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Introduction: With the rapid optimization and evolution of various neural
networks, the control problem of robotic arms in the area of automation
control has gradually received more attention.

Methods: To improve the control performance of robotic arms under complex
dynamic models, this study proposes an adaptive affective radial basis function
network control strategy. Firstly, the kinematic and dynamic mathematical
models of the tendon driven robotic arm are constructed. Then, by
integrating the affective computing model and the radial basis function
network, an adaptive affective radial basis function network control algorithm
is constructed.

Results and Discussion: The research results indicate that the designed algorithm
significantly outperforms the other two compared algorithms in terms of control
accuracy and stability. In benchmark performance testing, the designed algorithm
has a error accuracy of up to 0.97 and a steady state of up to 0.95. In the simulation
results, the maximum torque change of the designed algorithm is only 3.8 Nm,
which is much lower than other algorithms. In addition, the control error
fluctuation range of this algorithm is between −0.001 and 0.001, almost close
to zero error. This study provides a new optimization strategy for precise control of
tendon driven robotic arms, and also opens up new avenues for the application of
artificial intelligence technology in complex nonlinear system control.
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1 Introduction

As the quick advancement of technology, the usage of intelligent robots in various
industries is becoming widespread. As a critical component of intelligent robot systems,
research on the structural optimization and control strategies of robotic arms (RAs) has
become a prominent area of focus (Mishani and Sintov, 2021; Tanaka et al., 2022). Among
numerous control methods for RAs, tendon-driven RAs have attracted widespread
attention because of their merits, such as lightweight, high flexibility, and the ability to
simulate motion patterns similar to those of natural organisms. This type of RA transmits
power and controls motion through tendons, which can significantly improve the control
performance and application range of the RA (Purohit and Dave, 2023; Piqué et al., 2022).
However, as a highly nonlinear system, the precise control of tendon-driven RAs faces
enormous challenges, especially in tracking control problems in unknown dynamic
environments.
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In recent years, with the rapid advancement of artificial
intelligence technology, various neural network algorithms have
been broadly applied in the control of RAs to raise the intelligence
level and adaptability of control systems. Radial basis function (RBF)
neural networks have nonlinear mapping ability and the ability to
approximate arbitrary continuous functions. They have become a
powerful tool for addressing control issues in RAs, and many experts
have studied their control performance (Fazli and Kazemi, 2024;
Shafei and Mirzaeinejad, 2021). In response to the increasingly
complex trajectory tracking control of industrial RAs and the
challenges posed by external disturbances, Xu and Wang raised an
adaptive control method with neural network algorithms. The
research outcomes indicated that the designed control scheme
provided a new solution for the application of RAs in high-
precision engineering, while demonstrating the potential
application of neural networks in complex control systems (Xu
and Wang, 2023). Azizkhani et al. investigated the control
problem of pneumatic soft RAs and studied the dynamic and
kinematic models of soft robots. Research pointed out that
appropriate controller design is crucial for compensating for
factors not considered in modeling, such as model uncertainty,
system parameter identification errors, hysteresis effects, external
forces, etc. The simulation results indicated that the adaptive
passive control strategy combined with a high gain observer
exhibited better performance than other methods (Azizkhani et al.,
2022). Liu and Huang raised a decoupling method to address the
system parameter requirements and complex dynamic model
challenges faced by aerial RAs in executing diverse tasks. By
combining adaptive robust technology with reinforcement learning
methods, trajectory tracking control of quadcopter aircraft and
position control of RAs were achieved. The research outcomes
indicated that the control structure and algorithm of the proposed
air manipulator were effective (Liu and Huang, 2021). Jiang et al.
proposed an adaptive control method for dual arm robot systems to
conduct two handed tasks under model uncertainty. Firstly, the RA
system was divided into two subsystems, and then a command
filtering control technology was design for trajectory tracking and
contact force control. Finally, an RBF neural network was used to
control the robot, and a novel composite learning rule was introduced
to update the neural network weights. The final numerical simulation
outcomes demonstrated the performance of the raised control
algorithm (Jiang et al., 2020). Tan et al. investigated the robust
model free control problem of RAs. Given the complexity of RA
modeling and the uncertainty of kinematics, a novel zeroing neural
network was proposed, and an RA control scheme was designed using
this network. The research results indicated that this scheme could
improve the performance of the RA under noise interference without
knowing the structural parameters of the RA, and achieve better
control results in terms of accuracy and robustness (Tan et al., 2022).
Hsieh et al. proposed a new inverse kinematics model for self-
assembled RAs. The model first detected objects by combining
depth sensors with the YOLOv4 algorithm, and then used the
proposed deep convolution to generate an adversarial kinematic
network to control the self-assembled RA. The research results
indicated that compared with convolutional neural networks and
deep neural networks, the raised network structure achieved accuracy
of 87% and distance error of 1.26 cm, respectively, and had better
control performance (Hsieh et al., 2022).

