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Maintenance is crucial for ensuring equipment reliability and minimizing
downtime while managing associated costs. This study investigates a data-
driven approach to predicting machine faults using Response Surface
Methodology (RSM) and Adaptive Neuro-Fuzzy Inference System (ANFIS). RSM
was employed to develop a mathematical model to analyze how operational
parameters such as pressure, voltage, current, vibration, and temperature affect
fault occurrence. Data were collected at three levels for each parameter using a
central composite design. Themodel identified that faults peaked at a pressure of
28.38 N/m2, an operating voltage of 431.77 V, current consumption of 12.54 A,
machine vibration of 47.17 Hz, and temperature of 25°C, with a maximum of
25 faults observed. Conversely, the lowest fault detection occurred at a pressure
of 29.42 N/m2, an operating voltage of 441.04 V, current consumption of 12.04 A,
machine vibration of 49.46 Hz, and temperature of 46.5°C. A strong correlation
was found between these parameters and machine faults, with the model
achieving high accuracy (R2 = 98.22%) and statistical significance
(p-value <0.05), demonstrating its reliability in predicting faults. The study also
compared RSM with ANFIS for fault detection and process optimization in the
beverage industry. While RSM effectively optimized parameter relationships,
ANFIS, with its adaptive learning capabilities, provided superior fault prediction
accuracy. This comparative analysis highlighted the strengths of both methods
and suggested that integrating them could enhance predictive maintenance
strategies. The findings offer valuable insights for industry practitioners,
recommending a combined approach to improve fault detection, optimize
production processes, and enhance operational efficiency.
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1 Introduction

The manufacturing industry is essential on a global scale for
both developing and developed nations. For developing countries, it
provides a pathway from subsistence agriculture to higher income
and better living conditions. In developed countries, it remains a
critical driver of innovation and competitiveness, significantly
contributing to R&D, exports, and productivity. Manufacturing
production, as measured by gross value added, continues to
increase, with advanced nations growing at about 2.7 percent
annually and major emerging economies expanding at
7.4 percent (Mckinsey Global Institute).

The relevance of the manufacturing sector cannot be
overemphasized; it makes for sustainable growth and
development of any economy. The manufacturing sector matters
in various ways and the long-term development prospects of Africa
might be at risk if more robust growth of these sectors were not being
achieved (Okokpujie et al., 2024). The manufacturing sector which
forms part of the industrial sector functions to turn raw materials
into finished consumer goods; intermediate goods or producer
goods. It provides employment opportunities, boosts agriculture,
diversifies the economy, and increases foreign exchange in an
economy. In the modern economy, it does not only act as a
catalyst but also serves many dynamic benefits required for
economic transformation (Amassoma, 2011). Sequel to the
importance of the manufacturing industry and to overcome its
challenges, every nation is striving hard to develop the sector. In
this era of technological advancement, manufacturing sector
development implies the application of modern technology,
machinery, and equipment for the production of goods and
services. Modern manufacturing processes are therefore
associated with high technological innovations in recent times.
Thus, the generic machines and types of equipment used in
production require some form of maintenance to function
properly for a longer time horizon (Paolanti et al., 2018; Lel, 2020).

Maintenance practices in the manufacturing industry may be
classified into Corrective Maintenance, Preventive Maintenance,
Condition-based Maintenance (CBM), and Predictive
Maintenance (Yoo, et al., 2019; Susto et al., 2015a; Ahmad and
Kamaruddin, 2012). Predictive maintenance has lately been
employed in a variety of fields of study as one of the most
promising tactics among other maintenance strategies that can
attain features like a decrease in equipment failure rates,
equipment condition enhancement extension in equipment life,
enhanced diagnosis of imminent failures, enabler of pre-failure
interventions and minimization of maintenance costs (Carvalho,
et al., 2019; Kumar, et al., 2019; Yao et al., 2022).

Machine learning-based predictive maintenance uses
information about the visible results of its actions to translate
them into planning (Jeff and Sandra, 2004). These allow the
agent to operate with intention in its environment. It is also one
of the key Industry 4.0 breakthroughs that significantly improve
machine availability by reducing machine failure and enabling just-
in-time maintenance (Zhai et al., 2021). The goal of predictive
maintenance is to capture, not only process data and parameters,
but also physical health elements of the equipment, machine, or
component such as pressure, vibration, temperature, viscosity,
acoustics, flow rate data, and others. The data gathered is now

frequently used for defect detection, early fault detection, equipment
health evaluation, and forecasting future equipment status
(Amruthnath and Gupta, 2018). Machine learning is used in
predictive maintenance to learn from historical data and assess
failure patterns using live data. Predictive Maintenance with
Machine Learning aims for best resource use and predicts
failures before they happen because conservative practices waste
resources. As a result, Predictive Maintenance tries to establish a
happy medium between the two extremes (Bousdekis et al., 2021).

Manufacturing equipment is constantly fitted with numerous
monitoring sensors, whose data allow a thorough picture of the
equipment’s condition to be derived. Predictive maintenance
methods employ this information to predict the occurrence of
potential faults in advance, thus lowering production and
maintenance costs significantly. To detect patterns in the data
that are indicative of potential defects, data-driven predictive
maintenance requires the use of machine learning to sense data
collection. Manufacturing nowadays uses data-driven operations
across the business value chains to grow several models in
manufacturing, out of which emerged smart manufacturing,
failure prediction, and maintenance optimization (Tiago
et al., 2022).

Arising from the above contentious, the pertinent question is
“What are the available ML-based predictive maintenance models in
the manufacturing model of manufacturing industry? To answer the
question, the current study seeks to provide the recent
advancements of machine learning techniques applied to
predictive maintenance models in the manufacturing industry by
using an ML-based predictive maintenance model to determine its
impact on the production process and maintenance of a selected
manufacturing company in Ogun State.

There are two major categories of machine learning: supervised
and unsupervised learning. In supervised learning, the inputs and
outputs are known and an algorithm is designed to figure out how to
get to the desired results. The algorithm examines the data, looks for
trends, and learns from its findings. In supervised machine learning,
labelled examples are used to train algorithms. The algorithm is
guided by the training data set to get the desired result. This process
is repeated until the algorithm reaches a high degree of precision
(Wakefield, 2018). The supervisor may be a person who checks the
output for accuracy. Large data sets are necessary for labelled
training data sets for greater accuracy of findings. Regression,
classification, and forecasting are three types of supervised
machine learning (Nawrocki et al., 2018).

