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The layered configuration of different material plates is one of the ways of
achieving protection against different kinds of kinetic energy ammunitions.
The thickness of each plate is one of the most important influencing
parameters to prevent the penetration of the projectile. In the present study, a
layered configuration of the Al2O3 and Al 7075-T651 is analysed, to prevent the
perforation of 7.62 mm Lead core projectile, under normal impact conditions, by
using LS-DYNA numerical simulations. Experiments were conducted on Al 7075-
T651 plate and Numerical model was validated with experiment results. To
achieve the objective, the validated numerical model was used to investigate
influence on various Al2O3 and Al 7075-T651 combinations. Three factors led to
the selection of Al 7075-T561 and Al2O3 as the target materials. First, the literature
review revealed that these materials have already been employed in the
construction of armour. Second, Al2O3 is a brittle material whereas Al 7075-
T651 is ductile. Consequently, when combined in a layered arrangement, these
materials offer the ideal destroyer-absorber arrangement. Thirdly, thesematerials
have lower densities than steel. As a result, these materials offer a lightweight
alternative for lead core 7.62 mm bullet defense. From the analysis, it is observed
that two layered configurations were found to be effective in the prevention of
bullet perforation: a front plate of Al2O3 that was 10mm thick and had a rear plate
of Al 7075-T651 that was 06 mm thick, and a front plate of Al2O3 that was 04 mm
thick and had a 12 mm thick layer of Al 7075-T651.
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1 Introduction

Various materials are being developed and researched for the application of ballistic
protection against different attacks. Some of the ways of protection against kinetic energy
ammunition is to use high-strength materials, configuration of different materials in layered
formats such as double layered, triple layered configurations, spaced armour, etc. The
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design of armouring is generally based on the type of threat. Various
research has been conducted on different parameters related to
impact studies. J. Venkatesan et al. (Venkatesan et al., 2017)
evaluated ballistic performance of layered armor made of SiC
and aluminum against layered armor made of Al2O3 and
aluminum against ogive nose projectiles. Results showed that
performance of SiC-Al armour is better and it causes more
damage of the bullet. Turhan et al. (2008) studied layered
configuration of Al 2024-T351 and Al2O3 against 7.62 mm AP
bullet. In this study, new material constants were obtained that
better described the deformation of steel core and aluminium.
Mazaheri et al. (2017) investigated the influence of wrapping
aluminium foil on the impact face of Al2O3 tile on energy
absorption as well as ballistic limit velocity using numerical and
experimental methods. According to the results, there was an
increase in energy absorption and ballistic limit velocity due to
the fracture conoid angle, which delayed the crack’s propagation to
the backplate. The ballistic limit velocity of laminated panels made
of high-strength steel and Al 7075-T6 was investigated by Rahman
et al. (2016) against 7.62 mm AP bullets at 900–950 m/s. The triple-
layered mixture proved to be a good alternative for losing weight
without compromising effectiveness, according to the results.
Flores-Johnson et al. (2011) examined the ballistic performance
of monolithic, double, and triple layer aluminum and steel plates
against 7.62-mm APM2. Results predicted that improved ballistic
performance and weight reduction can be achieved by layered
configurations having different metals. Morghode et al.
(Morghode and Thakur, 2023; Morghode et al., 2024) found that
the layered arrangement of an Al2O3 front plate that was 18 mm
thick and Al 7075-T651 back plate that was 10 mm thick, could stop
7.62 mm APM2 bullet with maximum impact velocity of 830 m/s
from penetrating. Najihah Abdul Rahman et al. (2018) studied high
speed impact on layered Al 7075-T651 and steel panel by 7.62 mm
lead core bullet. Results showed that laminated panel with Al 7075-
T651 back plate can be considered for designing protective
structures for vehicle while maintaining performance and
achieving weight reduction. Impact of material’s primary
properties on modified Johnson-Cook material model was
examined by Zuzov and Shash (2016).7.62 × 63 mm NATO Ball
as well as 7.62 × 63 mm APM2 ammo were employed in this
investigation along with an AA7075-T651 plate. Praveen et al.
(2022) investigated influence of solution treatment and thickness
of target on ballistic performance of Al 7075 T651 against 7.62 ×
51 mm ball ammunition. Results showed that Al 7075-T651
experienced brittle fracture with splinter formation, whereas
solution-treated plates experienced petaling. Vignjevic et al.
(2012) conducted study on the modelling of dynamic failure in
Al alloys. De Vuyst et al. (2017) studied orientation for cubical
fragments. Using ANSYS Explicit dynamics/Autodyn software, Naik
et al. (2024) conducted study on 3D printed Aluminium alloy for
ballistic applications, Gálvez et al. (2005), V. Pranay (Pranay V. and
Panigrahi S. K., 2022; Pranay V. and Panigrahi, S. 2022; Pranay and
Panigrahi, 2022c; Pranay and Panigrahi, 2023; Pranay and
Panigrahi, 2024) tried an effective penetration of the target and
carried out numerical research for the creation of projectiles.
Numerical finite element analysis is an effective method for
solving problems of engineering field. It is very beneficial for
problems where analytical solutions cannot be obtained. This

