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In this study, a Bayesian data assimilation method that fuses physics with motion
sensor data is demonstrated to infer the dynamic states at points of interest on the
bottomhole assembly (BHA) with proper uncertainty quantification. A 4.75 inch-
LWD (Logging-while-drilling) tool has been used as a use case, where the
dynamic states at the formation evaluation sensor can be predicted in real
time with the measurements at the motion sensor as the required inputs. This
was achieved with a developed transfer function that utilizes unscented Kalman
filtering technique. The robustness of the transfer function was evaluated with
synthetic data obtained from finite element analysis (FEA) simulations for various
BHA configurations and drilling conditions. It was found that the prediction by the
transfer function agrees favorably well with the true states of motion at the
formation evaluation sensor. Specifically, using the developed transfer function
can help reduce the relative errors for the motion trajectories at the formation
evaluation sensor by a factor of 3, and can significantly enhance measurement
quality risk classification. The developed transfer function method was further
assessed with experimental roll test data, which is considered as close to drilling
conditions. The prediction by the transfer function was found consistently close
to the ground truth in the presence of backward whirl. The developed modeling
method can potentially have broader impacts by enabling fit-for-basin virtual V&V
(Verification and Validation) to accelerate LWD tool development, or enabling
future drilling optimization.
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1 Introduction

Logging-while-drilling (LWD) is a general term to describe systems and techniques for
gathering downhole data while drilling without the requirement to remove drill pipe from
the well (Tollefsen et al., 2007). LWD offers similar functionality as wireline logging with
differences in data quality, resolution, and/or coverage (Simpson, 2017). LWD tools are
basically large drill collars instrumented with advanced formation measurement device and
sensors, which are often contained in the bottomhole assembly (BHA) located at the lowest
section of the drillstring (Chen et al., 2019a; Hegdea et al., 2019), as shown in Figure 1. The
formation evaluation (FE) sensor is the core device on the LWD tool, which is responsible
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for measuring porosity, resistivity, acoustic waveform, and others.
LWD transmits logging measurements at regular intervals while
drilling takes place. Data is transmitted to the surface through the
mud column (also known as mud pulse of mud telemetry) in a
real-time manner (Shi et al., 2022; Li and Xu, 2023). Drillers and
operators can consume LWD information immediately to define
well placement and predict drilling hazards. Use of real-time logging
information provided by LWD enables more intelligent drilling, and
stronger, more successful wells both onshore and offshore.

The performance and health of LWD tools can be significantly
impacted by drilling dynamics of the BHA. Considerable effort has
been made to understand complex dynamics of beam-like
structures or drillstrings by means of numerical modeling or
experimental verification (Jansen, 1992; Pany et al., 2001; Pany
and Rao, 2002; Pany and Rao, 2004; Chen et al., 2015; Vamsi et al.,
2021; Pany, 2022; Song et al., 2022; Pany, 2023; Song et al., 2023).
With drilling dynamics becoming increasingly harsh, BHA whirl is
one of the undesired motions the tool can face during drilling
operations, where the BHA follows an eccentric rotation about a
point along the wellbore other than the geometric center (Zhao
et al., 2017; Kapitaniak et al., 2018). BHA whirl could be forward or
backward whirl (see Figure 1). Forward whirl is when the BHA
robs the formation along the same part of the collar as the drill
string rotates. The BHA still rotates in the same direction as the
drill string in forward whirl. Backward whirl is formed in which the
increased friction leads to increased torque on the BHA and causes

the BHA to rotate in the opposite direction of the rotation of the
drillstring. Backward whirl is an extremely violent phenomenon
affecting rotary drilling assemblies. Traction is produced at contact
points between the drilling assembly and the borehole wall, which
can force the drilling assembly into rolling (rather than sliding)
contact with the hole and a complex motion resulting in
dramatically increased loading frequency and multiple borehole
impacts (Wang et al., 2021; Song et al., 2022). Whirl-induced
lateral motions could be one of the major concerns for
measurement quality for LWD tools. For example, parasitic
motion that causes a plethora of distortions to the echo train,
at times manifesting as erratic noise or a complete loss of cohesion
has been a measurement quality concern for LWD tools (Coman
et al., 2018; Haji et al., 2020; Hursan et al., 2022). Modern LWD
tools are commonly equipped with advanced motion sensors that
can provide the amounts of observed data to partially describe the
dynamic states of the BHA; however, these sensors can be installed
only at discrete and limited locations along the LWD tools due to
various constraints. If the sensor measurements are simply taken as
the dynamic states at locations away from the sensors, risks
associated with tremendous uncertainty can be present in
decision making. The farther away from the sensors, the more
uncertain the dynamic states could become. Therefore, robust
inference of dynamic states at the formation evaluation sensor
based on available motion sensor measurements is crucial for risk
flagging and quality assurance of LWD answer products.