In regression, the machine learning algorithm calculates the link
and interdependence between several variables. It is beneficial to
predict the remaining real-time life of the equipment in real-time
(Zhicai et al., 2014). In classification, the machine learning system
organizes input data into two categories: normal system and
abnormal system. In forecasting, future forecasts are based on
historical and current data and help analyze trends. In
Unsupervised learning, the algorithm looks for patterns in the
data and analyses it to discover correlations and linkages. It
organizes the data in some way so that its structure can be
described. This could imply putting the data into clusters or
arranging it more logically. As it evaluates additional data, its
ability to make decisions based on that data is improved and
refined (Wakefield, 2018).
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This section discusses the use of the Response Surface
Methodology (RSM) and ANFIS model (as a means for
comparison of different techniques) to analyze the impact of
operating parameters on fault occurrence in manufacturing
systems, aiming to mitigate operational disruptions and increase
costs (Kumar et al., 2022; Kumar et al., 2024). RSM is a strong
statistical and mathematical technique used to model and optimize
complex processes. It has been successfully applied in the
manufacturing industries to analyze the impact of critical
operating parameters on fault occurrence (Meshalkin et al., 2017;
Onokwai et al., 2023a; Olusanya et al., 2024). By creating a
mathematical model, RSM enables researchers to investigate the
relationships between multiple variables and their impact on fault
frequency (Olusanya et al., 2024; Okokpujie et al., 2023). The main
goal of applying RSM in this context is to identify the best operating
conditions that minimize the likelihood of faults occurring (Efetobor
et al., 2024). By carefully planning experiments, RSM allows the
evaluation of both the individual and interactive effects of various
factors, including pressure, voltage, current, vibration, and
temperature (Mohammadi et al., 2024). This approach lessens the
need for extensive experimental trials and provides valuable insights
into the operational dynamics that contribute to system faults Lin
et al. (2022). The Adaptive Neuro-Fuzzy Inference System (ANFIS)
is a machine learning algorithm that integrates neural networks and
fuzzy systems, using Sugeno-type rules and neural network
functionalities (Demirok et al., 2023; Kumar et al., 2019).

Researchers have worked on different approaches to carry out
machine maintenance (Kumar and Gulati, 2017; Gangwar et al.,
2024), Ouda et al. (2021) developed a framework for machine failure
prediction using sensor data and optimizing predictive/corrective
maintenance schedules. The developed framework focused on two
phases: the machine learning phase and mathematical modelling.
The machine learning phase includes data selection and
reprocessing, selection of model, training of model, and
validation. The second phase was the mathematical model which
was developed to reduce the maintenance cost of the machine. The
machine learning models used to calculate the probability of failure
were logistic regression, gradient boosting classifier, and random
forest classifier. These ML models were compared and the Gradient
Boosting (GB) classifier had the highest predicting efficiency.

Wotawa et al. (2021) made use of three diagnosis methods -
modeling, simulation, and machine learning diagnosis - using a
developed simplified DC e-motor model with the capability of fault
injection to detect unexpected behavior by performing root cause
analysis and showed the efficiency of the diagnosis methods to the
model’s behavior. Benabbou et al. (2019) proposed a predictive
maintenance framework based on ML and optimization approaches
for multi-component systems in renewable power plants. Four key
steps were highlighted: Data acquisition and processing, remaining
useful life (RUL) prediction, failure detection, and maintenance
policy optimization. These steps were used to break complex
systems into their component levels to understand interactions
between them and for fault detection and prediction.

Janssens et al. (2019) suggested a multi-sensor system that
employs vibration measures as well as infrared thermal imaging
data to automatically condition and identify faults in spinning
equipment. Model-driven features are produced from vibration
measurements, while data-driven features are derived from

infrared thermal imaging data, using feature fusion. The retrieved
characteristics are then merged and sent into (meaning of RF?) (RF)
classifiers for fault identification. They showed in the study that by
combining these two forms of sensor data, they were able to measure
a wider range of conditions/faults and combinations than they could
with solo sensor streams.

Lacaille and Rabenoro, (2018) designed a learning algorithm
that could automatically detect and evaluate multi-dimensional
datasets from a turbofan engine. The model performed a large
number of pre-treatments and statistical tests on the data to find
good combinations of tests with a pre-identification rate of
more than 85%.

Huuhtanen and Jung (2018) developed a study on deep learning
for predictive maintenance of photovoltaic panels. A convolutional
neural network was used to monitor the operation of photovoltaic
panels. They calculated the photovoltaic panel’s regular electrical
power curve based on the power curves of surrounding panels. A
large divergence between the projected and actual power curves can
indicate a faulty panel. They demonstrated that the suggested
method could properly estimate the power curve of a functional
panel through numerical trials, thus outperforming previous
methods based on simple interpolation filters.

Quiroz et al. (2018) developed a new technique to fix a broken
rotor bar in a line start-permanent magnet synchronous motor (LS-
PMSM) using random forest. A healthymotor and a damagedmotor
with a broken rotor bar fault provided the transient current signal
during motor startup. The model was trained with features taken
from different statistical time-domain features, and these features
were utilized to determine whether the motor was in a
malfunctioning or normal state. The relevance of features was
taken into account when selecting features from the RF, resulting
in a small amount of features. The results demonstrate that RF
correctly classifies motor disorders as safe or deficient with an
accuracy of 86.7% when all features are used and 85.3% when
only the mean index and impulsion features are used. The
proposed model outperformed classic machine learning
algorithms such as LR, naive Bayes classifier, and decision tree
(DT). The RF consistently outperformed these algorithms with
higher accuracy than the other algorithms. The proposed
methodology can be used in the industry for electronic tracking
and fault detection of LS-PMSM motors, and the findings can help
factories design proactive maintenance programs.

Yan and Zhou (2017) proposed a predictive model based on
Term Frequency-Inverse Document Frequency (TF-IDF) and RF
that can predict high-sensitivity faults in advance by analyzing
historical data from aircraft maintenance systems, and preventive
maintenance can be performed based on the model’s prediction
performance. In the previous successive flights, TF-IDF was used to
extract features from raw data. The proposed RF model took into
account several priorities when identifying the problems. Because
the dataset is extremely skewed, the ROC curve was used as a
performance metric. In comparison, the proposed methodology
achieved the highest true positive rating of 100% and the lowest
false positive rate of 0.13 percent. It also had a true positive rate of
66.67 percent and a false positive rate of 0.13 percent on the
testing dataset.

Munirathinam and Ramadoss (2014) used machine learning
approaches to construct a defect detection model that was accurate.
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Statistical analysis such as chi-square and Principal Component
Analysis (PCA), are used to choose characteristics. Overfitting, more
computational power, and worse prediction accuracy have all been
addressed using techniques such as subject matter expert knowledge,
correlation analysis, and variable component analysis. The main

disadvantage is that oversampling (duplicating existing instances)
leads to overfitting of the model. Deep learning is required to
enhance the chance of predicting unusual classes. Deep belief
networks are a sort of deep learning technology that may be used
for supervised as well as unsupervised learning. Depending on the

TABLE 1 Experimental design data.