approach is very useful when design geometry is complex and the
accuracy requirement is high. FE analysis is recommended for
problems involving understanding strength of materials under
pressure loading (Pany, 2022a), structural design and testing
(Vamsi et al., 2021), to predict the performance and behavior of
the design (Pany, 2021b), to calculate the safetymargin and to identify
the weakness of the design accurately (Pany, 2021a) and to identify the
optimal design (Pany and Rao, 2004; Pany, 2022b; Pany and Li, 2023).
Lead-cored 7.62 mm ball bullet is a widely used ammunition that has
resulted in numerous civilian casualties worldwide. Hence, there is an
unavoidable need for security forces to protect from 7.62 mm ball
bullets. Commercial vehicles used by the security forces are not
capable of providing protection against 7.62 mm ball ammunition.
Thus, fixing of add on armour on such vehicles is themost economical
and effective method. However, adding more armor adds weight,
which could reduce the vehicle’s efficiency. As per the literature of
Morghode et al. (2024), the layered configuration of Al2O3 front plate
and Al 7075-T651 back plate is studied against 7.62 mm
APM2 projectile, which is made of hard steel core. In the present
study, the same combination ofmaterials, with different thicknesses, is
used to study impact against 7.62 mm ball ammunition, which is
made of lead core. The aim of this study is tominimise the penetration
of 7.62 mm lead cored bullets with impact velocity of 720 m/s by
carefully choosing and optimising the thickness of the materials that
can be utilized as armour. As a result, the criteria to maximize the
strength to weight ratio and provide defence against 7.62 mm ball
rounds weremet at the same time. Experiments were conducted on Al
7075-T651 plate and Numerical model is validated with experiment
results. To achieve the objective, the validated numerical model is used
to investigate influence on various Al2O3 and Al 7075-T651
combinations. Three factors led to the selection of Al 7075-T561
and Al2O3 as the target materials. First, the literature review revealed
that thesematerials have already been employed in the construction of
armour. Second, Al2O3 is a brittle material whereas Al 7075-T651 is
ductile. Consequently, when combined in a layered arrangement,
these materials offer the ideal destroyer-absorber arrangement.
Thirdly, these materials have lower densities than steel. As a result,
these materials offer a lightweight alternative for lead core 7.62 mm
bullet defense. The Research methodology used for the study is
explained in depth in the sections that follow.

2 Methodology

Initially, an experiment is conducted on an Al 7075-T651 plate
of 15 mm thickness, impacted by 7.62 mm Lead core ammunition, at
normal impact conditions. A numerical model is developed using
LSDYNA finite element analysis. The model is validated using the
experiment results. The validated model conditions are used for the
analysis of layered configuration. A detailed research methodology
flow chart is shown in Figure 1.