Although many experts have applied various types of neural
networks to RA control problems, traditional neural networks such
as RBF have certain limitations when dealing with dynamic
environments and large amounts of noisy data. Firstly, the
generalization ability of the model is limited, and RBF networks
and other traditional neural networks may be limited in their
generalization ability when encountering new situations beyond
the training data. Secondly, although RBF networks can handle
noise in certain situations, their robustness to large amounts of noisy
data is still limited, which may lead to a decrease in error accuracy in
noisy environments. Finally, the performance of RBF networks and
other traditional neural networks heavily depends on parameter
settings, such as center points, width, and weights. Finding the
optimal parameter settings in complex dynamic environments is a
challenge, especially in the presence of a large amount of noise. The
adaptive affective radial basis function network (AARBF) control
strategy proposed in this study aims to solve the problem of precise
control of tendon-driven RAs in complex dynamic environments.
Although the traditional control method can achieve the control
goal to a certain extent, it has limitations in dealing with nonlinear
systems and noise interference. Therefore, the affective computing
model is introduced to improve the adaptability and robustness of
the control system by utilizing the dynamic nature of emotion
calculation models, allowing RBF to adaptively adjust parameters
based on emotional changes. The final AARBF combines the
nonlinear mapping capability of RBF with the dynamic
adjustment capability of the affective computing model. RBF can
approximate any continuous function and is suitable for the control
of nonlinear systems. The emotion computing model enables the
control system to dynamically adjust control parameters based on
real-time emotional feedback, thereby achieving higher error
accuracy and stability. Through this innovative control strategy,
AARBF is able to adapt to external disturbances and internal
parameter changes in control signals, significantly improving the
trajectory tracking performance of tendon-driven RAs.

2 Methods and materials

An RA is a highly automated mechanical device controlled by
programming, typically composed of multiple joints and linkages,
capable of simulating the movement of a human arm. It is currently
widely used in manufacturing, medical, industrial design, and other
fields. To improve the tracking control effect of the RA, the traditional
RA is optimized and controlled by combining RBF and tendon-driven
methods. Firstly, a kinematic and dynamic mathematical model of the
tendon-driven RA is established. Secondly, an AARBF-based tracking
control algorithm for the tendon-driven RA is designed based on an
affective computing model.

2.1 Design of kinematic and dynamic
mathematical models for tendon-driven
robotic arms

In the tendon-driven system, the drive motor does not need to
be directly installed on the joint, but can be placed on the base or
other positions of the RA to transmit power through the tendon.
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Compared to traditional RAs, this design reduces the load on the
RA, increases its flexibility and reachable range. The tendon-driven
system enables the RA to have higher flexibility and reduce its own
weight, which is particularly critical for applications that require
high precision and flexibility, such as surgical robots and precision
manufacturing. In addition, the design of tendon-driven RAs can
also simulate motion patterns closer to natural organisms, thereby
improving the natural interaction ability and adaptability of the
RA (Jeong et al., 2020). The physical diagram of the RA and its
tendon drive structure are denoted in Figure 1.