Factor A Factor B Factor C Factor D Factor E Response

Run
Order

Pt
Type

Blocks Main
Pressure
(N/m2)

Operating
Voltage (V)

Current
Consumption
(A)

Machine
Vibration
(Hz)

Temperature
(°C)

Faults
Detection

1 −1 1 28.38 431.77 12.54 49.46 47.17

2 1 1 29.42 422.5 13.04 47.44 47.84

3 −1 1 28.38 431.77 12.54 48.45 46.5

4 1 1 27.34 441.04 13.04 47.44 47.84

5 0 1 28.38 431.77 12.54 48.45 47.17

6 1 1 27.34 441.04 13.04 49.46 46.5

7 1 1 27.34 422.5 12.04 49.46 46.5

8 −1 1 28.38 431.77 12.04 48.45 47.17

9 1 1 27.34 441.04 12.04 49.46 47.84

10 1 1 29.42 441.04 13.04 49.46 47.84

11 1 1 29.42 422.5 13.04 49.46 46.5

12 1 1 29.42 422.5 12.04 49.46 47.84

13 −1 1 27.34 431.77 12.54 48.45 47.17

14 1 1 29.42 422.5 12.04 47.44 46.5

15 1 1 29.42 441.04 12.04 47.44 47.84

16 1 1 27.34 422.5 13.04 47.44 46.5

17 1 1 27.34 441.04 12.04 47.44 46.5

18 1 1 27.34 422.5 12.04 47.44 47.84

19 1 1 27.34 422.5 13.04 49.46 47.84

20 −1 1 28.38 431.77 12.54 47.44 47.17

21 0 1 28.38 431.77 12.54 48.45 47.17

22 1 1 29.42 441.04 13.04 47.44 46.5

23 −1 1 28.38 431.77 12.54 48.45 47.84

24 −1 1 29.42 431.77 12.54 48.45 47.17

25 −1 1 28.38 422.5 12.54 48.45 47.17

26 −1 1 28.38 441.04 12.54 48.45 47.17

27 1 1 29.42 441.04 12.04 49.46 46.5

28 0 1 28.38 431.77 12.54 48.45 47.17

29 0 1 28.38 431.77 12.54 48.45 47.17

30 0 1 28.38 431.77 12.54 48.45 47.17

31 −1 1 28.38 431.77 13.04 48.45 47.17

32 0 1 28.38 431.77 12.54 48.45 47.17
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dataset used, the number of nodes and layers in a deep belief
network varies.

This research applies machine learning-based predictive
maintenance (PdM) models to Nigeria, an underexplored region
in existing literature. Focusing on this specific context provides

valuable insights for similar manufacturing environments in
developing economies (Kumar et al., 2020; Sharma, et al., 2024).
The innovative integration of Response SurfaceMethodology (RSM)
with the Adaptive Neuro-Fuzzy Inference System (ANFIS) advances
the field by enhancing fault detection in machining and optimizing

TABLE 2 Experimental design matrix and corresponding faults.

Factor A Factor B Factor C Factor D Factor E Response

RunOrder PtType Blocks Main
Pressure
(N/m2)

Operating
Voltage (V)

Current
Consumption
(A)

Machine
Vibration
(Hz)

Temperature
(°C)

Faults
Detection

1 −1 1 28.38 431.77 12.54 49.46 47.17 22

2 1 1 29.42 422.5 13.04 47.44 47.84 20

3 −1 1 28.38 431.77 12.54 48.45 46.5 18

4 1 1 27.34 441.04 13.04 47.44 47.84 24

5 0 1 28.38 431.77 12.54 48.45 47.17 23

6 1 1 27.34 441.04 13.04 49.46 46.5 23

7 1 1 27.34 422.5 12.04 49.46 46.5 16

8 −1 1 28.38 431.77 12.04 48.45 47.17 23

9 1 1 27.34 441.04 12.04 49.46 47.84 15

10 1 1 29.42 441.04 13.04 49.46 47.84 14

11 1 1 29.42 422.5 13.04 49.46 46.5 13

12 1 1 29.42 422.5 12.04 49.46 47.84 25

13 −1 1 27.34 431.77 12.54 48.45 47.17 25

14 1 1 29.42 422.5 12.04 47.44 46.5 14

15 1 1 29.42 441.04 12.04 47.44 47.84 15

16 1 1 27.34 422.5 13.04 47.44 46.5 24

17 1 1 27.34 441.04 12.04 47.44 46.5 22

18 1 1 27.34 422.5 12.04 47.44 47.84 21

19 1 1 27.34 422.5 13.04 49.46 47.84 20

20 −1 1 28.38 431.77 12.54 47.44 47.17 25

21 0 1 28.38 431.77 12.54 48.45 47.17 23

22 1 1 29.42 441.04 13.04 47.44 46.5 23

23 −1 1 28.38 431.77 12.54 48.45 47.84 17

24 −1 1 29.42 431.77 12.54 48.45 47.17 22

25 −1 1 28.38 422.5 12.54 48.45 47.17 17

26 −1 1 28.38 441.04 12.54 48.45 47.17 19

27 1 1 29.42 441.04 12.04 49.46 46.5 11

28 0 1 28.38 431.77 12.54 48.45 47.17 23

29 0 1 28.38 431.77 12.54 48.45 47.17 23

30 0 1 28.38 431.77 12.54 48.45 47.17 23

31 −1 1 28.38 431.77 13.04 48.45 47.17 25

32 0 1 28.38 431.77 12.54 48.45 47.17 23

Frontiers in Mechanical Engineering frontiersin.org05

Onokwai et al. 10.3389/fmech.2024.1428717

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1428717


maintenance schedules more effectively than traditional methods
(Effiong et al., 2024; Onokwai et al., 2023b). Through a comparative
analysis of various machine learning techniques, the study identifies
the most effective models for reducing downtime and maintenance
costs, offering practical solutions that can be immediately
implemented in the industry (Kumar and Gulati, 2018; Izonin
et al., 2022). This research contributes to both academia and
industry by providing a replicable framework that could inspire
further development, particularly in developing economies where
manufacturing is vital for growth (Lin et al., 2022; Mohammadi
et al., 2024).

