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Data-drivenmodels that act as surrogates for computationally costly 3D topology
optimization techniques are very popular because they help alleviate multiple
time-consuming 3D finite element analyses during optimization. In this study,
one such 3D CNN-based surrogate model for the topology optimization of
Schoen’s gyroid triply periodic minimal surface unit cell is investigated. Gyroid-
like unit cells are designed using a voxel algorithm and homogenization-based
topology optimization codes in MATLAB. A few such optimization data are used
as input–output for supervised learning of the topology-optimization process via
the 3D CNN model in Python code. These models could then be used to
instantaneously predict the optimized unit cell geometry for any topology
parameters. The high accuracy of the model was demonstrated by a low
mean square error metric and a high Dice coefficient metric. The model has
the major disadvantage of running numerous costly topology optimization runs
but has the advantages that the trainedmodel can be reused for different cases of
TO and that the methodology of the accelerated design of 3Dmetamaterials can
be extended for designing any complex, computationally costly problems of
metamaterials with multi-objective properties or multiscale applications. The
main purpose of this paper is to provide the complete associated MATLAB and
PYTHON codes for optimizing the topology of any cellular structure and
predicting new topologies using deep learning for educational purposes.
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1 Introduction

Metamaterials have recently emerged as a “holy grail” for material scientists as these
possess abundant physical properties and versatility in various fields (mechanical, thermal,
acoustic, optical, electromagnetic, and biomedical) (Engheta and Ziolkowski, 2006). The
mechanical properties of these materials as studied by engineers show promise because of
their unique architectures, which can be tailored to any desired geometry, thus enhancing
the properties of the structure beyond the capabilities of the material (Yu et al., 2018). An
attractive feature of these materials is that their extreme properties can be topologically
controlled.

The microstructure of the base unit of these materials, referred to as the representative
unit cell (RUC), determines their mechanical and physical properties (Jacob, 1991). The
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design of the RUC of metamaterials satisfying some desired
properties is called the “inverse design” problem and has been
performed through experiments and/or topology optimization
(TO) (Osanov and Guest, 2016). TO’s aim is to obtain optimal
layouts of the microstructure for a desired objective function of a
metamaterial such as maximizing the bulk/shear moduli or
minimizing Poisson’s ratio, subject to constraints such as volume
constraints (Neves et al., 2000). This area of research has been
extensively studied in 2D (Xia and Breitkopf, 2015). Gao et al.
studied both 2D (Gao et al., 2019a) and 3D microstructures for
whichMATLAB codes are also available (Gao et al., 2018). An initial
design of the microstructure may or may not be used. Some of the
initial designs used in the literature consist of simple designs with a
hole at the center or a few distributed voids, which after TO give new
topologies that satisfy the desired objective (Gao et al., 2019a).

Triply periodic minimal surface (TPMS), a concept from
differential geometry, is one of the topologies adopted for the
RUC of micro-structured materials. These surfaces minimize the
local surface area for a given boundary and possess the property of
the mean curvature being zero at every point on the surface
(Torquato and Donev, 2004). They divide the unit cell domain
into two or more non-intersecting domains. What makes them
attractive is their fascinating topologies when repeated periodically
in 3D. TPMS can be mathematically controlled and exhibits several
unique properties, such as a large surface-area-to-volume ratio (Al-
Ketan and Abu Al-Rub, 2019). Advances in the manufacturing
industry, such as the use of additive manufacturing (Gardan,
2016), have also facilitated their fabrication, which was previously
a major inhibition of their usage with traditional methods. Many
studies have dealt with designs of TPMS structures based on
experimental studies of their properties due to their geometry, as
reviewed by Al-Ketan and Abu Al-Rub (2019). The current study
addresses a specific TPMS of the gyroid structure. Gyroid TPMS
structures are used in various applications, including orthopedic
implants, due to their efficient load transfer, continuous filling of
void space (Yang et al., 2019b), and catalytic converters due to
efficient heat transfer through void space (Al-Ketan et al., 2019).
Gyroid structures are also found in nature in soap films (Schoen,
1970) and butterfly wings (Michielsen and Stavenga, 2008). The
current study proposes a novel method of designing gyroid-like unit
cells for desirable mechanical properties subject to boundary
conditions and a volume constraint using TO. It starts with the
gyroid structure as the initial design and then optimizes it for a
specific objective function to yield a gyroid-like structure with
optimized properties. The novel approach discussed in this work
captures the surface geometry of TPMS in a voxel form; when
subjected to TO, the resulting design is similar to a gyroid but may
not possess a zero property of mean curvature at all points. Thus, an
initial design of a voxelized gyroid isosurface is subjected to TO to
obtain a gyroid-like final structure with an improved material
distribution that satisfies the desired objective and volume
constraints.

The major challenge faced during 3D unit-cell design using the
above approach is the computational time taken for TO, which
exponentially increases with the number of finite elements or mesh
size (number of voxels in this study) of the unit cell. For example, a
mesh of 32 elements in all three dimensions takes approximately 67 s
on a workstation for a single iteration of the optimization process,

