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Introduction: Accurately predicting the remaining mechanical equipment is of
great significance for ensuring the safe operation of the equipment and
improving economic efficiency.

Methods: To accurately assess the mechanical equipment degradation, predict
its remaining useful life, and ensure efficient, stable, and safe operation, a
degradation and life prediction model for mechanical equipment based on
multivariate stochastic processes is studied. The study innovatively predicts
the remaining life of mechanical equipment using multivariate stochastic
processes, and facilitates the correlation analysis between performance
indicators based on the characteristics of Copula functions.

Results and discussion: The results showed that the Root Mean Squared Error
value of the prediction results based on the trivariate Wiener process was 2.58,
which decreased by 46.91% and 35.82% compared with the univariate and
bivariate Wiener processes, respectively. The prediction value based on the
trivariate gamma process was 3.49, which decreased by 44.95% and 40.54%
compared with the univariate and bivariate gamma processes, respectively. In
conclusion, the degradation and life prediction model with multivariate
stochastic processes can effectively assess the mechanical equipment
degradation and predict its remaining useful life. This provides an important
reference for the maintenance and management of mechanical equipment,
improving equipment efficiency and extend its service life.
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1 Introduction

With rapid technological and economic growth, society has gradually entered an era of
large-scale, highly complex, and sophisticatedmechanical equipment (Hsu andMoses, 2022).
The normal operation of these equipment is crucial for social production, and the demand for
their operational reliability is increasing. Once these equipment fail, it may result in
significant economic losses and safety risks. However, after the equipment is put into
use, its components inevitably experience degradation, which undoubtedly brings many
safety hazards (Hussain et al., 2021). The traditional approach is to stop the equipment for
maintenance only when it fails, which can lead to significant economic losses for large-scale
mechanical equipment (Qi et al., 2020). The current gap in research on the degradation and
life prediction of mechanical equipment is that it only analyzes a single parameter that affects
the mechanical equipment degradation, without comprehensively analyzing the impact of
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multiple parameters. It results in less than ideal accuracy in the
degradation and life prediction of mechanical equipment. From the
perspective of multiple parameters, this study comprehensively
analyzes the impact of three or more parameters on the
mechanical equipment performance degradation to achieve better
prediction results. Scholars such as Bal B B used dynamic parameters
for beam structure damage assessment to analyze the influence of
crack depth and location on the dynamic characteristics of beams.
This method combined finite element technology for analysis, which
was feasible (Bal et al., 2020). Sahoo et al. constructed a novel glass
epoxy composite laminated hybrid beam to improve the beam
stiffness. The results showed that the added graphene in the
composite material increased its stiffness (Sahoo et al., 2023).
Researchers such as Parida and Jena analyzed the dynamic
characteristics of modern material FGMS to solve the cracks in
engineering structures. The results showed that FGM structures
with initial cracks were significantly affected by the dynamic
environment (Parida and Jena, 2020). Parida et al. used finite
element method to model artificial femoral heads and bones to
analyze the effects of different bio-materials on different walking
postures. The simulation results showed that the geometric shape of
the femoral head was related to the maximum stress intensity (Parida
et al., 2022). The above research methods show that timely evaluating
the current health status of equipment and predicting its future
working status is of great significance in avoiding significant losses
caused by failure. Therefore, this article is based on the method of
multivariate stochastic process modeling to predict the remaining life
of equipment. Therefore, a solution for ensuring the safe and stable
mechanical equipment operating while reducing operating and
maintenance costs has become an important problem that needs
to be addressed. In response to this issue, innovative research has
been conducted to construct the Degradation and Life Prediction
Model (DLPM) for mechanical equipment based on multivariate
stochastic processes. This model analyzes the variation characteristics
of the equipment degradation process based on a single performance
indicator. Additionally, the Copula function is used to analyze the
correlation between performance indicators, accurately predicting the
mechanical equipment’s remaining life. Therefore, in this context,
this research innovatively utilizes multivariate stochastic processes to
predict the remaining life of mechanical equipment and analyzing the
correlation between performance indicators based on the
characteristics of Copula functions. The contribution of research
lies in its ability to effectively evaluate the health status of mechanical
equipment and accurately predict its remaining life, providing a
certain reference for predicting the remaining life of mechanical
equipment. In addition, the study analyzes the degradation
performance of equipment from multiple perspectives, which can
consider multiple influencing factors. Therefore, it has stronger
applicability. The research on mechanical equipment degradation
and life prediction based on multivariate random processes aims to
provide more accurate and comprehensive assessment of equipment
performance and life prediction, thereby improving equipment
efficiency and safety. The research content mainly includes four
parts. The second part provides an overview of the current
research status about equipment remaining life prediction
techniques and data-driven stochastic process models both
domestically and internationally. The third part designs the DLPM
for mechanical equipment based onmultivariate stochastic processes.

The first section constructs DLPM for mechanical equipment based
on univariate and bivariate stochastic processes, while the second
section establishes a DLPM for mechanical equipment based on
multivariate stochastic processes. The fourth part involves the
simulation verification of the DLPM for mechanical equipment
based on multivariate stochastic processes.