2.1 Experimental study on Al 7075-
T651 target

Ballistic impact experiments on Al 7075-T651 plate were
impacted by 7.62 mm lead core bullet. These bullets have an
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outer jacket for protection and an inside lead core. This jacket,
which is often composed of brass, is intended to interact with
barrel’s lands to give the bullet spin as it passes through the
barrel. The target used for the experiment is Al 7075-T651 bar
having diameter of 130 mm of 100 mm thickness. Target holders
held the target plates in place, while the weapon was secured to
the universal Ballistic Test Equipment. The schematic of the
experiment setup is shown in Figure 2. The target was
maintained 10 m away from the rifle’s barrel. A Doppler
Velocity Measurement System is used to record the muzzle
velocity and impact velocities. Doppler velocity analysis of
impact of bullets is shown in Figure 3. This is a velocity
versus time graph that represents velocity variation of the
projectile with time, after it leaves the barrel of the weapon.
In Figure 3, V0 represents the muzzle velocity and Vx1

represents the impact velocity of the projectile. The impact
surface of Al 7075-T651 post impact of bullets is shown in
Figure 4. Table 1 represents the muzzle velocities, impact
velocities and depth of penetrations measured post impact
experiments using two bullets.

2.2 Finite element model

2.2.1 Geometry modelling
2.2.1.1 Projectile

In this study, impact analyses are performed using 7.62 mm lead
cored bullets. The bullet’s contact with the target substance is
unaffected by the brass jacket. In order to shorten computing
time needed for simulations, jacket is not taken into account.
The bullet was designed in Solid Works and then imported into
LS DYNA for simulations. The schematic of projectile with
dimensions is shown in Figure 5.

2.2.1.2 Target
The target model was created using the LS-DYNA program. The

target was intended to be a 152 mm-diameter circular plate. Three
sections were further divided into this circular plate. The impact area
at circular target’s centre was created as square with 10 mm edge. The
circular-shaped second and third regions were intended to have
respective diameters of 30 and 50 mm. The circular target’s
dimensions are shown in Figure 6.

FIGURE 1
Research methodology.
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2.2.2 Meshing
Hexahedron elements are used for meshing in order to cover

maximal volume as well as curvature of bullet and the target (Pranay
V. and Panigrahi S., 2022). LS DYNA (LS-DYNA, 2018) was used for
target plate meshing, while ABAQUS was used for bullet meshing. A
thorough analysis of mesh convergence was carried out in order to
save computing time and choose ideal element size for projectile and
target. The outcomes of trials were compared with those obtained by
varying size of elements. The size of elements in square area at the
target plate’s center was determined to be 0.25 mm. In a similar vein,
the parts in the circular portion with the 50 mm and 30 mm
diameters will have 1 mm and 0.5 mm in diameter, respectively.
The element size will be 2 mm after reaching a diameter of 50 mm.
The detailed mesh convergence study is presented in the literature
(Morghode et al., 2024). Themeshedmodels of the projectile and the
target are shown in Figure 7.

2.2.3 Material characteristics
Lead is considered for projectile, and Al 7075-T651 and Al2O3

are considered for target. The Johnson-Cook (JC) Strength and
Failure Model (Johnson and Cook, 1983; Johnson and Cook, 1985)
are used to define material for Lead (Seidl et al., 2018) and
Aluminum 7075-T651 (Jørgensen and Swan, 2014) and the
material properties are given in Table 2. Johnson Holmquist
model (Johnson and Holmquist, 1994) is used to define the
Al2O3 (Zochowski et al., 2021) and properties are given Table 3.

2.3 Model validation

Since LS-DYNA is one of the best programs for conducting
high-velocity impact simulations, it was utilized in this
investigation. Prior to conducting layered configuration
analysis, projectile and target model created for this study
had to be validated. Therefore, the current model was
validated using experimental results listed in Table 1.