2 Methodology

This section discusses maintenance data acquisition, data
processing, and presentation of methodology for extracting
important machine parameters needed for the study. Machine
data were generated from various operating sensors on the
equipment. The acquired data was used to develop a
mathematical model. Each stage in these developed models is
critical and provides significant information about the actual time

to start a maintenance operation using machine historical data. The
data was used as the input to the model while the output was
maintenance decision based on machine fault occurrence.

2.1 Description of the case study

The case study is based on a leading food and beverage
manufacturing company in Nigeria, selected due to its
continuous production activities and data accessibility. The
choice of this company enhances the validity of the data, as it
operates with consistent production processes that provide a stable
environment for data collection and analysis. The company’s
production operations are managed by an engineering
department led by the Factory Engineer, who oversees a
comprehensive range of maintenance functions including
manufacturing, boilers, utility services, ammonia refrigeration,
compressed air, electrical services, and building maintenance.
This role also involves providing coaching and skill development
in loss elimination, risk management, and life cycle asset
management, which supports the maintenance system’s
effectiveness. The thorough management and oversight by the

FIGURE 1
Flowchart depicting the steps involved in developing an ANFIS Model for Machine Faults Prediction.
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Factory Engineer ensure that data related to maintenance and
operations are accurate and reflective of real-world conditions.

The Factory Engineer’s activities are executed through plant
engineers, each responsible for various areas within the factory.
These plant engineers conduct systematic reviews of process lines
and utilities, which are critical for maintaining personnel and
machinery safety, environmental protection, and regulatory
compliance. This structured approach to monitoring and
reviewing processes reinforces the reliability of the data, as it
ensures that all relevant factors affecting equipment performance
are consistently evaluated. Maintenance supervisors perform daily
monitoring of equipment trends, further validating the data by
providing ongoing insights into equipment performance and
identifying potential issues before they lead to stoppages. This
regular monitoring helps ensure that the data collected is current
and accurately represents the operational status of the equipment.

The company’s use of advanced predictive maintenance
technologies such as infrared, vibration analysis, thermography,
oil analysis, and motor circuit analysis adds to the authenticity of
the data. These technologies are employed to monitor equipment
conditions and prevent machine failures, providing a robust basis
for data collection and analysis. The use of these state-of-the-art
methods ensures that the data is precise and reflective of the actual
equipment performance. Overall, the combination of continuous
production activities, rigorous maintenance management,
systematic process reviews, daily equipment monitoring, and
advanced predictive maintenance technologies supports the
validity and authenticity of the data considered in this study.

2.2 Research design of a mathematical
model for predictive maintenance

Generation of experimental design using Response Surface
Method (RSM) based on the central composite design (CCD) via
the aid of Design-Expert version 13.0 statistical software. RSM is an
explicit mathematical modelling tool for fitting the operational
variables of the independent variable (X) and dependent variables
(Y) in the modelling environment. The CDD was used because it
reduces the experimental runs when more than three (3) factors are
involved in the prediction of response (Onokwai et al., 2022;
Onokwai et al., 2023c; Gangwar et al., 2024). Factors such as
main pressure (N/m2), operating voltage (V), current
consumption (A), machine vibration (Hz), and temperature (°C)
at 3 levels of experimental runs were utilized to generate the
experimental runs as depicted in Table 1.

The results obtained from the experimental run, i.e., the factors
(main pressure (N/m2), operating voltage (V), current consumption
(A), machine vibration (Hz), and temperature (°C)) were then
inputted into the machine in the field to generate the response
(faults). These factors and the response were inputted into the
Design-Expert statistical software version 13.0 to generate the
mathematical relationship between the factors and the response
as depicted in Equation 1. A mathematical expression (Equation 1)
was derived to depict the relationship between these operating
factors and the response variable, faults. Subsequently, the
constant, linear, quadratic, and interactive coefficients
were computed.

FIGURE 2
Effect of individual parameters (A) Main pressure (B) Operating voltage (C) Current consumption (D) Machine vibration (E) Temperature on
machine faults.
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2.3 Research design of an ANFIS model for
predictive maintenance

Developing a model to predict faults using the Adaptive Neuro-
Fuzzy Inference System (ANFIS) involves combining the strengths
of neural networks and fuzzy logic. ANFIS is particularly effective
for problems with complex and nonlinear relationships, such as fault

prediction in various systems. The following outlines the systematic
approach employed in this research as shown in Figure 1.

2.3.1 Data collection and preprocessing
The foundation of the ANFIS model is built on carefully curated

data. Historical data was systematically gathered, focusing on critical
parameters such as main pressure (N/m2), operating voltage (V),
current consumption (A), machine vibration (Hz), and temperature
(°C). This data, derived from experimental runs, was processed using
Visual Studio Code, running on a system with an Intel® Core™ i7-
8650U CPU at 1.90 GHz, 16 GB RAM, and a 64-bit operating system
with Windows 11. The model was developed using a suite of Python

TABLE 3 Analysis of variance (ANOVA) for fault generation.

Source Sum of squares df Mean square F-value p-value

Model 504.10 20 25.20 30.40 <0.0001 significant

A- Main Pressure 60.50 1 60.50 72.96 <0.0001 significant

B- Operating Voltage 0.8889 1 0.8889 1.07 0.3227 Not significant

C- Current Consumption 32.00 1 32.00 38.59 <0.0001 significant

D- Machine Vibration 46.72 1 46.72 56.35 <0.0001 significant

E− Temperature 2.72 1 2.72 3.28 0.0974 Not significant

AB 9.00 1 9.00 10.85 0.0071 significant

AC 9.00 1 9.00 10.85 0.0071 significant

AD 4.00 1 4.00 4.82 0.0504 significant

AE 20.25 1 20.25 24.42 0.0004 significant

BC 25.00 1 25.00 30.15 0.0002 significant

BD 16.00 1 16.00 19.30 0.0011 significant

BE 56.25 1 56.25 67.84 <0.0001 significant

CD 16.00 1 16.00 19.30 0.0011 significant

CE 20.25 1 20.25 24.42 0.0004 significant

DE 12.25 1 12.25 14.77 0.0027 significant

A2 5.16 1 5.16 6.22 0.0298 significant

B2 40.40 1 40.40 48.72 <0.0001 significant

C2 9.34 1 9.34 11.26 0.0064 significant

D2 5.16 1 5.16 6.22 0.0298 significant

E2 50.98 1 50.98 61.49 <0.0001 significant

Residual 9.35 11 0.8292

Lack of Fit 9.12 6 1.52 Not significant

Pure Error 0.2300 5 0.2300

Cor Total 513.22 31

Std Dev. = 0.9106 R2 = 0.9822

Mean = 20.34 Adjusted R2 = 0.9499

C.V.% = 4.48 Predicted R2 = 0.8252

PRESS = 562.93 Adeq. Precision = 19.5610
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libraries, including anfis, pandas, numpy, sklearn. model_selection,
sklearn. linear_model, sklearn. metrics, and membership (Pedregosa
et al., 2011; Kumar et al., 2024). The data was meticulously cleaned
to address any anomalies, outliers, or missing values, ensuring the
reliability and integrity of the dataset. Additionally, the data was
normalized to bring all input variables to a similar scale, which is
crucial for enhancing the model’s performance and accuracy (Izonin
et al., 2022; Kumar et al., 2020; Kumar and Gulati, 2018).