2 Related works

In recent years, fault diagnosis and remaining life prediction
techniques for equipment have been widely applied in fields such as
aerospace, nuclear power plants, large dams, and civil aircraft.
Therefore, fault prediction and remaining life prediction techniques
for equipment have gradually become a research hotspot. Many experts
have conducted in-depth research on this issue, achieving significant
research results. To accomplish an accurate predicting on the remaining
service life of motor rolling bearings, Cheng et al. proposed a method
based on the deep convolutional neural network to construct a data-
driven framework. This method used a nonlinear degradation energy
indicator for label training, and then extracted the original vibration
degradation energy indicator of the bearing through the convolutional
neural network. Experimental results showed that this method not only
improved the prediction accuracy, but also had the potential for
practical applications (Cheng et al., 2020). Chen and others
proposed a long short-term memory network structure with
automatic learning features for mechanical system health
management prediction. A residual life prediction model based on
an attention mechanism was designed for mechanical life prediction.
This method could extract sequence features from raw sensory data and
fuse automatic learning features with manual features using a feature
fusion framework. Experimental results demonstrated that this method
effectively improved the performance of mechanical life prediction
(Chen et al., 2020). To promote the intelligence of industrial Internet of
Things production, Ren and other researchers proposed a new data-
driven method for predicting the remaining service life of industrial
equipment by combining artificial intelligence technology with cloud-
edge computing technology. The core of this method used a temporal
convolutional network structure at the edge of the cloud, which could
effectively obtain real-time prediction results from the edge plane.
Compared with traditional prediction methods, this method not
only improved the prediction accuracy but also significantly
enhanced the prediction efficiency (Ren et al., 2020).

Data-driven stochastic process models play an important role
in predicting the life of mechanical equipment. Mei and his
colleagues proposed a method to provide low-latency
computing services to users by using mobile edge computing
to process computing resources and meet latency requirements.
They employed parallel computing methods to perform
computations simultaneously at the mobile edge and on the
user’s local server. Additionally, they used stochastic process
networks to deduce and analyze the latency bounds of the mobile
edge computing network. The outcomes told that the solution
reduced the latency of computing services (Mei et al., 2022).
Adeen and Milano aimed to explore the stochastic processes
between Weibull and normal distributions. They proposed an
innovative method for modeling stochastic processes in power
systems. This method relied on the theory of stochastic
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differential algebraic equations, which was applied in relevant
examples of power systems. From the validation results, this
method successfully revealed significant correlations between
Weibull and normal distribution stochastic processes (Adeen
and Milano, 2021). Radev and other researchers proposed a novel

Bayesian inference method to derive the probability distribution
of basic model parameters from observational data. This method
relied on reversible neural networks to map parameter
probability using a global estimator and implemented training
through a neural network model. Experimental results
demonstrated the wide applicability of this method in fields
such as epidemiology and ecology (Radev et al., 2020). Xu and
other scholars proposed a bivariate Wiener structure model to
evaluate the reliability of permanent magnet brakes. This model
uses Bayesian method to perform small sample cost analysis on
the captured degradation data, and uses Monte Carlo algorithm
to calculate the parameters of the permanent magnet brake. The
results show that this method is feasible (Xu et al., 2024). Fang
and Pan proposed a method that combines a multivariate Wiener
process model with a multivariate universal path model to
observe the multivariate degradation process in engineering
systems. This method conducts hypothesis analysis on
potential Gaussian dependency structures, and the results
show that the model can accurately predict the failure
probability of engineering systems (Fang and Pan, 2021). Sun
et al. proposed to study the degradation performance of complex
systems from two aspects: hard failure and soft failure, and
constructed a nonlinear Wiener process model using time-
varying copula method. The nonlinear Wiener process was

TABLE 1 Comparison of references.

References Method Achievement Shortcoming

Cheng et al. (2020) Construct a data-driven framework using deep
convolutional neural networks and train labels using

nonlinear degenerate energy indicators

Improved prediction accuracy and practical
application potential

It can only be predicted for motor rolling
bearings, with a small applicability range

Chen et al. (2020) Propose a residual lifespan prediction model based
on long short-term memory network structure and

attention mechanism, integrating automatic
learning features and manual features

Effectively improving the performance of
mechanical life prediction

Can only extract sequence features from raw
sensory data and lacks universality

Ren et al. (2020) Combining artificial intelligence technology and
cloud edge computing technology, a data driven
method for predicting the remaining service life of

industrial equipment is proposed

Improve prediction accuracy and efficiency The calculation volume and prediction cost
are relatively high, and they do not have

universality

Mei et al. (2022) Mobile edge computing is used to process
computing resources, and parallel computing

method and stochastic process network are used to
analyze delay limits

Effectively reduce computing service latency
and meet low latency requirements

Only applicable to the field of network
computing services, the research results are

targeted

Adeen and Milano
(2021)

Propose an innovative method for modeling
stochastic processes in power systems, relying on the
theory of stochastic differential algebraic equations

Revealing the correlation between Weibull
distribution and normal distribution in

stochastic processes

Analysis is limited to specific processes in the
power system and lacks universality

Radev et al. (2020) Propose a Bayesian inference method based on
reversible neural networks, utilizing a global
estimator to map parameter probabilities

It has broad application value in fields such as
epidemiology and ecology

The scope of use is limited to fields such as
epidemiology and ecology

Xu et al. (2024) Propose a bivariate Wiener structure model using
Monte Carlo algorithm to calculate the parameters

of permanent magnet brakes

Ability to perform small sample cost analysis on
captured degraded data

Assessment accuracy still needs to be
improved

Fang and Pan (2021) A method of combining multivariate Wiener
process model with multivariate universal path

model

Can accurately predict the probability of failure
in engineering systems

The model structure is relatively large and the
calculation time is long

Sun et al. (2021) A nonlinear Wiener process model was constructed
using time-varying copula method

Capable of characterizing the degradation
behavior of a system through nonlinear Wiener

processes

Can only characterize degradation behavior
and cannot make accurate predictions

FIGURE 1
Schematic diagram of the remaining lifespan of the equipment.
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used to characterize the system’s degradation behavior, and the
results showed that the method was effective (Sun et al., 2021).
The comparison of references is shown in Table 1.