FIGURE 1
Illustration of BHA lateral motion dynamics in a drillstring.
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A variety of methods have been reported to reduce errors in
simulation and prediction models during last 10 decades. Especially
in the current big-data era, the amounts of observed data are rapidly
growing due to the evolving measurement techniques and hardware
improvement. Data assimilation (DA) is the methodology whereby
observational data are combined with output from a first-principle
model to optimally estimate the evolving state and/or parameters of
the system (Wang et al., 2000; Wikle and Berliner, 2007;
Schweidtmann et al., 2024). DA typically involves a sequential
time-stepping procedure, where a previous model forecast is
compared with newly received observations, the model state is
then updated to reflect the observations, a new forecast is
initiated, and so on. DA can reduce overall uncertainty by
considering the uncertainties of the inputs, observations, and
updating variables promptly, which is better than what could be
obtained using just the data or the models alone since it is often
challenging for a model to cover complete physics of real world, and
sensor data are usually subjected to noises. DA for state or parameter
estimation is commonly achieved through Bayesian inference,
Kalman filtering or its variants, or Particle filtering (Wikle and
Berliner, 2007; Shao et al., 2023). DA has found pilot applications in
mechanical systems. To name a few, Hsu et al. (2006) implemented a
sequential method, in which analyzed wave spectra and significant
wave fields were assimilated by optimal interpolation, then the
analyzed values were used to reconstruct the wave spectrum.
Rubio et al. (2021) proposed a real-time data assimilation and
control on mechanical systems under uncertainties. Hastermann
et al. (2021) proposed data assimilation algorithms to estimate the
states of a dynamical system using partial and noisy observations
with modifications to the standard ensemble Kalman filter. Mohsan
et al. (2024) implemented different data assimilation schemes such
as the ensemble Kalman filter, ensemble smoother and ensemble
smoother with multiple data assimilation in a hydromechanical
slope stability analysis. This study seeks to leverage and extend the
DA applications to help discover the drilling dynamics states at the
formation evaluation sensor of the LWD tool with discrete motion
sensor measurements.

In this paper, a UKF (Unscented Kalman Filter)-based data
assimilation framework is presented to enable real-time prediction
of the dynamic states at the formation evaluation sensor with the

motion sensor data as the required inputs, along with appropriate
uncertainty quantification. The remaining of the paper is organized
as follows. Problem formulation and data assimilation methodology
are first introduced, followed by a use case study on a 4.75 inch-
LWD tool. The detailed study includes FEA-based multi-fidelity
modeling, fusion of the underlying dynamic principles with motion
sensor data, and model verification and validation (V&V) with
synthetic data obtained from FEA and real data collected from a
full-scale roll test system. The paper is finally closed with
Conclusions based on the findings from this study.

2 Problem formulation

A typical LWD tool that has 4.75-inch outer diameter (OD) and
comprises outside collar and internal chassis is shown in Figure 2.
There is one motion sensor mounted on the chassis, whereas the
formation evaluation sensor is 8 inches away from the motion
sensor. The LWD tool connects with the rest of the drillstring
through crossovers. One could expect that the motion trajectories
collected at the motion sensor could differ from the true dynamic
states at the formation evaluation sensor when the BHA is subjected
to whirl during drilling. The objective of this study is to develop a
“transfer function (TrF)” that can, in a real-time manner, map the
states measured at the motion sensor (illustrated with blue ellipse) to
describe the true states at the formation evaluation sensor (depicted
with green ellipse) with appropriate uncertainty quantification

FIGURE 2
Schematic of a typical LWD tool with motion sensor and formation evaluation sensor.

FIGURE 3
Schematic of transfer function concept for the LWD tool.

Frontiers in Mechanical Engineering frontiersin.org03

Song et al. 10.3389/fmech.2024.1410360

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1410360


(illustrated with white ellipse that compasses the green ellipse; Refer
to Figures 2, 3).

3 Modeling methodology

3.1 Multi-fidelity FEA for synthetic data
generation

A drillstring is a long and slender assembly comprising various
tubulars and drilling tools with complex geometry, which
experiences complex environmental loads such as torque and
drag, gravity, wellbore contact, friction, and dynamic inertia force
caused by rotation. To consider the influences of these factors, a
multi-fidelity modeling approach based on transient FEA
is proposed.