Figures 1A, B are the physical images of the RA and the
structural diagram of the tendon drive, respectively. As denoted
in Figure 1A, a complete RA structure mainly consists of a base,
joints, link rods, end effectors, sensors, drive units, and control
systems. From Figure 1B, the tendon-driven RA has a total of three
joint angular displacements and four tendon position vectors. This is
because to achieve tendon drive, it is necessary to ensure that the
amount of tendons is greater than the amount of degrees of freedom.
Therefore, the final mechanical arm structure used in the study is a
3-joint 4-tendon RA. Assuming q � [q1, q2, q3] and x �
[x1, x2, x3, x4] represent joint angular displacement and tendon
position vectors respectively, the relationship between q and x is
denoted in Equation (1) (Zahaf et al., 2022; Shen and Saab, 2021).

x � RTq (1)

In Equation 1, RT represents the transpose of matrix R.
Assuming that the stiffness of all tendons is the same and the
external torque does not change, the elastic change in tendon length
is located in the zero space of matrix R, and the rate of tendon length
change is obtained as denoted in Equation 2.

i � vT _θ (2)

In Equation 2, i represents the rate of change in tendon length, _θ
represents the orthogonal complement of R, and v represents the
intra tendon velocity, which is the velocity of the tendon driver that
does not generate joint motion. Due to the consistent use of
materials and small differences in length among all tendons, the
differences between each tendon are ignored, and it is assumed that
each tendon is always in a taut state and has the same stiffness. Using

linear springs to model tendons, the relationship between tendon
elastic elongation and tendon tension vector is obtained as denoted
in Equation 3.

f � ktΔl (3)

In Equation 3, f represents the tendon tension vector, Δl
represents the tendon elastic elongation, and kt represents the
linear spring modeling coefficient. In the tendon-driven RA
model, the amount of root tendons must be greater than the
amount of joint torques to meet the controllable conditions of
the RA. The relationship between joint torque and f is denoted
in Equation 4.

τ � R′f (4)

In Equation 4, τ represents joint torque, and R′ represents the
mapping matrix from f to τ. The dynamic model of an RA is
generally achieved through Lagrangian and Newton Euler
methods, mainly involving the forward and backward dynamic
analysis of the RA (Fazilat and Zioui, 2024). Forward dynamics
locates joint motion, while reverse dynamics solves the necessary
joint driving force based on the end target. In this study, the main
movements of the RA are usually determined by the first three
joints. The small changes in the first joint have little impact on the
overall dynamics. To simplify the calculation, the study considers
the RA as a three degree of freedom system consisting of a base,
upper arm linkage, and lower arm linkage. The Euler Lagrange
method is used to complete the dynamic modeling of the tendon-
driven RA, and the τ dynamic mathematical model is obtained as
denoted in Equation 5.

H q( )a + C v, q( )v + G q( ) � τm (5)

In Equation 5, a and v represent the acceleration and velocity
of the joint angle, respectively. H(q), C(v, q), and G(q)
respectively represent positive definite inertia matrix,
centripetal force and Coriolis force matrix, and gravity matrix.
Ignoring the influence of gravity, Equation 5 is simplified to
Equation 6.

H q( )a + C v, q( )v � τm (6)

FIGURE 1
The physical object of the robotic arm and the structure diagramof the tendon drive. (A)Mechanical arm physical picture. (B) Tendon drive structure.
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With Equations 1–6, the output flow of the tendon-driven
actuator to the joint site can be obtained as denoted in Figure 2.