In summary, although numerous experts and scholars have
achieved rich results in the field of equipment life prediction, the
research results have various limitations such as strong targeting,
limited applicability, long calculation time, and insufficient
evaluation accuracy. However, this study innovatively uses
multivariate random models combined with Copula functions to
analyze the correlation characteristics between performance
indicators. This study is still relatively rare in the field of
mechanical equipment degradation and life prediction, and can
solve the problems of accuracy, efficiency, and universality in the
above research, which has a wider application space. Therefore, this
research based on multivariate stochastic processes aims to improve
equipment efficiency and safety, which has important research value
and application prospects.

3 Design of multivariate stochastic
process models for mechanical
equipment degradation and life
prediction

Stochastic process models serve as the foundation and
prerequisite for the subsequent research in this paper. This
chapter focuses on the design of univariate, bivariate, and
multivariate stochastic process models for mechanical equipment
degradation and life prediction. Copula functions are utilized for
describing the correlation characteristics of different performance
indicators. The effectiveness of the model is validated through
simulation experiments.

3.1 Construction of univariate and bivariate
stochastic process models for mechanical
equipment degradation and life prediction

After mechanical equipment is put into use, the performance of
its components has degraded over time. This degradation
phenomenon leads to changes in the working condition and
material properties of the mechanical equipment, causing
variations in certain key indicators (Zhongyi et al., 2020). When
the accumulated degradation of the mechanical equipment reaches a
certain level, it can lead to damage. If the damage accumulates to a
certain extent, it can result in equipment failure or even breakdown
(Wang et al., 2021). Since the mechanical degradation process is
influenced by multiple factors, it can be considered as a random
variation process. In order to accurately simulate the degradation
and life prediction of mechanical equipment under actual operating
conditions, stochastic processes are used to establish mechanical
equipment degradation and life prediction model. The diagram of
equipment remaining life is displayed as Figure 1.

From Figure 1, the performance degradation process of the
mechanical equipment follows a certain stochastic process. If the
mechanical equipment fails at time ta, the probability density
function based on the observed data at ta can be calculated. The
time corresponding to the maximum value of this density

function is the time that it requires to make the performance
indicator of the mechanical equipment reach the failure
threshold. Each mechanical equipment will fail to a certain
extent when degraded, and each equipment performance
indicator has its corresponding failure threshold. The failure
threshold for each performance indicator is set based on
experience and the amplitude of historical data under normal
conditions (Li et al., 2023). The mathematical expression for
mechanical equipment reaching the failure threshold for the first
time in the stochastic process is shown in Equation 1.

T � tb − ta
T � inf t ∃a � 1, ..., τ.Xa t( )>ω|{ }{ (1)

In Equation 1, ω represents the failure threshold. τ represents
the dimension. X(t) represents the performance indicator. a and b
represent time nodes. The mathematical expression for remaining
life is shown in Equation 2.

T′ � inf t X t + ε( )≥ω, X ε( ) � xε, t≥ 0|{ } (2)
In Equation 2, ε represents the time when the mechanical

equipment has not failed yet, and xε represents the mechanical
equipment degradation at that time. Univariate stochastic processes
can be divided into Gamma processes and Wiener processes.
Gamma processes are stochastic processes that can well describe
monotonically increasing and non-negative degradation processes
(Pustovyi et al., 2022). On the other hand, theWiener processes, also
known as Brownian motion, can be used to describe irregular
degradation processes. The expression for univariate Wiener
maximum process is shown in Equation 3.

Z t( ) � sup
0≤ c≤ t

X c( ); c≥ 0{ } (3)

In Equation 3, c represents any time. Z(t) takes the maximum
value of X(t) within the time range [0, t], representing the Wiener
maximum process. From the Wiener process, it can be derived that
the remaining life calculation follows the inverse Gaussian
distribution. Therefore, the probability density function
expression is displayed in Equation 4.

fT′ t( ) � ω − xε����
2πt3ω2

b2

√ exp − ω − xε − t · ω/a( )2
2t · ω2/b2[ ] (4)

In Equation 4, fT′(t) represents the remaining life function. The
distribution function expression for remaining life is shown in
Equation 5.

FT′ t( ) � Φ ωt/a − ω − xε����
ωt/b√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

− exp
2ω/a · ω − xε( )

ω2/b2( )Φ − ω − xε − ωt/a( )����
ωt/b√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ (5)

In Equation 5, FT′(t) represents the distribution function of
remaining life. The probability distribution function expression for
univariate Gamma process remaining life is shown in Equation 6.

F′
T t( ) � Γ at,ω/β( )

Γ at( ) (6)
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In Equation 6, Γ(a) represents the incomplete Gamma function.
β represents the threshold for the first degradation failure of the
mechanical equipment (Choi et al., 2022). The probability density
function expression for Gamma process remaining life is shown in
Equation 7.

f′
T t( ) � d

dt

Γ at,ω/β( )
Γ at( ) (7)

In Equation 7, f′
T(t) represents the probability density function

of Gamma process remaining life. The mechanical equipment life
prediction process based on stochastic processes is shown
in Figure 2.

As shown in Figure 2, the mechanical equipment life prediction
model based on the stochastic process model can classify data into

different categories. Then, based on the Wiener process model and
the Gamma process model, the data is calculated to estimate the
model parameters. Finally, based on the calculated parameters, the
remaining life of the mechanical equipment is predicted. When
using univariate stochastic processes for mechanical equipment life
prediction, only the changing trend of a single performance
indicator is considered. However, in reality, the degradation
process of mechanical equipment is not solely determined by a
single performance indicator, making it difficult to reflect the overall
degradation of the equipment. It is necessary to analyze multiple
performance indicators in-depth. Two performance indicators for
mechanical equipment life prediction form the basis for studying the
role of multiple performance indicators in mechanical equipment
life prediction. Therefore, the mechanical equipment life prediction
process based on bivariate stochastic processes is shown in Figure 3.