3.1.1 Drillstring-level model
At the drillstring level, a three-dimensional (3D) beam type of

model is used to predict the dynamic responses of drillstring/BHA in
a wellbore. Themodel is based on the finite element method (Argyris
et al., 1979), where the drillstring is discretized into beam elements
and each node has six degrees of freedom, including three
translations and three rotations. This enables the model to
predict complex motions of the drillstring in 3D space.
Drillstring components from bit to surface are modeled in detail
to describe the collar outside diameter variation and contact
interactions with wellbore. Extensive laboratory cutting tests were
conducted with various cutter shapes, formation types, and
confining pressures. The learnings from the cutting tests were
applied in the model to capture the bit-rock interaction, from
which bit behaviors, such as torque, weight, depth of cut, and
dynamics excitation, can be accurately computed. Coupling the
bit and drillstring mechanics model enables the simulation of
dynamic responses of the drillstring with greater confidence. The
dynamics equilibrium equation is solved step by step to provide the
time history of dynamics variables (i.e., accelerations and rotation
speed) at each node of drillstring. The nonlinear coupling between
bending and torsional vibrations could greatly affect the dynamic
behavior of the drillstring, and the nonlinear coupling between
torsional and bending DOF is thus considered in the FEA
formulations, where a bending-torsion coupling term is presented
in the governing equation. The robust implicit FEA engine enables
the simulation of large deformation of tubulars under the
confinement of the wellbore (Chen et al., 2019b; Chen et al.,
2021). The transient dynamics model simulates the rotation of
the drillstring and enables the drillstring to move freely inside
the wellbore. There is no assumption made on the external force
and contact location of the drillstring. The system transient response
can be governed by the dynamics equilibrium equation as follows:

M[ ] €U t( ){ } + C[ ] _U t( ){ } + K[ ] U t( ){ } � F t( ){ } (1)

where [M], [C], and [K] are mass matrix, damping matrix, and
elasticity stiffness matrices in FEA, and _U(t) and €U(t) are the
velocity and acceleration vectors in Eq. 1, respectively. At each
timestep, the equilibrium equation is solved by the implicit method.
The transient time history of force and tubular displacement can be

solved by a numerical integration technique such as the Newmark
method (Newmark, 1959). The classical proportional damping
model is adopted here to capture the mud viscous damping and
pipe material damping. The damping matrix is expressed as a linear
combination of the mass and stiffness matrices. The contact is
established when the lateral displacement of tubular exceeds the
gap of tubular and wellbore. The spring-dashpot type model is used
to describe the relation of contact force magnitude and interference
depth. The contact force is solved iteratively by matching the tubular
deflection and external contact force. The friction force is calculated
with the friction coefficient and normal contact force and is applied
in the direction opposite to the relative motion. The model can
define different static and dynamic friction coefficients, which are
assumed to be 0.2 and 0.1 in this study. The transient dynamics
model can accurately simulate the dynamic behavior of the
drillstring, such as the lateral swing of the tubular caused by the
pipe rotation. From dynamics perspective, the string possesses the
backward whirl motion. The transient model can capture the
deflection induced by dynamics snaking or whirling motions.
Such model has been implemented as inhouse code, and
extensively used by the service company for many applications
including bit selection, BHA design, drilling parameters
optimization, and post-well analysis and validation based on field
data (Algu et al., 2008; Kasumov et al., 2013; Chen et al., 2015; Shen
et al., 2017; Chen et al., 2019a).

3.1.2 Tool-level model
The limitation of the beam type model is that it captures collar

sections by using their inner diameters (IDs) and outer diameters
(ODs). However, it cannot describe the collar-chassis contact
interactions, since the inside chassis is neglected. To consider the
dynamic interaction between the collar and chassis, a 3D solid FEA
model that can describe the detailed geometry of the LWD tool and
sliding contact between the collar and chassis is required. Such high-
fidelity FEA model to describe backward whirl of the LWD tool is
implemented with commercially available explicit dynamics solver
ANSYS LS-Dyna (Song et al., 2022). It should be noticed that load-
carrying parts of the LWD tool such as collar and chassis are
typically made of steels with high strength and good ductility
having a minimum yield strength of 100ksi and elongation of
around 20%. Considering structural integrity’s requirement
during drilling, the drillstring is generally designed and operated
within linear elastic region of its material to avoid global yield.
Therefore, linear elastic material model is considered for the parts
made of typical steels with Young’s modulus of 29,000 ksi, and
Poisson’s ratio of 0.3 in the simulation. Geometric nonlinearity due
to large deformation, if any, is considered in FEA. Coulomb friction
with a coefficient of friction 0.1 is assumed for sliding contact
interactions between the collar and chassis, because parts are well
lubricated during assembling.