Figure 2 shows the output process of the tendon-driven actuator
to the joint site. Firstly, it sets the target tendon position vector x.
Secondly, it calculates the difference between the target position
vector and the actual tendon position vector to obtain the position
error. Next, the linear spring modeling coefficient kt is used to adjust
the position error, and the tendon tension vector f is obtained.
Then, the mapping matrix R′ is used to convert f into joint torque τ.
Finally, τ acts on the RA to generate joint angular displacement, and
feedback the current x value through R′’s transpose matrix to
complete the control loop.

2.2 Design of tracking control algorithm for
tendon-driven robotic arm based on AARBF

In the field of RA control, with the increasing demand for
intelligence and precise control, traditional control strategies have
gradually become less flexible. In the last few years, various neural
networks have been continuously applied inmechanical control, and
RBF has been widely introduced into RA control systems because of
its excellent nonlinear mapping ability and ability to approximate
arbitrary continuous functions (Liu et al., 2023). In highly nonlinear
systems such as tendon-driven RAs, the adaptive characteristics of
RBF neural networks allow it to adjust control rules in real-time to
adapt to external load changes and internal parameter disturbances,
thereby achieving accurate trajectory tracking. The general structure
of RBF is denoted in Figure 3.

The network structure of RBF is denoted in Figure 3. As a simple
three-layer feedforward neural network, RBF mainly contains an
input layer, a hidden layer, and an output layer. The input layer
consists of source nodes, which directly receive external input data
without performing any calculations. The hidden layer is the core of
the RBF network, consisting of a series of neurons with radial basis
activation functions. These activation functions typically use
Gaussian functions, whose output depends on the Euclidean
distance between the input vector and the center of the neuron.
When the output of the hidden layer is transmitted to the output
layer, the output layer weighted and summed these activation values
to generate the final output of the network.

Traditional RBF networks have certain shortcomings in selecting
center points and processing large amounts of noisy data, and have
limited adaptability to dynamic environments. Therefore, the study
introduced an emotion computingmodel to improve the effectiveness
of RBF. The emotion computing model draws inspiration from the
dynamic characteristics of human brain emotion processing, enabling
the network to adaptively adjust parameters based on emotional
changes, thereby improving the model’s adaptability and
generalization ability (Mohammed Ali et al., 2022; Xian et al.,
2023). In addition, the model is inspired by neurophysiology and a
computational framework is established for emotional processing. Its
general composition structure is shown in Figure 4.

The basic structure of the affective computing model is denoted in
Figure 4, which mainly includes two parts: the amygdala and the
orbitofrontal cortex. The amygdala is composed of the basal lateral
nucleus group and the cortical medial group, while the orbitofrontal
cortex is composed of internal and external regions. The amygdala
nucleus responds directly to internal emotional stimuli such as hunger
or pain, while playing a crucial role in learning new associations
between emotions and various stimuli. The orbitofrontal cortex is
responsible for inhibiting established emotional responses, especially
when these responses no longer adapt to changing environments or
reward conditions. In summary, the affective computing model reveals
the regulatory mechanisms of emotional learning and response, with
the amygdala responsible for forming responses and the orbitofrontal
cortex adjusting these responses when conditions change (Phuong and
Cong, 2024). The AARBF, which combines affective computing, is
denoted and its structure is denoted in Figure 5.

The structural diagram of AARBF is denoted in Figure 5. The
complete AARBF is mainly composed of the thalamus, sensory
cortex, orbitofrontal cortex, amygdala, and self-organizing
mechanism. AARBF first receives various sensor data from the
left side of the RA as input, such as displacement angle, velocity,
or acceleration. Secondly, the input signal will first enter the
thalamus and complete data analysis through RBF. The
mathematical expression for this process is denoted in Equation (7).

φj � exp −
∑k
i�1

ai − cj( )2
bj( )2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ j � 1, 2,/, n (7)

In Equation 7, ai � [a1, a2,/, ai] represents the input signal. cj
represents the center value of the activation function. bj represents
the base width of the activation function. n represents the amount of
neural network nodes. Using the output value of the thalamus as
input to the sensory cortex, the output of the sensory cortex will then

FIGURE 2
Output flow chart of the tendon-driven actuator.
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enter the amygdala and orbitofrontal cortex, respectively. The
output of the amygdala is denoted in Equation 8.