which may take approximately 200–800 iterations to converge. To
alleviate this computational cost, an alternative model to the
optimization process is required that can use information from a
few optimization runs and can consequently be used as a
computationally cheap alternative for unit cell design. Recently,
machine learning models have emerged as surrogate models for
simplifying computationally intensive designs and making design
possible even on laptops. Among these, deep learning (DL) models
were used to predict composite properties beyond elastic limits (Yang
et al., 2019a) to predict path-dependent plasticity (Mozaffar et al.,
2019), for plasticity and thermo-viscoplasticity (Abueidda et al.,
2021a), for constitutive modeling of plastic deformation of open-
cell foams (Settgast et al., 2019), for predicting effective thermal
conductivity of composites (Rong et al., 2019), computational
material design of flexoelectric nanostructures with TO (Hamdia
et al., 2019), predicting fatigue behavior (Spear et al., 2018),
predicting stress–strain curves of composites’ microstructures (Yang
et al., 2020), developing networks for advanced composite
manufacturing (Goli et al., 2020), and in meshless physics-informed
methods (Abueidda et al., 2021b). These have inspired the researchers
to use the DL model in the context of TO for designing TPMS based
metamaterials. DLmodels based on 2D convolutional neural networks
(CNNs) have been used in applications such as TO for 2D unit cell
generation (Kollmann et al., 2020), for non-linear 2D structure
generation (Abueidda et al., 2020), and for mechanical properties of
composites (Abueidda et al., 2019a). CNNs are robust in image
recognition tasks, and this advantage has been exploited to
quantitatively predict the mechanical properties of composite
structures over the entire volume fraction space by using
checkerboard composites as image inputs to CNNs (Abueidda
et al., 2019a). Inspired by such research, this study extends these
CNN-based models to predict 3D unit cell TO design. Little of the
literature has dealt with DL for 3DTO of 3D TPMS structures: for high
resolution TO of lattice structures in Liu and Li (2023); optimization
for superior mechanical properties of plate TPMS lattices (Wang et al.,
2024); TO for maximizing bulk modulus performed by the authors
(Viswanath et al., 2021). This study builds upon our previous findings
(Viswanath et al., 2021) in two ways: 1) our previous work dealt only
with a single TO parameter of volume fraction and the objective
function of bulk modulus, and 2) the optimal densities did not follow a
0–1 configuration and hence were not learned well by the CNN
algorithm, resulting in a high mean-square error for the CNN
model. This study focuses on this gap in our previous work and
proposes the potential applications of using such accelerated 3DTO for
the unit cell design of gyroid TPMS. It is known that parallel-based
large-scale TO methods are already quite mature as alternatives to
data-driven surrogate models, but the purpose of this paper is
educational and to provide PYTHON codes for data-driven
modeling for computationally costly optimization problems, which
can be extended/utilized for other complex time consuming
optimization techniques. Hence, the methodology of how 3D DL
models successfully model the TO of a gyroid with minimal error
and provide the associated codes for researchers to extend and utilize to
other challenging problems is discussed.

The structure of the paper is as follows. Section 2 explains the
methodology of generating gyroid-like structures for unit cell
geometry and design using 3D homogenization-based TO.
Section 3 elaborates the surrogate DL model and describes the
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data generation procedure and the architecture of the 3D CNN
network used. Section 4 lists the different errors encountered in
various approximations in this study and how they are accounted
for. Section 5 discusses the results obtained from the proposed
model. The last section summarizes the insights gained from this
model and future directions in this research.

2 Methodology

2.1 Voxel-based architecture of gyroid TPMS

A gyroid unit cell, especially in sheet-based form, offers enhanced
properties in terms of strength and energy absorption characteristics
compared to other TPMS such as Primitive and IWP structures
(Abueidda et al., 2019b). A uniaxial modulus of 250 MPa, strength of
10 MPa, and energy absorption of 2,500 kJ/m3 for a gyroid lattice of
4 × 4 × 4 unit cells of 40% relative density compressed to 25% strain at
a strain rate of 0.01 s−1 is recorded in Abueidda et al. (2019b). Network
and matrix phase gyroid lattice structures develop bandgaps below
15 kHz, whose bandwidth can be tuned by adjusting volume fraction
and cell sizes, while other TPMS-like diamond lattices do not
(Elmadih et al., 2019). A normalized permeability of 0.0015, a
normalized effective diffusivity of 0.4, and a normalized effective
thermal conductivity of 0.25 with void phase conductivity of
1 Wm−1K−1 and solid phase conductivity of 100 Wm−1K−1 is
exhibited by a gyroid unit cell of 60% porosity (Luo et al., 2020).

The generation of a gyroid microstructure for the current study
is discussed here. Figure 1A shows the isosurface of a gyroid
structure along with its unit cell and periodic structure
(Figure 1B). This surface is generated from the level set
approximation equation:

sin
2πx
Lx

cos
2πy
Ly

+ sin
2πy
Ly

cos
2πz
Lz

+ sin
2πz
Lz

cos
2πx
Lx

� c, (1)

where c denotes the level set value, which can be a constant or a
function of x, y, and z. Lx, Ly, and Lz are unit cell lengths in the three
directions.

For this study, the isosurface is generated from Equation 1 with
c = 0 and Lx, Ly, and Lz = 1 passed to a voxel generation
algorithm—the MATLAB codes available in the literature for
cellular structures (Dong et al., 2018) are modified for this study

for generating voxelized forms of TPMS—by passing the vertices’ and
edges’ information of the isosurface. For more information about this
procedure, see the supplementary material which includes the
MATLAB code and an explanation of the procedure. The
voxelized RUC (Figure 1C) is generated with a mesh size of
32 voxels in each direction. Each voxel is given a value of 1 (red)
if any part of the isosurface edge (obtained from isosurface
information) passes through that voxel; otherwise, it is given the
value 0 (white) to indicate the void space inside the gyroid. The thin
isosurface is thus thickened by the voxel algorithm due to the
crisscross connections of the edges–vertices defining the isosurface.
Figure 2 shows few cross sections at different levels to inspect the
edges of the structure inside. These 2D slices (cross sections) help
visualize how the curved interior edges of the gyroid are approximated
by the 32 × 32 voxels (squares in each 2D figure). The relative density
of 58.7% will be obtained by calculating the number of black voxels
divided by the total number of voxels (32 × 32) in each 2D slice. This
figure is taken from the 1st, 4th, 8th, 16th, and 32nd slice of a 32 × 32 ×
32 cube of whole gyroid structure.