The FEA assembly model is meshed with 3D 4-node tetrahedral
and 8-node hexahedral elements defined with “*SECTION_SOLID”
card in ANSYS LS-Dyna. Figure 4 shows the meshes of the FEA
model in ANSYS LS-Dyna. Sufficient refinement of elements needs
to be considered especially in the areas of interest such as the
locations where sensor outputs are requested. The meshes on the
contact faces between the parts need also be refined with high quality
such that the contacts can be detected appropriately, and risk of
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element distortion can be mitigated. Mesh sensitivity study was
conducted: it was found that the variation of the displacements at the
locations of interest were within 3% with the number of nodes
increased from 823,926 to 1,516,213, which suggested a converged
solution. 2.5e-7 second is determined as the minimum stable
timestep in the Explicit dynamics simulation. In our previous
publication, the tool model based on ANSYS LS-Dyna has shown
promising results compared to experimental roll test data (Song
et al., 2022).

During drilling, the displacements could vary along the
length of the drillstring due to dynamics and interaction
between the drillstring and wellbore. The lateral displacements
(Uy , Uz) are first extracted from the beam-based drillstring

model approximately every foot along the length of the LWD
tool, which are then applied as the loading conditions in the tool-
level FEA model that contains 3D solid elements, as depicted by
the blue arrows in Figure 5. Eventually, the lateral displacements
and velocities (Uy , Uz , Vy, Vz) of the LWD tool can be computed
at the locations of interest, i.e., the motion sensor and formation
evaluation sensor, respectively, which are used as the synthetic
dataset to develop the transfer function and evaluate its
robustness. Figure 5 summarizes the multi-fidelity FEA
modeling approach that was introduced. The application data
including drillstring configuration, wellbore profile, well survey,
and drilling parameters are considered in drillstring-
level modeling.

FIGURE 4
Mesh of the tool-level FEA model.

FIGURE 5
Multi-fidelity FEA modeling workflow.
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3.2 Data assimilation workflow

Based on the multi-fidelity modeling approach described in
Section 3.1, sufficient simulations can be executed offline,
knowing these simulations are computationally expensive. The
probability density functions of the transmissibility in terms of
velocity and displacement that describe the dynamic states at the
locations of interest can then be obtained. The transmissibility (Tr)
in terms of velocity and displacement can be described by the
following Equations 2, 3, respectively

Tr Vyz( ) � Vyzmot sensor t( )
Vyzf e sensor t( ) (2)

Tr Uyz( ) � Uyzmot sensor t( )
Uyzf e sensor t( ) (3)

where Vyzmot sensor(t) and Uyzmot sensor(t) represent the lateral
velocity and lateral displacement at the motion sensor, and
Vyzf e sensor(t) and Uyzf e sensor(t) denote the lateral velocity and
lateral displacement at formation evaluation sensor,
respectively; Uyzmot sensor �

����������������������
(Uymot sensor

)2 + (Uzmot sensor)2
√

,

Vyzmot sensor �
����������������������
(Vymot sensor

)2 + (Vzmot sensor)2
√

, Uyzf e sensor ����������������������
(Uyf e sensor

)2 + (Uzf e sensor)2
√

, and Vyzf e sensor ����������������������
(Vyf e sensor

)2 + (Vzf e sensor)2
√

. These probability density functions
are then used as the transmissibility for the two velocity and
displacement states as the inputs for the transfer function, along
with the motion sensor measurements. The transfer function
algorithm utilizes a UKF-based stochastic inference method, as

shown in Figure 6. The motion with measurement can be
expressed by the following equations,

Xk � f Xk−1( ) + wk−1 (4)
Zk � h Xk( ) + vk (5)

where k is the time step, Xk denotes the system state, and w and v
represent noises. f (•) maps the state transitioning with the
following matrix, which describes the state transition at the
current time instant and the previous one at the formation
evaluation sensor. The measurement mapping is achieved with
h(•), and

f →
1 0
0 1

Δt 0
0 Δt

0 0
0 0

1 0
0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

The unobserved states at the formation evaluation sensor can be
described as follows,