As shown in Figure 3, assuming that there is a certain
correlation between the degradation processes of the two
performance indicators. To predict the lifespan of mechanical
equipment more accurately, the Copula function can be
introduced in the construction of the bivariate stochastic
process model for mechanical equipment life prediction. It is
used to describe the correlation characteristics between the
performance indicators. Due to its ability to effectively
correlate the joint distribution function of multiple random
variables with their respective marginal distribution functions,
the Copula function can analyze the correlation between different
performance indicators. Copula functions are mainly divided
into four types: Gaussian Copula functions, Frank Copula
functions, Gumbel Copula functions, and Clayton Copula
functions. Due to the potential differences in analysis results
caused by different Copula functions, this study uses Akaike
Information Criterion (AIC) to evaluate the applicability of each
Copula function. The AIC criterion is a widely used method for
evaluating the quality of model fitting. The core is that if the AIC
value is low, the model has a better fitting effect on the data.
Therefore, this research selects the most suitable Copula function
based on the comparison of AIC values. It means that the Copula
function with the smallest AIC value is considered as the optimal
option. By introducing the Copula function, the degradation
process of the mechanical equipment can be described more
accurately. The model parameters can be updated using the
stepwise estimation method to reflect the real-time
performance status and degradation trend of the mechanical
equipment (Smolyak, 2021). The expression for the

FIGURE 2
Process for predicting the lifespan of mechanical equipment based on stochastic processes.

FIGURE 3
Process for predicting the lifespan of mechanical equipment
based on binary stochastic processes.
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performance indicators of the bivariate Wiener process is shown
in Equation 8.

Xw ti( ) � Xw t0( ) + δwti + λwKw ti( ) (8)
In Equation 8, Xw(ti) represents the performance indicators of

the bivariate Wiener process, and i � 1, 2, ...., n, w � 1, 2. δw is used
for manifesting the drift coefficient for w-th performance indicator
of the Wiener process. λw represents the diffusion coefficient of the
w-th performance indicator in the Wiener process. Kw(Ti)
represents the standard Wiener process (Goetzmann, 2020). The
study utilizes the maximum likelihood estimation method to
estimate model parameters. The likelihood parameter function
expressions for the drift coefficient and diffusion coefficient based
on the Wiener process are shown in Equation 9.

L δ, λ2( ) �∏n
i�1

1�������
2λ2πΔti
√ exp − ΔX ti( ) − δΔti( )2

2λ2πΔti
( ) (9)

Based on Equation 9, the drift coefficient and diffusion
coefficient are taken as derivatives, and the partial derivative is
set to 0 to solve the equation. The estimated values of the drift
coefficient and diffusion coefficient can be obtained, as shown in
Equation 10.

δ̂ � 1
n
∑n
i�1

ΔXi

Δti

λ̂ � 1
n
∑n
i�1

ΔXi − δ̂Δti( )
Δti

⎡⎢⎣ ⎤⎥⎦ 1 /

2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(10)

In Equation 10, δ̂ and λ̂ represent the estimated values of drift
coefficient and diffusion coefficient, respectively. The expression for
the performance indicator degradation in the bivariate Gamma
process is shown in Equation 11.

G2×n t( ) � G1

G2[ ] � g1 t1( ), ..., g1 tn( )
g2 t1( ), ...., g2 tn( )[ ] (11)

In Equation 11, G1, G2 represent the degradation of the two
performance indicators in the bivariate Gamma process.

3.2 Construction of the mechanical
equipment DLPM based on multivariate
stochastic process

In practical work, some complex mechanical equipment
requires three or more performance indicators to accurately
predict its life. Therefore, the construction of the mechanical
equipment DLPM based on multivariate stochastic process is
shown in Figure 4 (Jia et al., 2022).

In Figure 4, the mechanical equipment DLPM based on
multivariate stochastic processes is an extension of the bivariate
stochastic process model for mechanical equipment life prediction.
This model includes the analysis of ternary and higher-order
performance indicators to more accurately predict the life of
mechanical equipment. When using two or more performance
indicators to characterize the health status of mechanical
equipment, it is necessary to consider the correlation between the
performance indicators. Since the degradation process of most
mechanical equipment is nonlinear, directly measuring the
correlation between performance indicators is challenging.
However, Copula functions, also known as linking functions, can
connect the joint distribution function with their respective
marginal distribution functions (Manlin et al., 2022). The most
widely used Copula function is the bivariate Copula function, which
can handle the correlation between two performance indicators
(Chen et al., 2021). However, for the correlation between three or
more performance indicators, the Vine Copula function is used.
This function uses a decomposition method to transform the
multivariate performance indicator problem into multiple
bivariate Copula function problems. This decomposition method
can be divided into two types: C-Vine and D-Vine (Mahmood and
Ali, 2023). The mathematical expression of the Copula function is
shown in Equation 12.

FIGURE 4
Mechanical equipment DLPM based on multivariate stochastic process.

FIGURE 5
The decomposition process of vine copula function.
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C x1, x1, ..., xm( ) � P y1, y2, ..., yn; θ( ) (12)

In Equation 12,C(x1, x2, ..., xm) represents the joint distribution
function. x1, x1, ..., xm and y1, y2, ..., ym represent variables. ym

represents the marginal distribution function corresponding to
xm. m represents the total number of variables.
P(y1, y2, ..., ym; θ) represents the Copula function with parameter
θ (LIU et al., 2021). The decomposition process of the Vine Copula
function is shown in Figure 5.