Using this 3D gyroid microstructure as the initial design, the
optimal gyroid RUC can be designed using a 3D homogenization-
based TO approach to maximize either the bulk or shear modulus
(Gao et al., 2018). The broad advantage of using such a voxelized
discretization of a smooth surface will eventually be clearer when the
concept of a CNN is introduced for learning RUC with such
a geometry.

2.2 3D homogenization-based TO

This study employs a homogenization-based TO approach to
microstructure design to design TPMS metamaterials optimized for
either the maximum bulk or shear modulus (Gao et al., 2018). The
homogenization method for periodic cellular materials or
composites calculates their effective properties within the linear
elastic regime (Guedes and Kikuchi, 1990) using RUC and periodic
boundary conditions. As the RUC represents continuously periodic
cells in all three dimensions, a periodic boundary condition only can
simulate the effect of adjoining cells for the RUC. This effective
property of the RUC is subsequently used in the TO algorithm,
which maximizes or minimizes a desired objective function. The TO
algorithm used for homogenized RUC is the density-based solid

FIGURE 1
(A) Isosurface of the gyroid with c = 0, (B) RUC of a gyroid along with the periodic structure (Al-Ketan and Abu Al-Rub, 2019), and (C) voxelized
gyroid RUC.
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isotropic material penalization (SIMP) approach (Bendsøe, 1989;
Sigmund, 2007), as the proposed voxelized geometry of the unit cell
facilitates the calculation of densities with each voxel acting as a
finite element in the SIMP approach. The MATLAB code associated
with the 3D TO is available at Gao et al. (2019b) and was modified
for this research. The energy-based homogenization method is
briefly discussed here.

Given a unit cell volume |Y|, the homogenized stiffness
tensor EH

ijkl is given by the following volume integrand:

EH
ijkl �

1
Y| |∫Y

Epqrsε
A kl( )
rs ε

A ij( )
pq dY. (2)

εA(ij)pq � εo(ij)pq − ε*(ij)pq , Epqrs are the constitutive parameters, εo(ij)pq is
the initial macroscopic strain field corresponding to the six
independent loading strain cases (for 3D), and ε*(ij)pq denotes the
unknown strain field. When the unit cell is subjected to each of the
initial loading strains, the equilibrium equation with periodic
boundary conditions is solved for the unit cell to obtain the
unknown strain fields ε*(ij)pq (Gao et al., 2018). The RUC is
divided into N finite elements with 6 × 6 element stiffness
matrices ke, and uA(ij)e is the element displacements
corresponding to strain εo(ij). Hence, the finite element
summation of the integrand in Equation 2 is written in terms of
ke and ue:

EH
ijkl �

1
Y| |∑

N

e�1
u
A ij( )
e( )T

keu
A kl( )
e . (3)

The expanded form of the homogenized stiffness tensor in
Equation 3 (Gao et al., 2018) is

EH
1111 EH

1122 EH
1133

EH
2211 EH

2222 EH
2233

EH
3311 EH

3322 EH
3333

EH
1112 EH

1123 EH
1131

EH
2212 EH

2223 EH
2231

EH
3312 EH

3323 EH
3331

EH
1211 EH

1222 EH
1233

EH
2311 EH

2322 EH
2333

EH
3111 EH

3122 EH
3133

EH
1212 EH

1223 EH
1231

EH
2312 EH

2323 EH
2331

EH
3112 EH

3123 EH
3131

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

The SIMP algorithm in TO is then applied to the homogenized
RUC. The element density ρe ϵ [0, 1] of each finite element is the
design variable, and the element Young’s modulus constituting ke is
defined in terms of density as

Ee ρe( ) � Emin + Eo − Emin( )ρpe , (5)
where Eo = 1 GPa, the solid element Young’s modulus and Emin �
1e−9 GPa, and the void Young’s modulus are introduced to prevent
singularity in the stiffness matrix. The penalization factor p in
Equation 5 is taken here as 5.0. To avoid the numerical
instabilities of mesh dependence and checker boarding (Sigmund
and Petersson, 1998), a density filtering approach is adopted which
uses filtered densities ρ calculated from pseudo densities η for
optimization. The relationship between the densities is given
below (Bruns and Tortorelli, 2001):

ρ � �Wη,

wij � max 0, rmin − Xi − Xj

���� ����2( ), (6)

�wij � 1

∑Nrmin
k�1 wk

wij,

where rmin is the filter radius and �wij is the normalized weight
coefficient that forms the normalized matrix �W. Xi are coordinates

FIGURE 2
1st, 4th, 8th, 16th, 24th, and 32nd 2D slices of the voxelized gyroid RUC.
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of the centroid of element i. The optimization problem can now be
stated as

max :
ρ

f EH
ijkl ρ( )( ),

such that: KUA ij( ) � FA ij( ), (7)
V η( ) − Vf ≤ 0,

0≤ ρe ≤ 1,

where K is the global stiffness matrix, UA(ij) is the global
displacement vector corresponding to strain case(ij), FA(ij) is the
external force vector, and V(η) is the volume fraction obtained by
dividing the element volume by the total volume of the domain; this
value should not exceed Vf, the prescribed limiting value.