X →
Uy f e sensor

Uz f e sensor

Vy f e sensor

Vz f e sensor

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

where Uy f e sensor ,Uz f e sensor ,Vy f e sensor , and Vz f e sensor

represent lateral displacements and velocities at the formation
evaluation sensor. The observables at the motion sensor can be
expressed as,

Z → Uyzmot sensor

Vyzmot sensor

[ ] (8)

FIGURE 6
Developed data assimilation workflow for inferring LWD motion dynamics.
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The measurement mapping h(•) can be described by as,

h → ϕU Uyzf e sensor

ϕVVyzf e sensor

[ ] (9)

where ϕU and ϕV denote expected transmissibility between motion
sensor and formation evaluation sensor for lateral displacements and
velocities, respectively, and ϕU � E[Tr(Uyz)], ϕV � E[Tr(Vyz)],
with E(•) being the expected value of the distribution. The
functions and variables in Eqs 4, 5 can be found in Eqs 6–9.

In the specific implementation of Kalman Filter, the state
estimate from the previous time step is utilized for producing an
estimate of the state for the current time step. The current a priori
prediction is combined with the current observation from the
motion sensor to improve the state estimate at the formation
evaluation sensor with a posteriori state estimate (Refer to the
workflow in Figure 7; Eqs 4, 5. In the meantime, these
uncertainties are transitioned from the prior to the posterior
through this exercise, where the uncertainty sources include the
gap sizes, bumper materials, motion levels, and sensor noise, as
shown in Figure 6. Noticeably, such method only requires the
estimated state from the previous time step and the current
measurement to compute the estimate for the current state.
Since no history of observations is required, this process can
be very efficient, which provides some advantage and is
promising for real-time applications. Among the family of
Kalman filters, UKF is an estimation technique that uses a
deterministic sampling technique known as the unscented
transform to approximate the mean and the covariance of the
state and parameter vector. While Extended Kalman Filter treats
the non-linearity using analytical linearization, the UKF selected
is a derivative-free alternative method and performs statistical
linearization based on a set of rules, which is more accurate, and
easier to implement for nonlinear systems (Gustafsson and
Hendeby, 2011). In this study, the UKF was implemented with
the function of “unscentedKalmanFilter(stateTransitionFcn,
measurementFcn, initialState)” in MATLAB.

4 Full-scale experimental roll test

The instrumented roll tests that are believed to be the closest to
the real drilling exercises are employed. The typical roll test system
instrumented with the accelerometer is shown in Figure 8A. The
impact ring is mounted onto the ground. The tool assembly under
test goes through the center of the impact ring, and both ends of the
tool are constrained with blocks and bearings that support the
assembly in a horizontal configuration. The tool assembly under
test can be different sizes ranging from 4.75″ to 8.25″ in the outer
diameter, and the corresponding impact ring needs to be adjusted to
accommodate the size of the tool assembly. A drive motor is used to
rotate the tool assembly. The roller bearings that are located at each
end of the tool assembly can prevent lateral deflection but allow for
free rotation. Each bearing is paired with an end shaft, and the end
shaft serves as an adapter that can be used for testing different tool
assemblies. The drive shaft is equipped with a locking component
that can secure the bearing to the shaft and prevent axial motion,
while the tail shaft exhibits a rolled surface to allow for axial motion
of the assembly. A drive belt connects the drive motor to the tool
assembly, and the belt is flexible to allow for translation and rotation
as the assembly rotates. A motor drives the assembly to the target
operational speed commonly between 0 and 250 RPM. The bearings
and drive motor are mounted to a steel frame securely cemented in
the foundation such that the distance between the bearings may be
adjusted to accommodate different assembly lengths. A high-speed
camera with 250 frame per second (FPS) is placed near the impact
with a tripod, which is used for recording the video of the lateral
motion of the tool on the impact ring during the test. The
acceleration can be, respectively, measured with the high
frequency three-axis piezo-accelerometer (enDAQ Data Logger)
mounted on the collar close to the impact ring. The sampling
rates for the measurements of accelerations are 15 kHz. Then
motion sensors are installed around the formation evaluation
sensor as shown in Figure 8B, and integration of the acceleration
collected from the motion sensor yields the velocity and further

FIGURE 7
Recursive Bayesian filter workflow to estimate dynamic states at the formation evaluation sensor.
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FIGURE 8
Full-scale roll test of LWD tool assembly: (A) laboratory setup (cross-sectional view), and (B) motion sensors mounted around the formation
evaluation sensor.