Rotational and translational degrees of freedom along the
boundary of the target were constrained so that there was no
motion. Figure 8 depicts the assembly of different parts and
boundary conditions. The adhesive bond between the Al2O3

plate and the Al 7075-T651 plate was modeled by defining a
contact model ‘Tie-Break Surface to Surface Contact’ that will
break when the stress limits are exceeded. After standardizing
the experimental data, it was discovered that the depth of
penetration attained was 10.33 mm at impact velocity of
720 m/s. Depth of penetration obtained from numerical
simulation was 11.05 mm (simulation is shown in Figure 9).
On comparing both the results, it is observed that the present
model resulted in 6.97% error in over estimation. It was fair to
believe that model was validated and that it could be further
expanded to examine layered setup because the error was
extremely small and in the overestimation range.

3 Numerical analysis

For additional investigation, the verified model conditions were
employed. The target materials for the monolithic plates were
initially Al 7075-T651 and Al2O3. The majority of studies employ
Al2O3 materials in layer configurations, meaning that Al2O3 layer is
used to absorb impact and the other ductile layer is used to absorb
leftover energy. This study examines both monolithic and layered
armor systems to optimize weight without compromising
functionality.

3.1 Analysis of monolithic plates

3.1.1 Study on monolithic Al 7075-T651
target material

Initially, 7.62 mm lead core projectile having velocity 720 m/s,
was impacted on 15 mm thick plate of Al 7075-T651. Bullet was

FIGURE 2
Schematic of experimental setup.
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FIGURE 3
Doppler system results for impact of (A) Bullet-1 (B) Bullet-2.

FIGURE 4
Al 7075-T651 target post impact.
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successfully stopped by the plate, and measurement of depth of
penetration revealed that it was 11.03 mm. The target underwent
elastic deformation, and the rear face of the target seemed
undamaged. Figure 9 displays impact simulations on independent
monolithic Al 7075-T651 plate.

3.1.2 Study on Al2O3 target material
Furthermore, a 15 mm thick Al2O3 target was struck by a

7.62 mm lead cored bullet at the same velocity, i.e. 720 m/s. It
was observed that Al2O3 plate was unable to restrict the
bullet completely. Target had experienced failure having

brittle fracture and the plate was completely damaged.
Figure 10 displays impact simulations on an independent
Al2O3 plate.

3.2 Layered configuration analysis

Al 7075-T651 and Al2O3 were combined and applied in layers to
provide improved defense against 7.62 mm lead cored rounds. Al
7075-T651 was thought to be the back plate and Al2O3 to be the
front plate.

TABLE 1 Muzzle and impact velocities and depth of penetrations.

S No Bullet No Muzzle Velocity (m/s) Impact velocity (m/s) Depth of penetration (mm)

1 Bullet 1 734.04 718.46 9.9

2 Bullet 2 734.98 714.81 10.2

FIGURE 5
7.62 mm lead core projectile (in mm).

FIGURE 6
Target discretization.
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3.2.1 10 mm Al2O3 and 10 mm Al 7075-T651
First, the impact simulation was carried out and each plate in the

stacked combination was taken to be 10 mm thick. It was noted that
stacked plates effectively stopped the projectile, while the Al 7075-
T651 plate only suffered minor pressures. The projectile had
undergone significant distortion as well. Figure 11 shows some
simulation images.

In order to optimize the weight of target further, different
layered configurations were required to be tested. Therefore, an
impact analysis was carried out and thickness of the Al 7075-T651
rear plate was lowered in stages of 2 mm during the first phase. It is
discussed in earlier section that the projectile shatters the Al2O3

front plate. Therefore, the thickness of the Al 7075-T651 back plate
is gradually decreased to ensure that protection against projectiles is
maintained and that there is no plastic deformation at back plate’s
rear surface. Then in second phase, thickness of Al2O3 front plate
was reduced, in steps of 2 mm and the impact analysis was
conducted to achieve optimum protection against the projectile.
The impact analysis of various layered configurations is shown in
succeeding sections.