2.3.2 Defining membership functions
The next step involved defining Gaussian membership functions

for each input variable. These functions capture the degree of
belonging of specific input values to corresponding fuzzy sets,
forming the basis for the fuzzy logic component of the ANFIS
model. By accurately representing the input variables, the
membership functions facilitate the creation of a robust rule base,
which maps the relationships between these variables and the
desired output (Sharma et al., 2024).

2.3.3 Model training and testing
To develop and validate the ANFIS model, the dataset was split

into training and testing subsets, with 80% of the data allocated for
training and 20% for testing. The training process employed
optimization algorithms, such as the least-squares method or
backpropagation, to adjust the model’s parameters iteratively.
This approach minimized the error between predicted outputs

and actual observations, thereby enhancing the model’s predictive
capability and accuracy (Kumar et al., 2024).

2.3.4 Model evaluation
The performance of the trained ANFIS model was rigorously

evaluated using statistical metrics, including Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE). These metrics
provided quantitative measures of the model’s prediction accuracy.
Additionally, the model’s robustness was validated by testing it on
an independent dataset that was not involved in the training process.
This evaluation step ensured that the model generalizes well to new
data, confirming its effectiveness and reliability in real-world
predictive maintenance scenarios (Zhou et al., 2021; Tadesse
et al., 2024).

2.4 Evaluation and comparison of the
prediction accuracy of the model

The mathematical model was then used in predicting the
response to reduce the bottleneck of generating response via
experimental run. Evaluation of the prediction accuracy of the
mathematical model was assessed through various criteria using
analysis of variance (ANOVA), including probability (p-value), lack-
of-fit, Fisher (F) value, coefficient of variation (CV), coefficient of
determination (R2), and the comparison between the adjusted and

FIGURE 3
3D Surface response plots for the combined effects of operating voltage (V) and vibration (Hz) on fault at constant pressure (28.38 N/m2), current
consumption (12.54 A), and temperature.
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predicted R2 values (Okokpujie et al., 2023). This rigorous evaluation
ensures the robustness and reliability of the mathematical model.

3 Results and discussion

3.1 Experimental design matrix for
fault detection

The research uniquely integrates various operational factors at
different levels to understand their collective impact on machine
faults (Yao et al., 2022). The detailed design matrix and the
associated experimental runs (as shown in Table 2) offer a
thorough investigation of fault conditions, which is more
exhaustive compared to similar studies that may only focus on a
few parameters or their individual effects Lin et al. (2022).

Table 2 depicts the experimental design matrix and the
corresponding faults generated at different operational factors
such as main pressure (N/m2), operating voltage (V), current
consumption (A), machine vibration (Hz), and temperature (°C).
These factors were utilized at three levels of experimental runs. The
maximum faults of 25 were achieved at pressure, operating voltage,
current consumption, machine vibration, and temperature of
28.38 N/m2, 431.77 V, 12.54 A, 47.17 Hz, and 25°C, respectively.
The lowest fault detection was attained at a pressure of 29.42 N/m2,
an operating voltage of 441.04 V, a current consumption of 12.04 A,

a machine vibration of 49.46, and a temperature of 46.5°C. High
voltage levels can lead to increased current flow, which may stress
the electrical components of the machine, leading to overheating,
insulation breakdown, and eventual faults (Bindi et al., 2023).
Conversely, low voltage levels caused insufficient power supply,
resulting in irregular machine operation, reduced efficiency, and
potential faults due to inadequate performance (Figures 2A, B).

Results showed that excessive vibration led to misalignment,
worn-out bearings, or unbalanced components within the machine.
These issues could escalate into faults such as mechanical failures,
structural damage, and decreased operational lifespan (Girdhar and
Scheffer, 2004). The continuous increase in vibration also enhanced
wear and tear on moving parts, causing premature failure of critical
components and contributing to overall machine unreliability
(Figure 2C). High pressure within a machine’s operating
environment increased the stress on mechanical components,
seals, and connections (Figure 2D). This stress resulted in fatigue,
deformation, and ultimately, component failure or leaks, while a low
pressure negatively influenced the lubrication systems, cooling
mechanisms, and overall system performance, leading to
increased friction, overheating, and potential faults (Bloch and
Geitner, 1999). Continuous increases in temperatures accelerated
the wear and tear on machine parts, reduced lubrication
effectiveness, and degraded materials, hence; leading to increased
friction, thermal expansion, and potential failures, while very low
temperatures caused fluid viscosity issues, reduced system efficiency,

FIGURE 4
3D Surface response plots for the combined effects of operating voltage (V) and temperature (℃) on fault at constant pressure (28.38 N/m2), current
consumption (12.54 A), and vibration (48.45 Hz).
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and increased risk of condensation or freezing (Figure 2E), which
may affect mechanical and electrical components and lead to faults
(Ouyang et al., 2022).

3.2 The statistical equation for
fault detection

The result of the mathematical model that was used to predict
the faults is shown in Equation 2, while Table 3, depicts the summary
of the outcome faults obtained for both the mathematical model.
The Analysis of Variance (ANOVA) assesses the influence of
individual and interactive parameters on fault generation and was
conducted to validate both the mathematical model accuracy in
predicting faults. The F-value shows the relationship between mean
square values in the developed regression model and the error term.
Onokwai et al. (2023c) found the p-value from the regression
analysis to be acceptable and reliable. A higher F-value indicates
a more reliable, responsive, and replicable regression model.
Okokpujie et al. et al. (2023) suggest that the p-value should be
significantly low for a reliable model. In the study, the regression
model had a high F-value (30.40) with a p-value below 0.05 for all
investigated faults, indicating significance. All significant model
terms (A, C, D, A2, B2, C2, D2, E2, AB, AC, AE, BC, BD, BE, CD,
CE, and DE) positively influenced fault generation, as seen in
Table 3. The lack of Fit (0.054) demonstrates the model’s ability

to reproduce and predict experimental data. The coefficient of
variation (CV%) represents overall experimental error as a
percentage of the mean, with a low CV% (less than 10%)
indicating good model reproducibility. The study shows a CV%
for faults yield of 4.48%, indicating good reproducibility and
reliability. The R2 value for fault generation was 0.9822, close to
1, indicating a goodmodel fit. The adjusted R2, accounting for model
complexity, was 0.8252, with a predicted R2 of 0.9499, showing
reasonable agreement. Overall, the study’s findings support the
model’s responsiveness, reliability, and ability to replicate
experimental data.

