was 83 points, and the final score for improved obstacle avoidance
technology was 94 points. In the sub indicators of “Obstacle
avoidance process time”, “obstacle avoidance preparation time”,
and “Obstacle avoidance success rate”, the scores of improved
obstacle avoidance technology were 94, 97, 99, 95, 94, 91, 92, 91,
96, respectively, which were higher than those of comparison
obstacle avoidance technologies. In summary, intelligent vehicles
based on improved obstacle avoidance technology have the strongest
obstacle avoidance ability.

5 Conclusion

Due to the increasing attention paid to the safety issues of
intelligent vehicles, the obstacle avoidance ability of intelligent
vehicles is particularly important. However, traditional obstacle
avoidance technologies have insufficient processing ability for
fuzzy information, resulting in intelligent vehicles being unable
to accurately detect and recognize obstacles with fuzzy

information. To address this issue, the fuzzy control principle
was used to improve traditional obstacle avoidance techniques in
intelligent vehicles. After comparing the performance of the
improved obstacle avoidance technology, the results showed
that the accuracy of the improved obstacle avoidance
technology was 96.11%, the area under the PR curve was 8.1,
and the area under the ROC was 8.7, which exceeded traditional
obstacle avoidance technology and PID obstacle avoidance
technology. When there was no interference signal, the
running time and overshoot of this technology were 2.4s and
7%, which were better than comparison technologies. After
adding interference signals, the running time and overshoot of
this technology were 3.1s and 9%, which were still better than
comparison technologies and had strong anti-interference
ability. Empirical analysis was conducted on the practical
application effect of the improved obstacle avoidance
technology. The results showed that the intelligent vehicle
with this technology had a 94% accuracy in judging obstacles,
which was better than the comparative technology. The planned
driving route was the best in the comparative experiment. Finally,
the obstacle avoidance behavior of three groups of intelligent
vehicles was rated, and the obstacle avoidance technology
proposed in the study scored the highest at 94 points. In

FIGURE 10
Test results of different object avoidance technologies. (A) Conventional technology. (B) PID. (C) Improved technology.
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FIGURE 11
Route planning of the smart car. (A) Conventional technology. (B) PID. (C) Improved technology.

TABLE 1 Evaluation indicators of objective avoidance behaviors.

Serial number Scoring indicators Indicator
weight%

Traditional
technology

PID Improved
technology

One Obstacle avoidance process time Nine Seventy-seven Eighty-nine Ninety-four

Two Preparation time for observer
avoidance

Seven Seventy-five Eighty-four Ninety-seven

Three Obstacle avoidance success rate Twenty Seventy-three Ninety-one Ninety-nine

Four Obstacle avoidance speed Eight Seventy-six Eighty-seven Ninety-five

Five Straight lane change to avoid objects Ten Seventy Eighty Ninety-four

Six Turning to avoid objects Twelve Seventy Seventy-nine Ninety-one

Seven Straight path borrowing to avoid
objects

Thirteen Sixty-eight Seventy-
seven

Ninety-two

Eight Detour to foreign objects Fifteen Sixty-nine Seventy-five Ninety-one

Nine Obstacle avoidance stability Six Eighty-one Ninety-one Ninety-six

— Total score One hundred Seventy-two Eighty-three Ninety-four
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summary, the intelligent vehicle obstacle avoidance technology based
on fuzzy control theory proposed in the study can improve the
intelligent vehicle obstacle recognition accuracy, thereby improving
the success rate of intelligent vehicle obstacle avoidance and ensuring
safe driving. However, this technology is too complex for the
processing of simple information. How to simplify the calculation
process will be the future research direction.
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