3.2.2 10 mm Al2O3 and 08 mm Al 7075-T651
The 7.62 mm Lead core bullet had an impact on the layered

configuration of 10 mm thick front plate of Al2O3 and 08 mm thick
back plate of Al 7075-T651. It was observed that this combination
was able to arrest bullet but damage on front plate increased. The
projectile was completely damaged. Simulation images are shown in
Figure 12. Subsequently, the Al 7075-T651 back plate’s thickness
was further decreased by 2 mm.

3.2.3 10 mm Al2O3 and 06 mm Al 7075-T651
The 7.62 mm Lead core bullet had an impact on the layered

configuration of 10 mm thick front plate of Al2O3 and 06 mm
thick back plate of Al 7075-T651. It was observed that this
combination was able to arrest bullet but excessive damage
was observed on the front plate. The projectile was completely
damaged. Deformation was also observed in Al 7075-T651 back
plate but it was within elastic limit. No plastic deformation was
observed in back plate. Simulation images is given in Figure 13.
Subsequently, the Al 7075-T651 back plate’s thickness was
further decreased by 2 mm.

FIGURE 7
Meshing model of: (A) Projectile and (B) Target.
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3.2.4 10 mm Al2O3 and 04 mm Al 7075-T651
The 7.62 mm Lead core bullet had an impact on the layered

configuration of 10 mm thick front plate of Al2O3 and 04 mm
thick back plate of Al 7075-T651. It was observed that this
combination was able to arrest bullet but excessive damage
was observed on the front plate. The projectile was completely
damaged. Plastic deformation was observed in the Al 7075-T651
back plate, which is not desirable. Figure 14 shows some
simulation images.

It was found that while projectile penetration was limited as
rear plate thickness decreased, cone fracture formation boosted
front plate damage on Al2O3. The intensification of the reflected
stress waves was the cause of this. Following this simulation, it
was determined that the best configuration for stopping the bullet
without causing plastic deformation to the backplate was a
layered arrangement with a 10 mm thick Al2O3 front plate
and a 06 mm thick Al 7075-T651 rear plate. Al2O3 is known
to have higher density than Al 7075-T651. Therefore, lowering
Al2O3’s thickness will lower the configuration’s total weight.
Hence, in order to achieve optimized weight, the Al2O3 front
plate thickness was reduced in steps of 2 mm and thickness of Al
7075-T651 back plate was kept constant as 10 mm. The impact
analysis of various layered configurations, while reducing the
thickness of Al2O3 front plate, is shown in succeeding sections.

3.2.5 08 mm Al2O3 and 10 mm Al 7075-T651
The 7.62 mm Lead core bullet had an impact on layered

configuration of 08 mm thick front plate of Al2O3 and the 10 mm
thick back plate of Al 7075-T651. It was observed that this
combination was able to arrest bullet but excessive damage
was observed on the front plate. The projectile was completely
damaged. Deformation in the Al 7075-T651 back plate was very
less and within plastic limit. Figure 15 shows some
simulation images.

3.2.6 06 mm Al2O3 and 10 mm Al 7075-T651
The 7.62 mm Lead core bullet had an impact on layered

configuration of 06 mm thick front plate of Al2O3 and the
10 mm thick back plate of Al 7075-T651. Front plate was totally
broken, yet it was noted that this combination was able to stop bullet.
Projectile was completely damaged. Deformation in Al 7075-T651
back plate was less and within elastic limit. Figure 16 shows some
simulation images.

3.2.7 04 mm Al2O3 and 10 mm Al 7075-T651
The 7.62 mm Lead core bullet had an impact on layered

configuration of 04 mm thick front plate of Al2O3 and the 10 mm
thick back plate of Al 7075-T651. Front plate was totally broken,
yet it was noted that this combination was able to stop bullet.

TABLE 2 Material characteristics of bullet (Seidl et al., 2018) and Al 7075-T651 (Jørgensen and Swan, 2014).