E1 � ∑n
j�1
Vjφj � VTφ (8)

In Equation 8, E1 denotes the output of the amygdala. φ denotes
threshold, φ � [φ1,φ2,/,φj]. V represents the weight of the
amygdala, V � [V1, V2,/, Vj]. V represents the transpose of V.
The output of the orbitofrontal cortex is denoted in Equation 9.

E2 � ∑n
j�1
W′

jφj � W′Tφ (9)

In Equation 9, E2 denotes the output of the orbitofrontal cortex.
W′ represents the weight of the orbitofrontal cortex,
W′ � [W1

′,W2
′,/,W′

j]. W′T represents the transpose of W′.
According to Equations 8, 9, the final output value of AARBF
can be obtained, as denoted in Equation 10.

Etotal � E1 − E2 � V −W′( )Tφ (10)

In Equation 10, Etotal represents the total output of AARBF.
An RA is a complex nonlinear system, whose complexity comes

from strong coupling, multivariate characteristics, and
environmental uncertainty. In practical applications, the positive
definite inertia matrix, centripetal force, Coriolis force matrix, and
gravity matrix all contain unknown dynamic parameters, which
make it difficult for the dynamic model of the RA to achieve high-
precision approximation. However, AARBF has self-learning ability
and the ability to handle complex models, making it suitable for
modeling and control of RA systems. To address the tracking and
control challenges of tendon-driven RAs in unknown dynamic
environments, the study proposes using AARBF for function
approximation of dynamic models. The control process of
AARBF in tendon-driven RAs is denoted in Figure 6.

In Figure 6, AARBF is used as the main control algorithm, while
an improved PID controller is used in the controller block, which
can handle complex dynamic behavior in nonlinear systems. In
order to improve the adaptability and robustness of the system, the
affective computing model is also introduced into the adaptive
block, which combines RBF and affective processing mechanism,
so that the control system can dynamically adjust the control
parameters according to real-time affective feedback, so as to
achieve more accurate trajectory tracking and control. Figure 6
shows the control process of AARBF in tendon-driven RAs. Firstly,
the target joint position is used as a reference input and generate
tendon tension through the controller. Secondly, tendon tension is
used to calculate the actual joint torque of the RA, which is then used
to the RA to drive the joint to its desired position. Next, the actual
position of the RA is fed back to the control system and in contrast
with the target position to calculate the position error. In addition,
AARBF is used to receive position error information and adaptively
adjust the control signal to reduce errors and improve tracking
performance. The adaptive control mechanism combined with
AARBF enables the RA control system to handle unknown or
changing dynamic conditions, thereby achieving precise tracking
control. Finally, the tendon tension output by the controller and the
calculated joint torque can be dynamically adjusted to cope with the
nonlinearity and uncertainty within the RA system.The weight
diagram of the adaptive neural network for the tendon-driven
robotic arm tracking control strategy is shown in Figure 7.

FIGURE 3
RBF structure diagram.

FIGURE 4
Structural diagram of affective computing model.
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In the Figure 7 is a weight plot of an adaptive neural network for
tracking control strategies of the tendon-driven robotic arm. The
neural network model consists of the input layer, two convolutional
layers, two sampling layers (pooling layer) and the output layer. The

input layer receives input data of 28 × 28 from sensors of the robotic
arm, such as a joint angle, velocity, or acceleration. Convolution
Layer 1 performs feature extraction on the input data, using the
convolution kernel to slide on the input data to extract local features.

FIGURE 5
Structure diagram of AARBF combined with affective computation.

FIGURE 6
Control flow chart of AARBF in tendon-driven manipulator.