The objective function in Equation 7 used in this work is to
maximize the bulk modulus (Equation 8) and shear modulus
(Equation 9) given by Gao et al. (2018):

fb EH
ijkl ρ( )( ) � ∑3

i,j�1
EH
iijj, (8)

fs EH
ijkl ρ( )( ) � ∑3

i,k�1
EH
ijkl i ≠ j& k ≠ l( ). (9)

The sensitivities are calculated using the adjoint method
expressed as

∂EH
ijkl

∂ρe
� 1

Y| |pρ
p−1
e Eo − Emin( ) u

A ij( )
e( )T

keu
A kl( )
e . (10)

The densities can be adjusted to 0 or 1 solution with the use of a
Heaviside filter (Guest et al., 2004). This approach can be particularly
useful when dealing with machine learning methods later in the work,
as a 0–1 morphology is easier to learn than one with intermediate
densities. This filtering introduces a Heaviside step function into the
density filter using the following smoothing function such that the
physical density ρe = 1 if ρe > 0 and zero if ρe = 0:

ρH � 1 − e−βρ + ρe−β. (11)
Here, the parameter β controls the smoothness of the

approximation. When β = 0, Equation 11 is similar to Equation
6 and, as β tends to infinity, the approximation approaches a true
Heaviside step function. To avoid local minima and to ensure
differentiability in the optimization, a continuation scheme is
used to gradually increase β from 1 to 512, doubling it every
50 iterations or when the change between variables in two
consecutive designs becomes less than 0.01.

The 2D slices of voxels corresponding to the optimized geometry
are shown in Figure 3. The voxelized gyroid RUC are smoothened
using the top3d app software (top3d, 2022), and varying relative
densities are displayed in Figure 4.

3 Surrogate DL model

The homogenization-based TO of the voxelized gyroid RUC
described in the previous section has one lacuna: its computational
time. This is indeed one of the major challenges in any 3D unit-cell
design—the computational time exponentially increases with the

mesh size (number of voxels in this study) of the unit cell. When the
objective becomes time-consuming, the “curse of dimensionality”
sets in (Bellman, 1961), and it becomes essential to seek alternative
ways of determining the objective functions. The method of
surrogate modeling (Myers et al., 2016) appeals in such situations
when cheaper alternatives can be employed to perform objective
function evaluations. These models can learn from the information
provided from a few optimization runs to replicate the process and
can consequently be used as computationally cheap alternatives for
optimizing unit cell design. Recently, data-driven models have
proven to be effective surrogate models for simplifying such
computationally intensive designs through the use of
training–learning algorithms. Among the vast literature on such
data-driven models, in this study the CNN-based model was chosen
because this class of deep neural networks has proven very successful
in image recognition when images are in the form of pixels in 2D and
voxels in 3D. Hence, the broad purpose of generating gyroid RUC
through the voxel algorithm has become more meaningful.

This section details the building of a DL-based model as a
surrogate for the TO of the gyroid microstructure given any volume
fraction or filtering radius. These two TO parameters were chosen
from a similar study in 2D TO of metamaterials (Kollmann et al.,
2020) which showed that these parameters affect the mechanical
properties of the designed microstructure. The DL model predicts
the optimal 3D gyroid unit cell which possesses the maximum bulk/
shear modulus for the specified volume fraction and filtering
radius—without the need for any traditional TO. This is achieved
by training the DL CNN model with a few optimized topologies
corresponding to different random volume fractions and filtering
radii. However, this training requires data to be generated through
many TO runs, which is the cost paid for later alleviating TO runs
for design.

3.1 Design of experiment (DoE) for data
generation

The flowchart of the workflow is shown in Figure 5. The
required data is computationally generated from MATLAB runs
of the code containing 3D TO of homogenized properties as
described in the previous section. As the flowchart indicates, the
isosurface of the gyroid is first generated from Equation 1. Here, c =
0, and a unit cell size is used. The isosurface is then voxelized by
discretizing the unit cell into 3D finite elements (each element is
called a voxel) and assigning a density of 1 to each voxel if the
isosurface passes through the voxel and 0 if the voxel does not have
any part of the isosurface. These voxel densities are used as an initial
design for the TO problem to maximize the bulk or shear modulus.
Two optimization parameters are studied here: the volume fraction
(Vf) in the range of 25%–45% and the filtering radius (rmin) of the
optimization in the range of 1.2–2.5 cm. These parameters are
chosen based on previous 2D metamaterial TO studies
(Kollmann et al., 2020). To generate the data, these two factors
are designed in a factorial design and data points are generated for
each pair of values (Table 1). The table shows the number of data
points in the center and the corresponding value of the volume
fraction on the left side and the filtering radius on top of any selected
data point number. For example, data point 1 has a volume fraction
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of 25% and a filter radius of 1.2 cm. Two such tables are created for
both the bulk modulus and shear modulus maximization objective.

A finite element mesh of 32 × 32 × 32 was chosen for the unit cell
dimensions of 1 cm × 1 cm ×1 cm. The FE model is a 3D eight-node
brick element with 6 d.o.f per node whose associated element
stiffness matrix ke is calculated in sub-function
elementMatVec3D.m in our MATLAB code Top3D_maxbulk.m.
The choice of mesh will be discussed in detail in Section 4. One
sample data point is shown in Figure 6 to illustrate what an
input–output voxel looks like for one set of parameter values.

The range of optimization parameters was chosen on the basis
that the volume fraction of interest in cellular solids ranged from
25% to 45% while the filtering radius was chosen based on studies of
different values ranging from 1 to 10. Figure 7 shows the shapes of a
TO result for a 40% volume fraction for various values of rmin. It was
found that large radius filter values lead to reduced effective
properties; hence, the maximum filter radius considered in this
study is 2.5 cm. Additionally, the value of rmin = 1 gives a
checkerboard pattern (Sigmund and Petersson, 1998); hence, the
limits were fixed at 1.2 cm–2.5 cm.

FIGURE 3
1st, 4th, 8th, 16th, 24th, and 32nd 2D slices of the initial and optimized (34%) voxelized gyroid RUC.