As shown in Figure 5, when dealing with three performance
indicators, the decomposition process of the Vine Copula function
can be divided into three layers. The first layer consists of the
marginal probability density functions f1(x1), f2(x2), f3(x3)
corresponding to each performance indicator (Debnath, 2022).
These marginal distributions describe the individual variations of
each performance indicator, without considering the correlation
with other performance indicators. The second layer describes the
correlation between two adjacent performance indicators, denoted
as c1,2 and c2,3. This layer is to establish preliminary connections
between the performance indicators (Barma and Modibbo, 2022).
The third layer shows the overall correlation among the three
performance indicators, denoted as c1,3|2. This layer is to establish
comprehensive connections among all the performance indicators
(Fang et al., 2022). The decomposition process of more than three
performance indicators follows the same tree-like structure, where
each layer describes the dependency relationships between variables
in different ranges. This hierarchical structure enables the model to
handle more complex data and better capture the interactions
between variables, thus predicting the life of mechanical
equipment more accurately. The decomposition process of three
performance indicators is shown in Equation 13.

f x1, x2, x3( ) � f1 x1( )f2 1| f x2 x1|( )f3 1,2| x3 x1, x2|( )
f x1, x2, x3( ) � f1 x1( ) · f2 x2( ) · f3 x3( ) · c1,3 2| F1 2| x1 x2|( ), F3 2| x3 x2|( )( ){

(13)

In Equation 13, f(x1, x2, x3) represents the probability density
function of the ternary performance indicators.
f1(x1), f2(x2), f3(x3) represent the three marginal probability
density functions. The expression for mechanical equipment life
prediction based on multivariate stochastic processes is shown in
Equation 14.

Tmul � inf t: X1 t( )>ϖ1, X2 t( )>ϖ2, ..., Xz t( )>ϖz{ } (14)

In Equation 14, Tmul represents the remaining life with
multivariate stochastic processes. ϖ1,ϖ2, ...ϖz represent the failure

threshold corresponding to the performance indicators. z represents
the number of failures. The marginal probability density function
based on multivariate Wiener process is shown in Equation 15.

fw
mul t ϖw, δw, λw|( ) � ϖw��������

2π λw( )2t3
√ · exp − ϖw −X0 − δwt( )2

2 λw( )2t( )
(15)

In Equation 15, fw
mul(t |ϖw, δw, λw) represents the marginal

probability density function of the multivariate Wiener process.
ϖw represents the failure threshold of the Wiener process. The
function of the multivariate Gamma process is shown in
Equation 16.

fg
mul t ϖg, ag, βg

∣∣∣∣( ) � d

dt

Γ agt,ϖg βg
∣∣∣∣( )

Γ agt( ) (16)

In Equation 16, fg
mul(t |ϖg, ag, βg) represents the marginal

probability density function of the multivariate Gamma process.
ϖg represents the failure threshold of the Gamma process. Γ(ag)
represents the incomplete gamma function of the multivariate
Gamma process. βg represents the threshold for the first
degradation failure of the multivariate Gamma process
(Razmkhah et al., 2022). The correlation of the Vine Copula
function based on multivariate stochastic processes is shown in
Equation 17.

Lw θ1( ) �∑m
i�1
Inc12 F1 ΔX1 δ1, λ1

∣∣∣∣( ), F1 ΔX2 δ2, λ2
∣∣∣∣( ); θ1( )

Lg θ1( ) �∑m
i�1
Inc12 F1 ΔX1 a1, β1

∣∣∣∣( ), F1 ΔX2 a2, β2
∣∣∣∣( ); θ1( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (17)

In Equation 17, Lw(θ1), Lg(θ1) represent the correlation of the
Vine Copula function based on the Wiener process and the Gamma
process, respectively. θ1 represents the parameter estimation value
corresponding to the bivariate Copula function c1,2. Based on the
same method, the parameter estimation values for the other two
bivariate Copula functions c2,3 and c1,3|2 can be calculated. The
Vine Copula function has flexibility and scalability in handling
multivariate dependency relationships. Vine Copula can transform
the problem of multivariate performance indicators into multiple
binary Copula function problems through decomposition methods,
which can handle complex dependency structures more flexibly. In
addition, the decomposition methods of C-Vine and D-Vine can select
the most suitable dependency structure modeling method according to
the actual situation, thereby improving the accuracy and reliability of
the model. The mathematical expression for predicting remaining life is
shown in Equation 18.

LN � lN: X tN( )≥w x|{ } (18)

In Equation 18, LN represents the remaining life of the N th
component, lN represents the set remaining life, X(tN) represents
the degradation rate of the equipment at time tN, and w represents
the set critical degradation rate. Considering that the predicted
future performance degradation is a probability distribution
under discrete monitoring points, when the remaining life is
equal to LN � lN under time constraints, it means that the
degradation rate of the component exceeds the critical value.

TABLE 2 Environment configuration.

Experimental environment Configuration

OS system 64 bit Ubuntu 18.04

Memory 32 GB

GPU GTX3070

CPU AMD5300

PyTorch framework Porch 1.8

Simulation software MATLAB
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Therefore, the degradation rate of the component does not exceed
the critical value during the time period from (tN) to (tN − 1). At
this time, the actual remaining life of the component is the
probability of the set remaining life, as shown in Equation 19.

P LN � lN( ) � P X tN( )<X tN − 1( )≥w( ) (19)
In Equation 19, P(LN � lN) represents the probability that the

actual remaining life is equal to the set remaining life.

4 Simulation verification of the
mechanical equipment DLPM based on
multivariate stochastic process

To validate the accuracy of the mechanical equipment DLPM
based on multivariate stochastic processes, MATLAB simulation
software is used to generate simulated data for the Wiener
process and gamma process. Finally, combining the simulated
data from these two processes, a comprehensive trail is practiced
for evaluating the life and degradation of the
mechanical equipment.