Parameters Units Al 7075-T651 (Jørgensen and Swan, 2014) Bullet (Seidl et al., 2018)

Young’s modulus E GPa 71.7 15.08

Poisson’s ratio υ - 0.33 0.34

Density ρ kg
m3

2,810 11,340

Johnson Cook Strength Model

Yield strength A MPa 520 24

Strain Hardening parameter B MPa 477 300

Strain hardening parameter n - 0.52 1

Reference strain rate ε0 s-1 5e-4 5e-

Strain rate constant C - 0.0025 0.1

Reference Temperature K 293 293

Melting Temperature K 893 600

Thermal softening parameter m - 1.61 1

Specific heat capacity Cp
J

kg.K
910 129

Thermal expansion coefficient α 1/K 2.3e-5 2.9e-5

Johnson Cook Failure Model

Failure parameter D1 - 0.096 0.3

Failure parameter D2 - 0.049 0

Failure parameter D3 - 3.465 0

Failure parameter D4 - 0.016 0

Failure parameter D5 - 1.099 0

Frontiers in Mechanical Engineering frontiersin.org08

Morghode et al. 10.3389/fmech.2024.1419210

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1419210


TABLE 3 Material properties for Al2O3 (Zochowski et al., 2021).

Parameters Units Al2O3 (Zochowski et al., 2021)

Density ρ g/cm3 3.84

Bulk Modulus G GPa 93

Yield Strength A - 0.93

Strain Hardening parameter B - 0.31

Strain rate constant C - 0.007

Thermal softening parameter m - 0.6

Strain hardening parameter n - 0.64

EPSI - 1

Reference Temperature K 262

SFMAX - 1

HEL MPa 8,000

PHEL MPa 1,460

Beta - 1

D1 0.01

D2 0.7

K1 GPa 131

K2 GPa 0

K3 GPa 0

*MAT_ADD_EROSION VOLEPS 0.05

FIGURE 8
Boundary conditions of FE model.
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Projectile was completely damaged. Deformation in Al 7075-
T651 back plate increased but was within elastic limit. Figure 17
shows some simulation images.

3.2.8 02 mm Al2O3 and 10 mm Al 7075-T651
The 7.62 mm Lead core bullet had an impact on layered

configuration of 02 mm thick front plate of Al2O3 and the
10 mm thick back plate of Al 7075-T651. Front plate was totally
broken, yet it was noted that this combination was able to stop bullet.
Projectile was completely damaged. Deformation in Al 7075-T651
back plate increased significantly. Plastic deformation was observed

in the back plate which was not desirable. Figure 18 shows some
simulation images.

From this simulation it was observed that even 02 mm thick
Al2O3 front plate can stop perforation of the bullet. But, plastic
deformation in the Al 7075-T651 back plate is required to be
controlled. Furthermore, as was already established, Al2O3 is
denser than Al 7075-T651. Thus, the configuration’s total
weight can be decreased by maintaining a thinner Al2O3

front plate. Therefore, it was decided that thickness of Al
7075-T651 back plate will be increased to 12 mm and impact
analysis will be carried out by varying the thickness of Al2O3

FIGURE 9
Influence models on Al 7075-T651 plate.

FIGURE 10
Influence models on Al2O3 plate.
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front plate. The impact analysis of various layered
configurations, while varying the thickness of Al2O3 front
plate, is shown in succeeding sections.

3.2.9 02 mm Al2O3 and 12 mm Al 7075-T651
The 7.62 mm Lead core bullet had an impact on layered

configuration of 02 mm thick front plate of Al2O3 and the
12 mm thick back plate of Al 7075-T651. Front plate was totally
broken, yet it was noted that this combination was able to stop bullet.
Projectile was completely damaged. Deformation in Al 7075-T651
back plate was less as compared to 10 mm back plate. But plastic

deformation was observed in the back plate which was not desirable.
Figure 19 shows some simulation images.

3.2.10 04 mm Al2O3 and 12 mm Al 7075-T651
The 7.62 mm Lead core bullet had an impact on layered

configuration of 04 mm thick front plate of Al2O3 and the
12 mm thick back plate of Al 7075-T651. Front plate was totally
broken, yet it was noted that this combination was able to stop bullet.
Projectile was completely damaged. Deformation in Al 7075-T651
back plate was reduced. No plastic deformation was observed in
back plate. Figure 20 shows some simulation images.