FIGURE 4
Optimized and smoothened voxelized gyroid RUC for various relative densities.
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3.2 Network architecture

This work extends the CNNmodel employed to predict optimized
2D metamaterials in Kollmann et al. (2020) to 3D metamaterials. An
encoder–decoder network proposed by ResUnet (Zhang et al., 2018),
which is a semantic segmentation neural network taking advantage of
both residual learning andU-net (Ronneberger et al., 2015), is used for
the model. This approach allows the network to include both of their
strengths. This motivates us to use our pixel-based geometry to learn
the property and the related gyroid RUC geometry (densities) such
that, for any desired property, the model predicts the geometry. The

architecture (Figure 8A) is similar to a U-Net (thus called due to the
U-shape of the blocks) with residual blocks instead of neural units as
its building block, and hence referred to as “ResUNet”. The
architecture can be divided into an encoder part, which encodes
the input images into a low-dimensional representation by a series of
convolution layers, and a decoder part, which receives the encoded
images from the third bridge connecting the encoder to the decoder,
constructing the RUC. The concatenation feature, shown by the
dotted lines in Figure 8, improves the segmentation accuracy.
ResUNet uses batch normalization (BN), rectified linear units
(ReLU), and convolutional layers (Conv), whereas U-Net uses only
ReLU and Conv in the building block. Four blocks of encoder and
decoders are used, with each building block shown in Figure 8B. The
advantage of this ResUnet over U-net is the concatenation of links
between the encoder and decoder which helps preserve features
(Kollmann et al., 2020).

The values of the TO parameters Vf and rmin and an identifier
(ID) for the desired mechanical property (here, 1 for the maximum
bulk modulus and 2 for the maximum shear modulus) are converted
into 3D matrices (images) assigning the same value to all voxels
illustrated in Figure 6. The CNN model takes these input 3D images
of Vf, rmin, and ID, along with the output 3D image of the
corresponding topology optimized densities, and uses this
information to train its weights. Once the training phase is
complete, the CNN model is ready to predict the desired

FIGURE 5
Flowchart of the data generation and prediction process.

TABLE 1 Data points table indicates values of the volume fraction, Vf, and
filter radius rmin for each data point.

Filter radius (cm)

1.20 1.21 1.22 1.23 . . . 2.50

Volume fraction (%) 25 1 2 3 4 . . . 131

26 132 133 134 135 . . . 262

. . . . . . . . . .

. . . . . . . . .

45 2,621 2,622 2,623 2,624 . . . 2,751
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microstructure topology corresponding to any property given to
it (Figure 9).

The dataset generated consists of 2,751 data points, each of
which contains an identifier for the objective, the volume fraction,
the filter radius, and the optimized topology (Figure 5). The
computations were time-consuming and were performed on the
IBM HPC with hardware specifications: two 12-core Intel Xeon E5-
2695 v2 (Ivy Bridge) CPUs, two NVIDIA K20M GPUs, and 264 GB
of main memory, and on the iForge HPC cluster hosted at the
National Center for Supercomputing Applications (NCSA) which
consists of Intel/Skylake nodes, each with 40 cores and 192 GB of
RAM, and a couple of nodes equipped with NVIDIA v100 GPU
cards. The CNN model was developed using Keras with the
Tensorflow backend (Abadi et al., 2016). The hyper parameters
used are batch-size: 128, learning rate: 0.001, Adam optimizer, and
150 epochs. Usually, a large dataset is required for fast convergence,
but since the computational cost of TO is high, a small dataset size is
chosen to analyze the results. The computational times for the entire
process are shown in Table 2. For each data point generation on a
core on a node of the HPC, 2.4 h are needed, which, multiplied by
2,751 data points, would have been a herculean task. However, by
modifying the MATLAB code using job arrays to split and generate
all the data points in parallel—as each TO run is independent of each
other—the data generation is split into ten data points per MATLAB
simulation, requiring only 275 runs for the entire data generation.
This is achieved with 200 runs on five nodes of 40 cores on iForge
and 75 runs on one node of 26 cores on IBM, taking in total only 24 h

for complete data generation. The times required for dataset
generation on a personal computer and on an HPC are also
compared in Figure 10. As indicated in the table, the DL training
to calculate the weights and biases requires only 5.5 GPU hours.
Once the DLmodel is properly trained and validated, the predictions
of topologies for new input parameters can be obtained accurately
and almost instantly, even on a laptop and without any modeling
software. This is the greatest advantage of using surrogate
DL models.

3.3 Model evaluation

The CNN model was evaluated for its ability to predict ground
truth data using the mean square error (MSE) metric (Equation 12)
as the loss function of the model and the mean dice similarity
coefficient (DSC) metric (Equation 13) for flattened 3D voxels
(Abueidda et al., 2020). The MSE measures how much the
predicted topology deviates from the ground truth, with smaller
values of MSE preferred. The DSC compares the predicted topology
image with the ground truth topology image and gives the measure
of how many voxels match in both. Therefore, a higher DSC is
preferred because it would suggest a greater match between the
ground truth and prediction.

These metrics are evaluated using the following expressions for
M data points, T the ground truth segmentation of input channel I,
and O the CNN model segmentation:

FIGURE 6
One sample data point: voxels for bulk modulus maximization ID, a volume fraction of 20%, and a filter radius of 1.5 were used as inputs, and the
corresponding optimized densities were used as outputs.