4.1 Simulation verification of the mechanical
equipment DLPM based on multivariate
wiener process

To validate the effectiveness of the mechanical equipment
DLPM based on multivariate stochastic processes, the
experimental environment is first set up, as shown in Table 2.
From Table 2, the environment and memory required for the
normal operation of the mechanical equipment degradation and
lifespan prediction model based on multivariate stochastic processes
in reality are 64 bit Ubuntu 18.04 operating system and 32 GB
memory, respectively. This prediction model can effectively extend
to online prediction in embedded systems. In practical applications,
due to the different fault thresholds for different performance
indicators of equipment, the fault thresholds for different
performance indicators are usually set based on the
characteristics of the equipment, working environment, and
historical data. The setting of this threshold is crucial for the
accuracy of life prediction. Therefore, when setting the threshold,
it is necessary to fully consider the environment and working status
of the equipment, and set the fault threshold based on the historical
data and industry standards of the equipment to ensure the accuracy
of diagnosis. When fault definitions based on different performance
indicators conflict with each other, priority can be set for different
performance indicators and weighted synthesis methods can be used
for comprehensive consideration. The data used in the study is
simulation data generated in MATLAB simulation software, with
model parameters and values of 0.1 and 0.3, respectively. Generate
two sets of simulated degradation increments that follow a normal
distribution, with a data size of 350 samples per set. The degradation
threshold of bearings is set according to physical health indicators,
and the critical stage for setting the degradation rate is 40%. Bearings
that exceed this condition belong to a severe degradation state. The
time boundary is set to a maximum time index of 400, the initial
condition for degradation state is 0% degradation rate, and the

maximum degradation rate is 100%. The temperature is set to
0°C–40°C according to the boundary conditions of the industrial
environment.

The probability density function based on the multivariate Wiener
process is shown in Figure 6. As time progressed, the distribution of the
probability density function for the remaining life became narrower.
This indicated that the deviation between the predicted confidence
interval and the true remaining life value gradually decreased. The
moment corresponding to the maximum value of the probability
density function in the figure represented the predicted remaining
life value of the model. It was worth noting that when the time index
reached 400, the predicted values of the univariate, bivariate, and
trivariate Wiener processes were almost consistent with the true
remaining life value. This indicated that these predicted values were
approaching the true remaining life value. This result strongly
demonstrated the accuracy of the model.

To further validate the effectiveness of the mechanical equipment
DLPM based on multivariate Wiener process, the Root Mean Square
(RMS) value of the bearing vibration signal and the MEAN value of
the temperature signal are analyzed through simulation, taking the
bearing in the mechanical equipment as an example. The degradation
trends of the trivariate Wiener process for the bearing’s performance
indicators are shown in Figure 7. The horizontal vibration signal,
vertical vibration signal, and temperature are the incremental
degradation of bearing performance indicators. These three
performance indicators of the bearing revealed the bearing
degradation trend. From Figure 7A, the degradation trends of the
horizontal and vertical vibration signals were consistent, with the
RMS values increasing with the increase of the time index. When the
time index was 350, the RMS values of the vertical and horizontal
vibration signals were both 12.8, indicating that the bearing reached
the failure state. From Figure 7B, the MEAN value of the temperature
signal reached its highest value of 38.8°C when the time index was 350.
In summary, it can be seen that with the continuous increase of
measurement data, the predicted value of remaining life gradually
approaches the true value. This confirmed the effectiveness and
accuracy of the mechanical equipment DLPM based on
multivariate Wiener process.

FIGURE 6
Probability density function.
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4.2 Simulation verification of themechanical
equipment DLPM based on multivariate
gamma process

The probability density function based on the multivariate
gamma process is shown in Figure 8. As the measurement data
increased, the maximum value of the probability density function
gradually approached the true value. The distribution range of
the predicted results also decreased. This phenomenon indicated
that the predicted confidence interval was more accurate in
approaching the true value of the remaining life. Specifically,
as the degradation data of the mechanical equipment increased,
the model was able to capture the complex correlations between
various performance indicators more accurately, thereby
improving the prediction accuracy. This trend reflected the
reliability and accuracy of the mechanical equipment DLPM
based on multivariate Gamma processes when dealing with
large amounts of data.

The degradation trends of the trivariate Gamma process are
shown in Figure 9. In Figure 9A, in the mechanical equipment

DLPM based on multivariate gamma processes, the RMS values of
the horizontal and vertical vibration signals of the bearing reached
14.1 and 11.3, respectively, when the time index was 350. From
Figure 9B, the MEAN values of the temperature signal also reached
its maximum value of 38.5°C at the time index of 350. The above
results jointly verified the effectiveness of the multivariate Gamma
process model in capturing and predicting the key performance
indicators of monitoring equipment such as vibration and
temperature during the mechanical equipment degradation
process. Overall, it can be concluded that the effectiveness of the
multivariate Gamma process model in predicting the degradation
and lifespan of mechanical equipment can meet practical needs.

4.3 Comprehensive performance analysis of
the mechanical equipment DLPM based on
multivariate stochastic processes

To observe the prediction performance of the mechanical
equipment DLPM based on multivariate stochastic processes
more intuitively, the predicted results of the mechanical
equipment life based on multivariate stochastic processes are
plotted in Figure 10. Regardless of the type of stochastic process,
both the predicted values and the true values decreased as the time
index increased. Among them, when the time index was 350, the
predicted values of all stochastic processes coincided completely
with the true value at the remaining life of 0 days. This phenomenon
indicated that as time progressed, the predicted values gradually
approached and eventually equaled the true values, thus verifying
the accuracy of the model. In addition, when the time index was 100,
the true remaining life value was 250 days. The predicted values of
the univariate, bivariate, and trivariate stochastic processes for the
remaining life were 208 days, 287 days, and 282 days, respectively,
with differences of 42 days, 37 days, and 32 days compared to the
true value. From these data, it can be seen that the accuracy of the
remaining life prediction based on the trivariate stochastic process is
higher than that of the univariate and bivariate stochastic processes,
further demonstrating the effectiveness and superiority of the
mechanical equipment DLPM based on multivariate
stochastic processes.