FIGURE 7
Weight plot of adaptive neural networks for tracking control strategies of the tendon-driven robotic arm.
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These features may include edges, corners, etc., and are crucial for
the motor state identification of the robotic arm. The first sampling
layer (usually maximum pooling or average pooling) down samples
the output of the convolution layer 1, reducing the spatial dimension
of the data, thereby reducing the computational complexity and
extracting more abstract features. The second convolutional layer
further processes the output of the sampling layer 1 to extract
higher-level features that may be related to the movement
patterns of the robotic arm. The second sampling layer continues
to downsample the feature data of the output mechanical part of the
convolution layer 2, reducing the dimensionality of the feature data
of the mechanical part while maintaining key features to inform the
decision of the output layer. Finally, the output layer generates
control signals that can be used to adjust the tendon tone of the
robotic arm to achieve precise tracking control.

3 Results

To demonstrate the good tracking and control performance of
AARBF, benchmark performance testing and simulation testing were
set up in the study. In two tests, by comparing two other control
methods, the performance of three control methods in fitness value,
error accuracy, steady state, position tracking simulation, speed tracking

simulation, control torque simulation, and system control error was
studied, ultimately proving that AARBF has better control effect.

3.1 AARBF benchmark performance testing

In this study, MATLAB R2022a software was used to model and
simulate the tendine-driven RA, including Simulink toolbox and
neural network toolbox. The simulation environment was
configured as a computer equipped with Intel i7 processor and
16 GB memory, and a 3-DOF tendon-driven robot arm model was
adopted. The control effects of PID, SVM-RBF and AARBF control
algorithms were compared under the same initial conditions, and the
evaluation indexes included error accuracy, steady state, convergence
speed andmaximum torque change. To demonstrate that AARBF has
good control performance, its benchmark performance was first
tested. PID and Support Vector Machine with Radial Basis
Function (SVM-RBF) were selected as the two control algorithms
for comparison. The simulation environment of the tendon-drivenRA
was set inMATLAB, and the fitness values of the three algorithmswith
the amount of iterations were obtained as denoted in Figure 8.

Figure 8 shows the fitness values of three control algorithms at
different iterations. As denoted in Figure 8, as the amount of
iterations increased from 0 to 600, the fitness values of the three
control algorithms indicated a continuous decreasing trend.
Compared with PID and SVM-RBF, the AARBF algorithm
designed in this study only required 138 iterations to reach
steady state, and the fitness value of the AARBF algorithm was
0.05. PID and SVM-RBF required 275 and 226 iterations
respectively to reach steady state, indicating that AARBF had
faster convergence speed and better training performance. The
error accuracy and steady-state of different control algorithms
during the iteration process are shown in Figure 9.

The error accuracy in Figure 9 refers to the error between the
system output and the target trajectory, reflecting the system’s ability to
track the target position. In Figure 9, the controlled variable q was used
tomeasure the error accuracy. q represents the joint position of the RA,
and its error accuracy is evaluated by the error between the system
output and the target input qd. In addition, q is also the time response

FIGURE 8
Iterative fitness values for different control algorithms.

FIGURE 9
Error accuracy and steady state of different control algorithms. (A) Error variation under different control algorithms. (B) The variation of controlled
variable q with different control algorithms.
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to the step input of the target position. By comparing the time response
of the system output and the target input, the response performance
and error accuracy of different control algorithms can be evaluated.
Figures 9A, B show the error accuracy and stability of different control
algorithms. In Figure 9A, when the parameters of Epoch increased
from 0 to 400, the error accuracy of PID, SVM-RBF, and AARBF
would also continue to increase. The highest error accuracy of PID,
SVM-RBF, and AARBF was 0.86, 0.92, and 0.97, respectively.
Figure 9B shows the steady state of different control algorithms
under different iterations. Steady state is measured by how much
the output fluctuates after the system reaches a stable state. The steady
state of AARBF algorithm was 0.95 after reaching the stable state,
which was better than PID and SVM-RBF algorithm. To demonstrate
the convergence process of neural network weights, the loss function
variation curve was used to illustrate, as shown in Figure 10.