Overall, the study’s findings validate the model’s responsiveness,
reliability, and ability to replicate experimental data. The statistical
robustness of these results is emphasized by the high F-value, low
p-value (indicating significance), a close-to-one R2 value of 0.9822,
and a low CV% of 4.48%, all of which affirm the model’s reliability
and reproducibility (Susto et al., 2015b). This level of statistical
validation significantly enhances the credibility and novelty of
the research.

Faults � 22.46 − 1.83A − 0.222B + 1.33C − 1.61D + 0.39E

−0.75AB + 1.45A2 − 4.05B2 + 1.95C2 + 1.45D2 − 4.55E2

−0.75AC + 0.5AD + 1.12AE + 1.25BC − 1.00BD

−1.88BE − 1.00CD − 1.13CE + 0.88DE
(2)

FIGURE 5
3D Surface response plots for the combined effects of current consumption (A) and vibration (Hz) on fault at constant pressure (28.38 N/m2),
operating voltage (431.77 V), and temperature (47.17°C).
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Where A, B, C, D, and E represent the coded values of Pressure,
Operating Voltage, Current, Machine Vibration, and Temperature.
In the mathematical model, a positive (+) sign signifies a synergistic
effect, while a negative (−) sign indicates antagonistic effects on
generated faults.

3.3 Influence of individual and interactive
factors on fault

Figure 3 illustrates the 3D surface plot for fault occurrence with
parameters B (operating voltage) and D (machine vibration) plotted
against each other, while holding A (main pressure at 28.38 N), C
(current consumption at 12.54 A), and E (temperature at 47.17°C)
constant. The plot demonstrates how B and D influence fault
generation under these fixed conditions. The maximum observed
fault value of 23.5 was reached at the given constant settings of A, C,
and E. Notably, as D (vibration) slightly increases, B (voltage) also
rises from 425 to 430 V, leading to an increase in the fault level.
However, an increase in B beyond 430 V causes the fault to decrease.
This suggests that machine performance is directly influenced by
variations in operating voltage, which may affect motor speed,
torque, and power output, subsequently increasing vibration
levels up to a certain threshold before the fault level declines.
Figure 4 presents the 3D response surface plot for fault
occurrence, with B (operating voltage) and E (temperature) as

the variables, while A (main pressure at 28.38 N), C (current
consumption at 12.54 A), and D (vibration at 48.45 Hz) remain
constant. The plot shows that the maximum fault of 20.8 occurs
when the operating voltage is at 431 V and the temperature is 47.7°C.
Beyond this point, further increases in operating voltage reduce the
fault level. This observation implies that while higher operating
voltages can occasionally help reduce faults, such scenarios are
uncommon and must be carefully considered within the specific
context of the machine and its operational conditions. Continuous
increases in operating voltage without considering system
constraints or design specifications can heighten the risk of
malfunctions, compromising the machine’s reliability and safety.
Therefore, any modifications to operating voltage should be
approached with caution, adhering to established engineering
principles and safety regulations. To ensure the health, reliability,
and optimal performance of manufacturing machines, it is essential
to implement proactive monitoring and maintenance strategies,
along with effective voltage level management. Early detection
and mitigation of voltage-related risks can help operators
minimize downtime, maximize production efficiency, and ensure
consistent product quality. Figure 5 depicts the impact of C (current
consumption) and D (vibration) on fault occurrence, with A (main
pressure at 28.38 N), B (operating voltage at 431.77 V), and E
(temperature at 47.17°C) held constant. As current increases from
12A to 12.5 A and vibration reaches 48 Hz, the fault decreases;
however, as current exceeds 12.5A, the fault begins to rise. This

FIGURE 6
3D Surface response plots for the combined effects of current consumption (V) and temperature (℃) on fault at constant pressure (28.38 N/m2),
operating voltage (431.77 V), and vibration (48.45 Hz).
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suggests a relationship between the machine’s current draw and the
vibration it generates. Increased current levels may induce greater
mechanical stress within the machine, as indicated by the rising
vibration levels with increasing current. Factors such as imbalances
in rotating components or increased motor load could contribute to
this vibration increase. Figure 6 displays the 3D response surface
plot, showing the combined effects of C (current consumption) and
E (temperature) on fault occurrence, with A (main pressure at
28.38 N/m2), B (operating voltage at 431.77 V), and D (vibration
at 48.45 Hz) held constant. As temperature rises from 47°C to 47.5°C,
the fault level increases; however, beyond 47.5°C, the fault decreases.
Similarly, as current increases from 12 A to 12.4A, the fault
increases, but it begins to drop when current exceeds 12.4 A.
Figure 7 illustrates the 3D response surface plot showing the
effect of D (vibration) against E (temperature) on fault
occurrence, with A (main pressure at 28.38 N), B (operating
voltage at 431.77 V), and C (current consumption at 12.5 A)
held constant. The fault increases as temperature rises from
46.5°C to 47.7°C, but as temperature rises above 47.7°C, the fault
level starts to decrease. Overall, Figures 3–7 highlight the complex
interactions between various parameters that affect fault occurrence
in the manufacturing system.

This emphasizes the importance of precisely controlling
operational parameters to ensure optimal performance, reliability,
and safety of the equipment. Reducing downtime, increasing
production efficiency, and maintaining consistent product quality

require proactive monitoring, maintenance, and strict adherence to
engineering principles (Breznicka et al., 2023). The research offers
new insights into the interactive effects of operational parameters on
fault generation (Benabbou et al., 2019). For instance, the study
reveals how specific combinations of voltage and vibration
(Figure 3), or current consumption and temperature (Figure 6),
influence fault generation in previously underexplored ways (Yoo
et al., 2019). This contributes to a deeper understanding of the
dependencies between different factors.

3.4 Experimental and RSM predicted data

Table 4 presents the relationship between the experimental and
predicted faults from RSM. It can be deduced that the predicted
values are in tandem with the experimental value. As the predicted
value lies closely along the regression line (Figure 8), hence the
predicted values from RSM can accurately represent the actual
(experimental) value.