FIGURE 7
Performance degradation trend of ternary Wiener processes. (A) The degradation trend of horizontal and vertical signals. (B) The degradation trend
of temperature signals.

FIGURE 8
Probability density function based on multivariate
gamma processes.
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The mechanical lifespan is influenced by various random factors
such as working environment, maintenance, equipment quality,
workload, and internal material characteristics. Therefore, it has
uncertainty. A mechanical system based on the thermal generator is
measured and analyzed. Further analysis is conducted using
uncertainty, sensitivity, and confidence intervals. The study
randomly selects 5 influencing factors for stochastic process
modeling, and calculates the loss values under different factors based
on different confidence levels. Based on the model parameters,
sensitivity analysis is conducted using parameter sensitivity. The
random influencing parameters include work environment,
maintenance and upkeep, equipment quality, workload, and internal
material characteristics. The sensitivity analysis weights of the random
parameters based on variance are shown in Figure 11. From Figure 11,
in the uncertainty analysis, the working environment had the greatest
impact on the mechanical life, with an impact weight of 47.68%. In
addition, the impact weights of workload and internal material
characteristics were also high, reaching 28.98% and 16.96%,
respectively. The remaining other influencing factors had a relatively
small impact on the mechanical life.

To verify the effectiveness of the prediction method in practical
applications, the study conducts validation analysis on the real
degradation data of bearings obtained in actual experiments. The
actual bearing degradation data contains a total of 351 pieces of data,
including three performance indicators that can characterize the
health status of the bearing, namely, horizontal vibration signal,
vertical vibration signal, and temperature. The process of obtaining
experimental data on bearing degradation is as follows: Firstly, select
a representative mechanical equipment and ensure that it is
equipped with sensors capable of measuring horizontal vibration,
vertical vibration, and temperature. Common equipment includes a
rolling bearing test bench. Next, install acceleration sensors in the
horizontal and vertical directions of the bearings to measure
vibration signals, and install temperature sensors near the
bearings to measure temperature signals. Then set the bearings to
operate under a certain load and speed to simulate actual working
conditions. And record the operation process of the bearing from the
initial state to the failure state. Finally, collect data once per second
and record vibration and temperature signal data in real time. The

FIGURE 9
Performance degradation trend of ternary gamma processes. (A) The degradation trend of horizontal and vertical signals. (B) The degradation trend
of temperature signals.

FIGURE 10
Prediction results of mechanical equipment life based on
multivariate random processes. FIGURE 11

Weight chart for sensitivity analysis of random parameters.

Frontiers in Mechanical Engineering frontiersin.org10

Lin 10.3389/fmech.2024.1418137

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1418137


degradation path of horizontal vibration signal is as follows: 1. Initial
stage: During normal operation of the bearing, the RMS value of the
horizontal vibration signal is low, the fluctuation range is small, and
it shows a stable state. 2. Intermediate stage: As the bearings wear
and age, the RMS value of the horizontal vibration signal gradually
increases, the fluctuation range becomes larger, and a certain
amplitude of fluctuation occurs. 3. Degradation stage: As the
bearing approaches failure, the RMS value of the horizontal
vibration signal significantly increases and fluctuates violently,
reaching a high value, indicating that the bearing is about to fail.

The degradation path of vertical vibration signals is as follows: In
the initial stage, the RMS value of vertical vibration signals is similar
to that of horizontal vibration signals, initially low and stable. 2.
Intermediate stage: As the bearing deteriorates, the RMS value of the
vertical vibration signal gradually increases, and the fluctuation
amplitude increases, similar to the trend of the horizontal
vibration signal. 3. Degradation stage: When the bearing is
approaching failure, the RMS value of the vertical vibration
signal rises sharply and fluctuates violently, reaching a high
value, indicating that the bearing is about to fail.

The degradation path of temperature signal is as follows: 1. Initial
stage: When the bearing temperature is operating normally, the MEAN
value of the temperature signal is low and the fluctuation range is small.
2. Intermediate stage: As the bearing wears and internal friction
increases, the MEAN value of the temperature signal gradually
increases, and the fluctuation range expands. 3. Degradation stage:
When the bearing is approaching failure, the MEAN value of the
temperature signal significantly increases, reaching a high value, and the
temperature fluctuates violently, indicating a deterioration of
lubrication conditions and an increase in friction.

A life prediction model in this real-world test set is used to predict
the lifespan of bearings. The bearing life prediction results based on
multivariate random processes are shown in Figure 12. From Figure 12,
both the binary Wiener process and the ternary Wiener process were
very close to the real data of the bearing degradation process. Among
them, the prediction accuracy of the ternaryWiener process was higher
than that of the binary Wiener process, but the improvement was not
significant. Overall, the prediction results of this prediction model were

very close to the actual degradation data of bearings. Therefore, this
prediction model can objectively predict the remaining life of
mechanical equipment, which is effective.