FIGURE 7
Optimized topologies for a volume fraction of 40% for different filtering radii of (A) 3 cm, (B) 5 cm, and (C) 8 cm.
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MSE � 1
M

∑M
i�1

T Ii( ) − O Ii( )‖ ‖2, (12)

DSC � 1
M

∑M
i�1

2 O Ii( ) ∩ T Ii( )| |
O Ii( )| | + T Ii( )| |. (13)

4 Error analysis

Various approximations used during the modeling of the unit
cell and its simulations introduce various errors into the model
developed for the gyroid RUC, and this will also affect the CNN
modeling of the unit cell. Hence, a detailed error analysis is carried
out to study all these errors and suggest methods to minimize their
effect on the surrogate modeling.

4.1 Error in the geometric modeling of
isosurfaces

An isosurface is created with different mesh points, and the
number of mesh points can introduce the first discretization
error. Figure 11 shows an isosurface with various mesh points,
for which the surface is visually best captured by a minimum of
15 points. This is not the FE mesh which is used to voxelize the
isosurface later but instead is the mesh points used to generate
the isosurface from Equation 1. Mesh sizes of 5, 10, 15, 20, and
32 were used to generate surfaces from which voxelized cubes
using 32 voxels (selection criteria discussed in the next section)

in each of three directions were generated, and the relative
densities of each of these 32 × 32 × 32 cubes were compared.
The difference in relative densities converges after 15 mesh
points, indicating that the actual relative density of the
thickened isosurface is captured. Thus, 15 was chosen as the
mesh size to generate an isosurface of c = 0, which was voxelized
for analysis.

4.2 Error in voxelizing surface geometry

The CNN modeling requires 3D input images with voxels
chosen as powers of 2–8, 16, 32, 64, and so on. Hence the voxel size
of RUC (or finite element size) was chosen by performing
homogenization-based TO and choosing a mesh size beyond
which there was convergence to the homogenized matrix and
compliance of the structure. An element size of 8 was
discarded, as it was less than the mesh points of the isosurface
(15 chosen in the previous section). Since analysis is used to obtain
the best mechanical properties, the value of the bulk modulus and
shear modulus can be studied for both 16 and 32 voxel sizes. The
32 finite element models had lower compliance and higher bulk
modulus and shear modulus values with 60% relative error than
did the 16 finite element models, even though the former were
computationally expensive. Further examination with a 64-mesh
size showed no improvement in objective functions from 32, which
was hence the final choice for the voxel size as it considerably
improved the mechanical properties from smaller finite element
sizes and was also twice the mesh points (15) used to generate the
isosurface.

FIGURE 8
(A) ResUNet architecture. The filter sizes are written over each filter (black) while changes in the 3D input (blue) are written on the sides. (B)
Residual block.
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4.3 Sampling error

A small sample size of 2,751 data points is bound to create
modeling errors in the CNN model, which requires a large dataset
for training. This problem is foreseen while choosing data-driven
modeling; hence, remedial measures of bootstrapping and cross-
validation can resolve such issues. The mean square error metric
indicates such lacunae, which can be remedied if needed. A full
factorial DoE is more suitable than a random set of data for such a
case of low sample size, since it ensures all the values of the input
parameters are represented in the dataset.

4.4 Errors in fitting the CNN model

To prevent the issue of over- or under-fitting, the loss
function (here the mean square error metric) and the dice
coefficient metric are studied for both the training and
validation sets. The data are thus split into training set, testing
set, and a validation set. A low training set error indicates that
there is no under-fitting, but a low validation set error is also
required to show that overfitting has not occurred. Hence, both
these errors are monitored. In addition, a low testing set error
indicates a low generalization error.

FIGURE 9
Training and prediction phases of the proposed 3D CNN.

TABLE 2 Computational time taken for HPC.

Activity CPU hours GPU hours

Data generation (with 5 nodes of 40 cores on iForge and 1 node of 26 cores on IBM) 24 —

DL training — 5.5

DL prediction 0.001 —
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5 Results and discussion

The gyroid microstructure of 32 × 32 × 32 voxels must be the
first topology optimized using the MATLAB code starting from an
initial high-density gyroid microstructure design. This initial design
not only helps guide the TO toward the required topology but also
helps in faster convergence. The resulting topology optimized
designs obtained for objective functions of the bulk modulus and
shear modulus are shown in Figure 12. The range of optimized
topologies preserves the gyroid-like structure, hence resembling the
initial design, which is desired, reducing only the volume fraction
according to the given volume constraint. As the filtering radius
increases, the objective function decreases, and with a very low
filtering radius the optimization does not converge for low volume
fractions. Few topologies from the data sample corresponding to the
maximum bulk objective are shown for different values of the
volume fraction and filter radius (2–6 in Figure 12). The
topologies corresponding to a very low filter radius show hollow
sections in the gyroid (1 in Figure 12). For example, for a 25%
volume fraction, the topology corresponding to a filter radius of
1.4 cm for the bulk modulus objective and 1.2 for the shear modulus
objective has hollow parts in their topology and, hence, undesirable
designs which are discarded from forming the DL dataset.

To maximize the objective functions, a filtering radius value of
approximately 1.5 cm was ideal for low volume fractions, whereas a
filtering radius of 1.3 was ideal for higher volume fractions. A higher
volume fraction led to higher objective values, as expected. A few

combinations of volume fraction and filtering radii did not converge.
The gaps in the surface show values for which the TO did not
converge after 1,000 iterations and hence were discarded from the
dataset. These voids are indicated by gaps in the surface in the figure.
Hence, out of 2,751 data points, the final training dataset consisted
of 2,597 datapoints whose bulk modulus was maximized and
2,741 data points whose shear modulus was maximized. Each
datapoint included the identifier indicating the objective
(maximizing shear or bulk), volume fraction, the filtering radius,
and 32 × 32 × 32 density. The objective function data points were
mixed and shuffled for the training dataset. The data were split into
90% training data, 5% validation data, and 5% testing data.