3.5 Comparison between experimental,
ANFIS and RSM PredictedFaults

Figure 9 shows a screenshot of the ANFIS-predicted faults, while
Table 5 offers a detailed comparison of the actual (experimental)

FIGURE 7
3D Surface response plots for the combined effects of vibration (Hz) and temperature (℃) on fault at constant pressure (28.38 N/m2), operating
voltage (431.77 V), and current consumption (12.5 A).
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faults with those predicted by the ANFIS and RSM models.
According to the data in Table 5, the actual faults range from
11.00 to 25.00. In comparison, the ANFIS model predicts faults
within a slightly narrower range of 15.41–25.09, while the RSM
model’s predictions span a broader range, from 11.31 to 25.74.
When comparing these fault detection methods, several key insights

emerge regarding their accuracy and consistency. The mean values
indicate that both the experimental and RSM predictions share an
identical average of 20.34375, whereas the ANFIS model has a
slightly lower mean of 20.23875. This suggests that, on average,
RSM predictions align more closely with the experimental results
than ANFIS predictions. However, the differences in mean values

TABLE 4 Comparison between actual and RSM Predicted values.

Run
Order

Actual
value

Predicted
value

Residual Leverage Internally
Studentized
residuals

Externally
Studentized
residuals

Cook’s
distance

Influence
on fitted
value
DFFITS

Standard
Order

1 22.00 22.30 −0.2953 0.508 −0.462 −0.445 0.010 −0.452 1

2 20.00 19.67 0.3286 0.965 1.916 2.238 4.754⁽1⁾ 11.671⁽1⁾ 2

3 18.00 17.52 0.4825 0.508 0.755 0.740 0.028 0.751 3

4 24.00 23.89 0.1064 0.965 0.620 0.602 0.498 3.139⁽1⁾ 4

5 23.00 22.46 0.5418 0.082 0.621 0.603 0.002 0.180 5

6 23.00 23.14 −0.1436 0.965 −0.838 −0.825 0.909 −4.304⁽1⁾ 6

7 16.00 15.92 0.0786 0.965 0.458 0.441 0.272 2.300 7

8 23.00 23.07 −0.0730 0.508 −0.114 −0.109 0.001 −0.111 8

9 15.00 15.00 −0.0048 0.965 −0.028 −0.026 0.001 −0.138 9

10 14.00 14.00 −0.0048 0.965 −0.028 −0.026 0.001 −0.138 10

11 13.00 12.92 0.0786 0.965 0.458 0.441 0.272 2.300 11

12 25.00 24.78 0.2175 0.965 1.268 1.308 2.082⁽1⁾ 6.823⁽1⁾ 12

13 25.00 25.74 −0.7397 0.508 −1.158 −1.178 0.066 −1.196 13

14 14.00 13.98 0.0230 0.965 0.134 0.128 0.023 0.668 14

15 15.00 15.06 −0.0603 0.965 −0.352 −0.337 0.160 −1.759 15

16 24.00 23.81 0.1897 0.965 1.106 1.119 1.584⁽1⁾ 5.833⁽1⁾ 16

17 22.00 22.20 −0.1992 0.965 −1.162 −1.182 1.747⁽1⁾ −6.166⁽1⁾ 17

18 21.00 20.67 0.3286 0.965 1.916 2.238 4.754⁽1⁾ 11.671⁽1⁾ 18

19 20.00 19.62 0.3841 0.965 2.240 2.896 6.497⁽1⁾ 15.101⁽1⁾ 19

20 25.00 25.52 −0.5175 0.508 −0.810 −0.796 0.032 −0.809 20

21 23.00 22.46 0.5418 0.082 0.621 0.603 0.002 0.180 21

22 23.00 23.20 −0.1992 0.965 −1.162 −1.182 1.747⁽1⁾ −6.166⁽1⁾ 22

23 17.00 18.30 −1.30 0.508 −2.027 −2.443 0.202 −2.481⁽1⁾ 23

24 22.00 22.07 −0.0730 0.508 −0.114 −0.109 0.001 −0.111 24

25 17.00 18.63 −1.63 0.508 −2.549 −3.799 0.319 −3.859⁽1⁾ 25

26 19.00 18.18 0.8158 0.508 1.277 1.319 0.080 1.340 26

27 11.00 11.31 −0.3103 0.965 −1.809 −2.059 4.240⁽1⁾ −10.735⁽1⁾ 27

28 23.00 22.46 0.5418 0.082 0.621 0.603 0.002 0.180 28

29 23.00 22.46 0.5418 0.082 0.621 0.603 0.002 0.180 29

30 23.00 22.46 0.5418 0.082 0.621 0.603 0.002 0.180 30

31 25.00 25.74 −0.7397 0.508 −1.158 −1.178 0.066 −1.196 31

32 23.00 22.46 0.5418 0.082 0.621 0.603 0.002 0.180 32
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across all three methods are minimal, indicating a close central
tendency overall.

A deeper analysis of variance further distinguishes these
methods. The variance in ANFIS predictions (4.1747) is
significantly lower than that observed in both the experimental
(16.5554) and RSM (16.2643) values. The lower variance in ANFIS
predictions points to greater consistency and less fluctuation around
the mean, compared to the other two methods. In contrast, the
higher variability in both the experimental and RSM values suggests
these methods might be more sensitive to specific conditions during
fault measurement or prediction. To statistically evaluate the
differences between these methods, an ANOVA test was
conducted. The results reveal that the between-group variance
(SS = 0.2352) is quite low compared to the within-group variance
(SS = 1146.82825). The calculated F-value of 0.00954 is significantly
lower than the F-critical value of 3.0943, indicating minimal
differences between the group means relative to the variability
within each group. Furthermore, the high P-value (0.9905)
strongly suggests that there is no statistically significant
difference between the three methods. This implies that any
variations in the mean values could be attributed to random
chance rather than any inherent differences in the methods’
effectiveness (Kumar et al., 2020; Kumar and Gulati, 2018).
While ANFIS consistently produced more precise predictions due
to its lower variance, the statistical analysis revealed no significant
difference between the three methods (Experimental, ANFIS, and
RSM) in predicting machine faults under the tested conditions.
Although ANFIS occasionally deviated from the expected range,
most of its predictions were accurate, suggesting potential for

improvement with more data (Tadesse et al., 2024). Among the
methods, RSM demonstrated the strongest alignment with
experimental values, underscoring its effective predictive capability.