In order to further verify the performance of the method in
practical applications, the real degradation process of bearings was
analyzed. The relationship between bearing degradation and time is
shown in Figure 13. From Figure 13, it can be seen that as the
processing time of mechanical equipment increases, the degradation
process of bearings shows a significant strengthening trend. Within
a time index of 150, the degradation rate increased from 0% to 30%,
indicating an early stage of degradation. During the time index of
150–275, the degradation rate remained around 40%, indicating a
mid-term degradation. After the time index of 275, the degradation
rate shows an exponential growth trend, and the degradation rate of
the bearing gradually approaches 80%. This stage belongs to the
severe degradation stage. In summary, it can be seen that the
degradation process curve can be divided into three stages:
initial, mid-term, and severe degradation, which can better reflect
the degradation process and life cycle of bearings.

To comprehensively analyze the performance of the mechanical
equipment DLPM based onWiener and Gamma processes, the Root
Mean Square Error (RMSE) is hired to analyze the predicted results
of the remaining life of the mechanical equipment under different
models, as Table 3. In the Wiener process-based life prediction

FIGURE 12
Comparison chart of bearing life prediction results based on
multivariate random processes.

FIGURE 13
The relationship between bearing degradation and time
transformation.

TABLE 3 Prediction results of residual life of mechanical equipment under
different methods.

Prediction model RMSE

Wiener Process Univariate Wiener 4.86

Binary wiener 4.02

Ternary wiener 2.58

Gamma process Unary gamma 6.34

Binary gamma 5.87

Ternary gamma 3.49
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model, the RMSE value of the trivariate Wiener process prediction
results was 2.58, which was 46.91% and 35.82% lower than the
univariate and bi-variate Wiener processes, respectively, indicating
higher accuracy of the mechanical equipment DLPM based on the
trivariate Wiener process. This is because the ternary Wiener
process can better capture the complexity and uncertainty in the
degradation process of mechanical equipment by introducing
more random variables, thereby improving the accuracy of
prediction. In the Gamma process-based life prediction model,
the RMSE value of the trivariate gamma process prediction
results was 3.49, which was 44.95% and 40.54% lower than the
univariate and bivariate Gamma processes, it can be seen that the
ternary gamma process can more accurately predict the
remaining life and reduce prediction errors by simulating the
degradation path of mechanical equipment in more detail. In
summary, it can be seen that the mechanical equipment
degradation and life prediction model based on the ternary
gamma process has superior prediction performance.

5 Discussion

In recent years, significant progress has been made in equipment
failure and remaining life prediction technology in multiple fields.
To accurately evaluate the performance degradation of mechanical
equipment and predict its remaining service life. The study
innovatively combines gamma processes and Wiener processes to
construct a model based on multivariate stochastic processes.
Compared with other research methods, this method has more
advantages. For example, Cheng C’s research team used deep
convolutional neural networks to construct a data-driven
framework. The main limitation of this method is that it only
utilizes convolutional neural networks to handle a single type of
degraded feature, so its applicability is limited (Cheng et al., 2020).
In contrast, the multivariate stochastic process model proposed in
this study not only considers vibration signals, but also integrates
multiple performance indicators such as temperature signals, which
can more comprehensively evaluate the health status of equipment
and has a wider range of applications. Meanwhile, the nonlinear
Wiener process model proposed by Sun F et al. can only characterize
degradation behavior and cannot make accurate predictions (Sun
et al., 2021). The experimental results of this study show that in the
life prediction model based on gamma processes, the RMSE value of
the ternary gamma process prediction result is 3.49, which is 44.95%
and 40.54% lower than that of the unary gamma and binary gamma,
respectively. It can be seen that the multivariate stochastic process
model in this study, through the combination of gamma process and
Wiener process, can better capture the degradation law of
equipment in the time dimension, thereby improving the
accuracy and stability of prediction. In addition, Ren L and other
researchers proposed the method of combining artificial intelligence
with cloud edge computing, emphasizing the efficiency of real-time
prediction, but there are still shortcomings in processing
multivariate data fusion and modeling of complex degradation
processes (Ren et al., 2020). The experimental results of this
study show that in the mechanical equipment degradation and
life prediction model of the multivariate Wiener process, when
the time index is 350, the RMS values of the vertical and

horizontal vibration signals both reach 12.8, and the MEAN
value of the temperature signal reaches the highest value of
38.8C. The mechanical equipment degradation and life prediction
model based on multivariate gamma processes has RMS values of
14.1 and 11.3 for the horizontal and vertical vibration signals of
bearings at the same time index, respectively, while the MEAN value
of the temperature signal reaches its maximum value of 38.5°C. It
can be seen that the method proposed in this article not only
improves prediction accuracy through a multivariate random
process model, but also takes into account the dynamic changes
of multivariate performance indicators, providing a more in-depth
degradation analysis. Therefore, it can be seen from the above that
the research on mechanical equipment degradation and life
prediction based on multivariate stochastic processes has more
performance advantages compared to other methods.

6 Conclusion

To accurately predict the remaining life of mechanical
equipment, this study constructed a multivariate stochastic
process mechanical equipment degradation and life prediction
model, which could analyze multiple performance indicators
through the stochastic process model with Gamma and Wiener
processes. The results show that the degradation and life prediction
model of mechanical equipment based on multivariate random
processes studied can effectively evaluate the health status of
mechanical equipment and help predict the remaining service life
of mechanical equipment. However, the study only considers the
normal degradation process of the equipment and does not take into
account the possibility of sudden equipment failure. Considering
that unpredictable faults may suddenly occur in the equipment,
future research can consider combining classification algorithms to
identify and classify possible failure conditions and situations. At the
same time, it is also possible to combine random impact models to
simulate the impact of unexpected events on the performance of
mechanical equipment, which can help predict sudden equipment
failures caused by external factors. To further improve the
degradation and life prediction ability of the model, future
research directions can consider conducting more in-depth
research on the time-varying characteristics of the correlation
between performance indicators, thereby enhancing the ability of
the prediction model to capture dynamic changes and further
improving prediction accuracy.
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