Next, after choosing the optimized dataset, this dataset was
subjected to the DL process as described above. Once the trained
model was obtained, it had to be tested for its accuracy by prediction
phase. The effectiveness of the DL method used for learning the 3D
gyroid topologies optimized for the maximum bulk modulus and
maximum shear modulus was tested by measuring loss function of
the model-MSE, (Figure 13A). The convergence of the MSE occurs
approximately 100 epochs, even with a small dataset. The other
metric for measuring effectiveness of how well the learned model
could reproduce the gyroid shape was by measuring DSC. The mean
DSC history (Figure 13B) also indicates a 95% match between the
predicted and ground truth topologies after approximately
100 epochs. This was also possible partly because of the use of
the Heaviside filter (Guest et al., 2004) in TO, which pushes the
density values to either 0 or 1; this helped the CNN model learn the
density image faster as either black or white rather than having
intermediate densities. This approach improved the mean DSC of
the dataset. Figure 13 also indicates that the difference between the
validation and training errors is very small, indicating that there is
no over- or under-fitting. A few comparisons of the ground truth
and CNN predicted topologies obtained from the testing set,
corresponding to filter radii of 1.2, 1.5, 1.8, 2.2, and 2.5 for
volume fractions of 25%, 35%, and 45%, respectively, are shown
in Figures 14, 15. As is visually noted, the low filter radius for low-
volume fractions gave discontinuities in topologies which were not
efficiently learned by the CNN model, while it performed
exceptionally well for higher filtering radii for all volume
fractions. The MSE for the testing set was found to be 0.0079,
indicating a low generalization error. The mean deviation of the
volumes of the predicted structures from the ground truth was
evaluated for this test set and found to be 0.24%. Among these, the
highest deviation in volume was shown by a structure with a 29%
volume fraction and a 1.35 cm filter radius optimized for the shear

FIGURE 10
Data generation rates on workstations versus HPCs.

FIGURE 11
Isosurfaces generated with (A) 5, (B) 10, and (C) 15 mesh points.
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modulus, for which the absolute error in volume was 1.73%. The
lowest deviation in volume was shown by the 40% structure-to-
volume fraction and 1.41 cm filter radius optimized for the bulk
modulus, for which the error was 7.6e-4%.

For a better understanding of the matching images, the 1st, 8th,
16th, 23rd, and 32nd 2D slices among the 32 slices of the 3D image
are separately visualized for both the objectives for a 35% volume

fraction and filter radius of 2 cm, which are outside the training
data (Figure 16).

The matching slices indicate that the prediction of the DL
model for values of volume fraction and filtering radius not present
in the training dataset is very accurate. The two metrics for
demonstrating the effectiveness of the DL model shows
accuracy up a to 95% match with a 10−3 error. The advantage

FIGURE 12
Topology optimized objective function surfaces for different combinations of volume fractions and filter radii and the corresponding gyroid unit
cells at few combinations.

FIGURE 13
(A) MSE convergence and (B) mean dice similarity coefficient, against the number of epochs.
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of the DL model is that once the 3D training data is properly
trained on a high-end computer, TO will occur instantly, even on a
laptop, and the DL model can be re-used.

A similar study of TO by DL model used Viswanath et al. (2021)
showed a higher MSE than this study, indicating that consideration
of more TO parameters improved the model. The corresponding 2D
study (Kollmann et al., 2020) showed a similar trend of MSE and
DSC, hence indicating that this 3D DL model effectively captured
the TO process as well as in 2D.

6 Future scope and applications

There are numerous directions for future research described in
this paper, some of which are discussed in this section for the benefit
of researchers:

1. Extend it to other TPMS or any lattices. The voxelization
algorithm only requires the co-ordinate information. As an
example, two other TPMS structures voxelized using these
codes are shown in Figure 17.

2. To describe the geometry of a surface-based metamaterial, the
shortcomings of using elemental density methods—the SIMP
method—can be overcome by exploring the combination of
level set methods with Equation 1 (Wang et al., 2003; Allaire
et al., 2004; Luo et al., 2008).

3. The TO of TPMS-based metamaterials, gyroid in this study,
involves the use of an initial design to maintain the TPMS
structure. The goal was to observe changes in topology that
would emerge and the extent to which curvature characteristics
would be preserved. Most of the optimized designs reduced the
thickness of the initial design; hence, a TO could be replaced
with size optimization with the same thickness as the
parameter, in which case the mean curvature properties
could also be maintained. However, the same models of 3D
CNNs are also applicable to such problems.

Future applications of this research can further emphasize its
significance. The 3D TO of a large mesh size is time-consuming,
and generating a dataset of many such TO runs is expensive. A
greater purpose and application should be the aim when
performing such an exercise. The use of TPMS-based porous
structure designs for lightweight mechanical structures, heat
exchangers, and biomaterials has been investigated by
studying the RUC design and then using the optimal unit cell
to generate periodic macrostructures. Nevertheless, structural
and material optimization of macrostructures may not be
possible by using an optimal microstructure alone. Integrated
TO—"concurrent TO”—which optimizes the microstructure
material distribution at the same time when macrostructure
properties are optimized has been widely studied (Gao et al.,
2019b; Wu et al., 2020). Multiscale TO deals with optimization at