FIGURE 11
Effect on the Layered arrangement of 10 mm Al 7075-T651 rear plate and 10 mm Al2O3 front plate.

FIGURE 12
Effect on the Layered arrangement of 08 mm Al 7075-T651 rear plate and 10 mm Al2O3 front plate.
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Following this simulation, it was determined that the optimal
configuration for stopping bullets without causing plastic deformation
to the rear plate was a layered configuration with an Al2O3 front plate
that was 4mm thick andAl 7075-T651 back plate that was 12mm thick.

4 Results and discussions

4.1 Analysis of monolithic plates

A projectile with impact velocity of 720 m/s was used in impact
analysis on a target plate of Al 7075-T651, which was 15mm thick. The

bullet was observed to have penetrated target to depth of 11.05 mm.
Ductile Hole Enlargement was Al 7075-T651 plate’s mode of failure.
Tensile stresses in bullet travel direction causes delamination in rolling
plane, because of layered and inhomogeneous micro structure of
material. Delamination is also due to intergranular and intra
granular disintegration caused by the tensile stresses. Additionally, it
is discovered that due of significant mesh distortion, Lagrangian
formulation in LS-DYNA was unable to adequately handle problem
of ball bullet impacting on stiff plate. Bullet behaves like fluid during
such strikes, and momentum becomes more important than strength.
Severely distorted parts degraded continually even if the lead core’s
adaptive refinement time interval was set extremely low. Additionally,

FIGURE 13
Effect on the Layered arrangement of 06 mm Al 7075-T651 rear plate and 10 mm Al2O3 front plate.

FIGURE 14
Effect on the Layered arrangement of 04 mm Al 7075-T651 rear plate and 10 mm Al2O3 front plate.
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during simulations, it is seen that instead of pushing target material out
laterally during ductile hole expansion, the bullet erodes as it travels
through the material during perforation. Monolithic Al2O3 was
examined at 720 m/s with target thickness of 15 mm. When the
projectile impacted Al2O3, primary resistance to penetration is due
to compressive strength of Al2O3. As compressive strength is high, the
projectile is deformed and eroded. The projectile’s low aspect ratio
causes it to be defeated since Al2O3’s strength is greater than the
projectile’s. Al2O3 will be ground up in a tiny area directly in front of the
projectile’s leading edge by the stresses the projectile will be subjected to.
Al2O3 has a tiny specific fracture surface energy when under tension,

but a significant amount of energy may be needed to produce small
fracture surface area when compressive and dynamic shear pressures
are high. Therefore, the amount of energy required to create powdered
surface area could be much greater. Damage cone that forms at
penetrator’s leading edge is another important component that
provides resistance to Al2O3 penetration. Cone formation is
indicative of quasi-static indentation in Al2O3, following direction of
thematerial’s highest tensile stress. Because of interaction between stress
waves and reflections from the free surface, cone broadens at its base.
Cone formation distributes the projectile’s load over a wide surface area.
Consequently, the projectile’s kinetic energy density is decreased.

FIGURE 15
Effect on the Layered arrangement of 10 mm Al 7075-T651 rear plate and 06 mm Al2O3 front plate.

FIGURE 16
Effect on the Layered arrangement of 10 mm Al 7075-T651 rear plate and 04 mm Al2O3 front plate.
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Simulations revealed that the projectile underwent substantial
deformation. Beyond the cone forms, radial fissures have formed in
the Al2O3 plate. High-velocity fragments that develop within cone at
free surface break material completely and may cause damage behind
the Al2O3 target’s free surface. To retain the cone and bullet fragments,
a stronger and more flexible layer is needed behind the Al2O3.
Additionally, monolithic targets require greater thickness in order to
stop perforation, which results in a noticeable increase in target weight.
To achieve the best strength to weight ratio and maximum protection
against 7.62 mm lead core ball bullet, a layered combination of front

plate made of Al2O3 and back plate made of Al 7075-T651 was
therefore taken into consideration.