In Figure 10, the AARBF loss function curve showed a
significant decrease within 100 training iterations, a slow decrease
between 100 and 200 training iterations, and convergence at around

FIGURE 10
Variation of model loss function.

FIGURE 11
Simulation results of position tracking of the robotic arm under different control algorithms. (A) Simulation results of the position of joint 1 under PID
control. (B) Simulation results of the position of joint 1 under SVM-RBF control. (C) Simulation results of the position of joint 1 under AARBF control.
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300 training iterations. At this point, the loss function value was
0.24. The data showed that AARBF had a fast convergence speed, a
small loss function value, and excellent performance.

3.2 Simulation results of tendon driven
robotic arm control based on AARBF

After testing the benchmark performance of the three control
algorithms, the simulation control of a 3-joint 4-tendon RA was
studied using each of the three control algorithms. In the same
environment, simulation tests were conducted to obtain the position
tracking simulation outcomes of the RA joint 1 under three control
algorithms, as shown in Figure 11.

Figures 11A–C respectively show the simulation outcomes of the
position tracking of the RA joint 1 under different control
algorithms. From Figure 11A, the actual position tracking curve
under PID control almost did not coincide with the expected
position tracking curve, indicating that the control effect of this
control method differed significantly from the actual expected effect.
From Figure 11B, the actual position tracking curve under SVM-
RBF control partially overlapped with the expected position tracking

curve, and the fluctuation range of the actual position tracking curve
controlled by SVM-RBF was relatively small, indicating that the
control effect of SVM-RBF was better than PID. According to
Figure 11C, the expected position curve under AARBF control
overlapped with the actual position curve, indicating that AARBF
was able to complete the system’s control instructions and make the
motion trajectory of the RA meet expectations. Next, joint 2 was
tested to obtain the speed tracking simulation outcomes of the RA
joint 2, as shown in Figure 12.

Figures 12A–C showcase the speed tracking simulation outcomes
of the RA joint 2 under PID, SVM-RBF, and AARBF control,
respectively. Based on Figure 12, the speed tracking simulation
outcomes under PID control were the worst, with a significant
difference between the actual and the expected values. The speed
tracking simulation outcomes under AARBF control were the best,
with the actual value basically overlapping with the expected value.
The control effect of SVM-RBF was between the other two methods.
Next, joint 3 was tested to obtain the simulation outcomes of the
control torque of the RA joint 3, as shown in Figure 13.

Figures 13A–C showcase the simulation outcomes of the control
torque of the RA joint 3 under PID, SVM-RBF, and AARBF control,
respectively. The max torque variation values under PID, SVM-RBF,

FIGURE 12
Simulation results of velocity tracking of the robotic arm under different control algorithms. (A) Simulation results of the speed of joint 2 under PID
control. (B) Simulation results of the speed of joint 2 under SVM-RBF control. (C) Simulation results of the speed of joint 2 under AARBF control.
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and AARBF control could reach 24.1 Nm, 18.5 Nm, and 3.8 Nm,
respectively. Compared with PID and SVM-RBF, the joint torque
variation under AARBF control was smoother and the jitter was
smaller, indicating that this control scheme had the best effect.
Finally, test the system control error under three control schemes, as
shown in Figure 14.

Figure 14 shows the overall control error values under PID,
SVM-RBF, and AARBF control. As shown in Figure 14, the overall
control error fluctuation ranges of PID, SVM-RBF, and AARBF
were −0.012~0.012, −0.005~0.005, and −0.001~0.001, respectively.
The control strategy adopted in this study could achieve the
minimum control error.