FIGURE 14
Ground truth (left) and predicted (right) topologies for different combinations of volume fractions and filtering radii with themaximumbulkmodulus.
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two levels: 1) unit cell (micro-scale) optimization to obtain an
optimal unit cell structure maximized for a mechanical property
such as optimization is performed in this study; 2) optimization
at the macro scale for the whole cellular structure built with
specified matrix of unit cells (Gao et al., 2019b). For such a
concurrent optimization, the finite elements at micro-unit cell
structure and finite elements of the macro-cellular structure both
together magnify the computational burden of optimization as
the number of matrix computations is in the order of the finite
element mesh size at the microscale multiplied by the finite
element size at the macroscale. When a model is developed
for determining the optimal microstructure corresponding to
any desired mechanical property and TO parameters
instantaneously, this model can be plugged into the macro
analysis of such structures to prevent any such concurrent TO
of the structure at micro- and macroscale. The concurrent TO
involves the following processes (Gao et al., 2019b):

Find ρiM, ρim(i � 1, 2, . . . , NM ; j � 1, 2, . . . , Nm)
Min : C ρM, ρm( ),

such that: K DM( )UA ij( )
M � F

A ij( )
M ,K Dm( )UA ij( )

M � F
A ij( )
m , (14)

VM ρM( ) − VfM ≤ 0, Vm ρm( ) − Vfm ≤ 0,

0≤ ρiM ≤ 1, 0≤ ρim ≤ 1,

where C is the structural compliance, M index refers to
macrostructure, and m to microstructure. ρM, ρm are the relative

densities, and Dm and DM are the stiffness tensors of the micro- and
macrostructure calculated similarly to Equation 4 as

DM � Emin + Eo − Emin( )ρpM[ ]DH

Dm � Emin + Eo − Emin( )ρpm[ ]D0,
(15)

where D0 is the constitutive matrix of the material and DH is the
homogenized stiffness tensor of the microstructure optimized by
TO. This TO is modeled in our study with a CNN model and hence
can be used as an alternative to the concurrent TO to reduce the
overall computational cost of the TO of the entire macrostructure. In
this study, the bulk modulus and shear modulus is calculated from
DH, which is one of the input parameters. Instead, for the concurrent
TO, theDH can be the desired property to be attained, and the model
is built via the same procedure as described in this study. Hence,
major savings in computational time are achieved in macrostructure
design because the microstructure design is predicted
instantaneously by the CNN model in each iteration based on
the TO parameters.

The advantages of this model can be exploited in similar
applications where the macrostructure is analyzed with
computationally intensive FE or CFD models for static
(Abueidda et al., 2022) or dynamic analysis and involves
microstructural property optimization. We are extending this
approach to such applications as the future scope of this
research. The MATLAB and PYTHON codes associated with the
research are freely available for educational purposes.

FIGURE 15
Ground truth (left) and predicted (right) topologies for different combinations of volume fractions and filtering radii with the maximum
shear modulus.
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7 Conclusion

This paper introduces a 3D CNN-based model for TO of Gyroid
TPMS unit cells. Three concepts are presented in the paper: 1) a
voxelized algorithm for unit cell design of 3D gyroid unit cells; 2) a
homogenization-based 3D TO to achieve a maximum bulk modulus
or shear modulus for the desired volume fraction and filtering radii

of this microstructure; 3) a 3D CNN for 3D TO. To alleviate the
computational burden caused by time-consuming 3D TO, a 3D
surrogate CNN model with an encoder–decoder type architecture,
used in segmentation modeling, is used to learn the topology of the
RUC. The model could almost instantly imitate a similar pattern in
the topology of the gyroid with very few data points. Moreover, the
model was robust in terms of both the accuracy of prediction and

FIGURE 16
1st, 8th, 16th, 23rd, and 30th 2D slice contours of densities in ground truth (left) and predicted (right) topologies for 35% volume fraction and a filter
radius of 2 cm for (A) maximum bulk modulus and (B) maximum shear modulus.

FIGURE 17
Voxelized TPMS structures of Schwarz Primitive and Schwarz Diamond.

Frontiers in Mechanical Engineering frontiersin.org15

Viswanath et al. 10.3389/fmech.2024.1417606

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1417606


prediction time. Hence, this CNN model could be used effectively,
even on a laptop, for performing quality TO, which is otherwise
unthinkable even on a powerful workstation or cluster. Another
significant advantage of the trained DL model is its reusability for
different TO cases. This work also shows promise in employing
surrogate DL based models for a drastically accelerated unit cell
design of 3D metamaterials involving computationally extensive
TO, including multiscale metamaterial design. The novelty of this
paper is that the MATLAB and PYTHON codes associated with the
generation of the lattice until the DL model prediction is available
together for the educational of researchers who are newly venturing
into this area.
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Nomenclature

Abbreviations

3D Three-dimensional

CNN Convolutional neural network

RUC Representative unit cell

TO Topology optimization

TPMS Triply periodic minimal surface

SIMP Solid isotropic material penalization

DL Deep learning

MSE Mean square error

DSC Dice similarity coefficient

NCSA National Center for Supercomputing Applications

Notations

Lx x Ly x Lz Unit cell size

c Isosurface value

Y Unit cell volume

EH
ijkl Homogenized local stiffness tensor

εA(ij)pq
Strain tensor

εo(ij)pq
Initial macroscopic strain field

ε *(ij)pq
Locally varying strain field

N Number of finite elements

ke Element stiffness matrix

ue Element displacement matrix

Qe
ijkl Element mutual energies

ρe Element density

Eo Solid element Young’s modulus

Emin Void element Young’s modulus

p SIMP penalization factor

ρ Filtered densities

η Pseudo densities

rmin Filter radius

�wij Components of �W

�W Normalized weight coefficient matrix

Xi Coordinates of element i centroid

K Global stiffness matrix

UA(ij) Global displacement vector

FA(ij) External force vector

V(η) Volume fraction

Vf Prescribed limiting value of V

f b() Bulk modulus objective function

f s() Shear modulus objective function

ρH Heaveside projection filter

β Heaveside filter smoothness parameter
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