4.2 Layer layout of Al2O3 and Al 7075-T651

First, a front plate of Al2O3 with a thickness of 10 mm and a back
plate of Al 7075-T651 with thickness of 10 mm are taken into
consideration. During initial stage of penetration, projectile tip
is damaged and Al 7075-T651 yields at Al2O3 interface. The

FIGURE 17
Effect on the Layered arrangement of 10 mm Al 7075-T651 rear plate and 02 mm Al2O3 front plate.

FIGURE 18
Effect on the Layered arrangement of 10 mm Al 7075-T651 rear plate and 02 mm Al2O3 front plate.
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crack began at the Al2O3 rear surface and is oriented to follow
motion of rear plate. Impact grows in both direction and
magnitude. Fracture cone then expands in the direction of
the penetrator’s movement from contact between projectile
and target. Projectile erosion occurs similarly as in Krishnan
et al. and Venkatesan et al. (Krishnan et al., 2010; Venkatesan
et al., 2017), while Al2O3 fractures, consolidating, and
intersecting to form debris. Yielding and plastic flow in the
direction of the projectile’s normal path cause projectile
erosion. When a projectile experience forces greater than its
strength, erosion results. Rear plate absorbs any remaining

energy in the projectile target system when projectile erosion
stops. The similar results were seen in Morka et al. (Morka et al.,
2009) in which the ceramic front plate was fractured post impact
and the residual velocity of the bullet was absorbed by the Al
7,017 back plate. Only when target material is pushed forward or
towards sides, can the projectile advance. Crushed Al2O3 cannot
be pushed ahead due to rear confinement. One of the most
important characteristics of the back plate is ductility, which
enables the material to absorb stress waves created by impact on
Al2O3 material. Stress waves are absorbed by the ductile
material, which reduces the intensity of stress waves that

FIGURE 19
Effect on the Layered arrangement of 12 mm Al 7075-T651 rear plate.

FIGURE 20
Effect on the Layered arrangement of 12 mm Al 7075-T651 rear plate.
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Al2O3 reflects. This reduces damage to Al2O3 and increases
the effectiveness of the armour. It was noted that the pieces
had been effectively contained, and the back plate’s rear
surface was undamaged. In addition, due to Al 7075-T651
target, Al2O3 target experience less damage than the
monolithic plate. A multilayer structure effectively restricts
the plate perforation.

5 Conclusion

From present study, following deductions are drawn:

• It is observed that for Al 7075-T651 monolithic plate, depth of
penetration of projectile was

• 11.5 mm and ductile hole growth was observed. Al2O3 can
deform the projectile, but it experienced brittle fracture in the
form of a cone. Fragments are formed due to the shattering of
Al2O3 plate.

• First, the layered arrangement of an Al2O3 front plate that is
10 mm thick and a back plate made of Al 7075-T651 that is
10 mm thick is examined. The perforation is successfully
restricted with a layered configuration. The weight of
armour has been increased significantly and areal density
increased to 66.65 kg/m2.

• Various thicknesses of Al2O3 and Al 7075-T651 plates were
examined for additional weight optimization. Two layered
configurations— 10 mm thick front plate of Al2O3 and
06 mm thick rear plate of Al 7075-T651 and a 04 mm thick
front plate of Al2O3 and 12 mm thick back plate of Al 7075-
T651—were shown to be effective in preventing bullet
perforation. However, when comparing the weight of
these two arrangements, it was found that the
configuration with a front plate of Al2O3 with a
thickness of 04 mm and a back plate of Al 7075-T651
with thickness of 12 mm is the most optimal
configuration for effectively limiting bullet perforation.
The areal density of this configuration is 48.26 kg/m2.
But these results are required to be validated with the
experimental results. The experimental tests will be
carried out in future study to validate the results
obtained from the present study.
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Nomenclature

V0 Muzzle velocity

Dx1 Distance between weapon and Target

Tx1 Time of Bullet travel before impact

Vx1 Impact Velocity
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