Table 1 shows the performance of PID, SVM-RBF and AARBF
control schemes under different joint numbers. From Table 1,
AARBF control scheme showed high error accuracy and stability
under all joint numbers, with the highest error accuracy of 0.98 and
the highest steady state of 0.95. At the same time, the maximum
torque variation of the AARBF control scheme was also small, with a
minimum of 3.28 Nm.

4 Discussion

In this study, an AARBF network structure was designed by
combining affective computing models with RBF, and this structure
was used for precise tracking control of tendon-driven RAs. The
research outcomes indicated that the AARBF algorithm performed
well in multiple performance indicators, significantly better than
traditional PID control algorithms and SVM-RBF algorithms.

FIGURE 13
Torque of mechanical arm under different control algorithm simulation. (A) Simulation results of control torque of joint 3 under PID control. (B)
Simulation results of control torque of joint 3 under SVM-RBF control. (C) Simulation results of control torque of joint 3 under AARBF control.

FIGURE 14
Time response results of different algorithm control errors.
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Specifically, the fitness value of AARBF algorithm in benchmark
performance testing quickly reached 0.05, with 138 iterations, far
lower than the iterations of PID and SVM-RBF, demonstrating its
excellent convergence speed and high-precision control ability. In
addition, the AARBF algorithm performed excellently in error
accuracy. As shown in Figures 10, 11, the simulation outcomes of
the joint position and velocity tracking of the RA under AARBF
control perfectly coincided with the target curve, with almost no
observable errors. However, the curves under PID and SVM-RBF
control indicated significant deviations. This result highlighted the
powerful ability of the AARBF algorithm in handling the nonlinear
dynamics of tendon-driven RAs. In steady state testing, the AARBF
algorithm also demonstrated its advantages. As shown in Figure 12,
the tendon-driven RA using the AARBF algorithm maintained a
relatively low torque change in the dynamic environment, with a
maximum torque change of only 3.8 Nm, while the PID and SVM-
RBF algorithms achieved torque changes of 24.1 Nm and 18.5 Nm,
respectively. This indicated that AARBF could significantly reduce
system jitter, thereby improving the overall stability and reliability of
the system. Finally, the overall control error fluctuation range of the
AARBF algorithm was extremely small, ranging from −0.001 to 0.001,
which wasmuch better than the control error fluctuation range of PID
(−0.012 to 0.012) and SVM-RBF (−0.005 to 0.005), further verifying
its superior performance in practical applications. In summary, the
AARBF algorithm has significant advantages in tracking control of
tendon driven RAs, especially in terms of error accuracy, stability, and
adaptability to complex dynamic environments.

5 Conclusion

The research outcomes indicated that compared to PID and
SVM-RBF, AARBF could not only converge to a stable state faster,
but also significantly improved error accuracy and stability. Its
amount of iterations to reach a stable state was 138, and the
highest error accuracy and stability were 0.97 and 0.95,
respectively. In the simulation experiment, the position tracking
curve and speed tracking curve under AARBF control coincided
with the expected curve, while the fluctuation amplitude of torque
simulation was the smallest, and the maximum value of torque
change was only 3.8 Nm. Ultimately, the overall control error within

the range of −0.001~0.001 could be achieved. In summary, AARBF
has good performance in tendon driven RA control problems, but
there are still some shortcomings in this study. Future work will
focus on exploring the performance of composite control strategies
in RA control problems, and exploring the potential of AARBF in
different RA application scenarios by optimizing model parameters.
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TABLE 1 Send delay and transmission delay for different models in four networks.

Control scheme Number of joints Error accuracy Steady state Maximum torque variation/Nm

PID 1 0.86 0.84 20.12

SVM-RBF 1 0.91 0.88 18.56

AARBF 1 0.98 0.95 3.28

PID 2 0.83 0.82 21.94

SVM-RBF 2 0.90 0.89 19.62

AARBF 2 0.96 0.94 4.01

PID 3 0.79 0.78 25.47

SVM-RBF 3 0.81 0.85 21.39

AARBF 3 0.96 0.95 4.24
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