This research, by employing a combination of RSM and ANFIS,
achieves higher predictive accuracy for machine faults compared to
studies that rely solely on traditional statistical methods (Azadeh
and Mahdi, 2023). The study’s experimental design encompasses a
broader range of operational conditions, providing a more
comprehensive understanding of fault dynamics in industrial
systems (Yao et al., 2022). The findings have immediate practical
implications for industries, particularly in optimizing machine
maintenance and reducing downtime, which are critical for
improving operational efficiency and product quality
(Mohammadi et al., 2024). Using ANFIS for machine fault
prediction is a novel application in this context (Mohammadi
et al., 2024). ANFIS combines the strengths of fuzzy logic and
neural networks, offering a more robust and adaptable model for
predicting machine faults under varying operational conditions.
This represents a significant improvement over traditional
statistical models, providing higher accuracy and better
adaptability to complex, nonlinear relationships (Ouda et al., 2021).

3.6 Optimum conditions of operating
parameters

The optimal operating conditions for minimizing fault
generation are critical to maintaining efficiency and
prolonging machine life are shown in Figure 10. Based on the

FIGURE 8
Relationship between predicted and experimental faults.
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findings, the optimal conditions were identified at specific levels
of main pressure, operating voltage, current consumption,
machine vibration, and temperature. These factors were
precisely determined as follows: 29.420 N, 441.040 V,
12.2723 A, 49.2968 Hz, and 46.50°C, respectively.
Incorporating machine-specific factors, such as vibration

frequency (Hz), into the optimization process is essential.
Vibration, often a sign of mechanical imbalance or
misalignment, plays a significant role in machine health. By
fine-tuning this parameter, it is possible to prevent excessive
wear and tear, thus reducing the likelihood of machine failure.
Moreover, maintaining optimal vibration levels can enhance the

FIGURE 9
Anfis model error.
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TABLE 5 Comparison between actual, ANFIS and RSM predicted faults.

Run Order Experiemtal or actual values for fault ANFIS values for fault RSM values for fault

1 22 19.31 22.3

2 20 20.58 19.67

3 18 25.09 17.52

4 24 20.84 23.89

5 23 20.58 22.46

6 23 25.09 23.14

7 16 20.84 15.92

8 23 17.34 23.07

9 15 15.41 15

10 14 16.13 14

11 13 16.94 12.92

12 25 17.71 24.78

13 25 18.5 25.74

14 14 18.96 13.98

15 15 19.56 15.06

16 24 20.23 23.81

17 22 20.33 22.2

18 21 20.3 20.67

19 20 20.81 19.62

20 25 20.61 25.52

21 23 20.7 22.46

22 23 21.12 23.2

23 17 20.78 18.3

24 22 21.55 22.07

25 17 21.52 18.63

26 19 21.48 18.18

27 11 20.64 11.31
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TABLE 5 (Continued) Comparison between actual, ANFIS and RSM predicted faults.

Run Order Experiemtal or actual values for fault ANFIS values for fault RSM values for fault

28 23 21.38 22.46

29 23 20.92 22.46

30 23 20.86 22.46

31 25 20.8 25.74

32 23 20.73 22.46

Mean 20.34375 20.23875 20.34375

Anova: Single factor

Summary

Groups Count Sum Average Variance

Column 1 32 651 20.34375 16.55544

Column 2 32 647.64 20.23875 4.174669

Column 3 32 651 20.34375 16.26435

ANOVA

Source of variation SS df MS F P-value F Crit

Between Groups 0.2352 2 0.1176 0.009537 0.99051 3.094337

Within Groups 1146.82825 93 12.33148656

Total 1147.06345 95
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machine’s operational stability, further contributing to reduced
fault occurrences. Additionally, it is imperative to monitor how
these optimized parameters interact within the machine’s
operational framework. For instance, while optimizing the
current consumption, ensuring that the machine’s components
are not subjected to undue stress is vital. Excessive current, even
at optimal levels, could lead to overheating, affecting both
machine performance and safety. Furthermore, achieving the
identified optimal conditions is a delicate balance of managing
the machine’s operating parameters in tandem with the
mechanical and electrical characteristics of the system.
Continuous monitoring and adjustment of these factors are
recommended to sustain optimal performance and minimize
fault generation.

4 Conclusion

This study highlights the crucial role of maintenance in
ensuring equipment reliability and optimizing performance
through predictive models and advanced optimization
techniques. The research utilized Response Surface
Methodology (RSM) and Adaptive Neuro-Fuzzy Inference
System (ANFIS) to develop a robust mathematical model that
assesses how operational parameters—such as pressure, voltage,
current, vibration, and temperature—affect fault occurrence and
machine fault detection. The study involved collaboration with
industry practitioners from the beverage sector, which provided
valuable insights and data essential for developing and
validating the predictive models. The machines analyzed for
fault detection included critical equipment in the production
and packaging processes, such as bottling lines and key utilities
like compressors and refrigeration units. The findings
underscore the importance of precise parameter management
for predicting and mitigating equipment faults. By examining
how variations in pressure, voltage, current, vibration, and
temperature influence fault rates, the study enhances
understanding of maintaining optimal equipment
performance and improving machine fault detection. The
primary challenge addressed was the accurate prediction of

equipment faults to minimize downtime and boost
operational efficiency. Effective predictive maintenance is
vital for preventing unexpected machine failures, which can
lead to costly production disruptions. Addressing this issue is
crucial for improving equipment reliability, reducing costs, and
ensuring safety in manufacturing processes. The research
employed RSM and ANFIS to create a model that analyzed
the impact of various operational parameters on fault
occurrence and detection. Data were collected at three levels
for each parameter using a central composite design, and the
model’s accuracy was validated with an R2 value of 98.22% and a
statistically significant p-value (p < 0.05). The study found that
faults were most frequent at specific parameter combinations,
such as a pressure of 28.38 N/m2, voltage of 431.77 V, current of
12.54 A, vibration of 47.17 Hz, and temperature of 25°C, while
fault detection rates were lowest at other parameter values.
Additionally, ANFIS demonstrated superior accuracy in fault
prediction due to its adaptive learning capabilities. While
machine learning (ML) techniques were considered, the
decision was made to focus on RSM and ANFIS due to their
specific suitability for the parameters and context of this study.
ML techniques were not utilized as they would require extensive
data preprocessing and potentially more complex models, which
were outside the scope and resources of this research. Integrating
RSM and ANFIS significantly enhances predictive maintenance
strategies and machine fault detection, leading to better
equipment management and reduced operational disruptions.
These findings offer valuable methods for improving fault
detection and optimizing production processes in the
beverage industry. The research advances the field by
applying RSM in a novel way within this sector and
combining it with ANFIS for a comprehensive predictive
maintenance strategy. Future research should involve
collaboration with industry partners to validate these models
in real-world settings. Conducting case studies and experimental
designs will be crucial to confirming RSM’s practical
applicability across various stages of beverage production and
ensuring its value for process optimization and continuous
improvement in machine fault detection and overall industry
performance.

FIGURE 10
Optimization plot.
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