FIGURE 9
Simulation results obtained from drillstring beam model: (A) centerline displacement of drillstring at a representative time instant, (B) orbital
trajectories at motion sensor, and (C) orbital trajectories at FE sensor. FE, Formation evaluation.
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integration of the obtained velocity can produce the displacement,
where appropriate filtering needs to be applied to remove the drift.

5 Results and discussion

5.1 Synthetic data with FEA

5.1.1 Baseline BHA configuration
A baseline BHA from a past field run in a 6.5-inch well with the

LWD tool of interest located around the middle of the BHA is first
considered, and well trajectory obtained from real survey is used in
the simulation. Rotation speed of 80 RPM and surface weight on bit
(WOB) of 21 klbf are simulated in the model. The drillstring
simulations are first run and the results are compared to the field
measurement sensor data for model calibration. The drillstring
model is calibrated for the baseline job condition, and the
calibrated drillstring model can be used to simulate many other
scenarios to produce comprehensive synthetic dataset. The outputs
from the drillstring beam model are then used as the inputs for the
FEA solid model, and the transmissibility probability density
functions in term of velocity and displacement can be generated
accordingly (See Figure 6). The synthetic data at the motion sensor
along with the transfer function can be used to predict the responses
at the formation evaluation sensor location.

The lateral displacement of the centerline of the toolstring and
orbital trajectories at the motion sensor and formation evaluation
sensor are provided in Figure 9. Specifically, the red lines in
Figure 9A denote the centerline of the toolstring, and the
clearance between the toolstring and the wellbore can be outlined
with the black lines; the results are given for both top view and side
view at a representative time instant. One could see from the figure
the variation of the OD along the toolstring that is considered in the
simulation, and the clearance becomes smallest at the presence of
stabilizers (Stabs); there is a large difference between the motion at
the motion sensor and that at the formation evaluation sensor. A

closer look at the accumulated orbital trajectories at the motion
sensor and formation evaluation sensor in Figures 9B,C suggests
much stronger motion magnitude at the formation evaluation
sensor than at the motion sensor.

The comparison between transfer function prediction based on
Eqs 4, 5, motion sensor measurements, and the true states at the
formation evaluation sensor for the case with baseline BHA
configuration can be found in Figure 10. In this case, the
rotational speed is 80 RPM, and WOB is 21 klbf per the
operational condition. Time windows with selected duration are
sequentially applied to the original time-domain signals in a forward
manner to compute maximum of the lateral displacement and mean
of the lateral velocity as motion trajectory statistics, as shown in
Figure 10A. The obtained map for lateral motion trajectories based
on the statistics are shown in Figure 10B, where the red dots
represent the trajectory at the motion sensor, the blue dots are
the ground truth at the formation evaluation sensor, and the green
dots are the responses predicted by the transfer function using the
methodology described in Section 3.2. The statistics compute the
mean of the lateral velocity and the maximum of the lateral
displacement with the rolling time windows, and the duration of
each time window is 2 s in this example. Apparently, one could see
that the green dots are much closer to the blue dots than the red
ones. In other words, if the motion sensor measurements were taken
as the states of motions for the formation evaluation sensor, there
would be more than a factor of 2 off in both velocity and
displacement on the lateral motion trajectory map.

Figure 10 shows only the results for the baseline BHA
configuration and drilling condition. The model is also evaluated
with additional cases for different drilling conditions in terms of
combinations of RPM, WOB and well sizes. Table 1 summarizes the
mean relative errors for velocity and displacement, respectively. In
each of the parenthesis in the table, the first number corresponds to
the velocity and the second number corresponds to the
displacement. One can see that the maximum error is about 21%
among different errors that are computed. Comparing this with the

FIGURE 10
Comparison between transfer function prediction, motion sensor measurements, and the true states at the formation evaluation sensor for the
baseline BHA configuration at 80 RPM and 21 klbf WOB: (A) signals in time domain, and (B) lateral motion trajectory map. FE, Formation evaluation.
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more than factor of 2 difference between the ground truth and
motion sensor, it can be found that using transfer function can help
significantly enhance the accuracy for the state estimations at the
formation evaluation sensor location.

5.1.2 Sensitivity analysis with varying BHAs
Besides the baseline BHA with different drilling conditions in

terms of RPM, WOB and well sizes (see Table 1), the robustness of
the transfer function has been assessed with quite a few cases
incorporating various BHA configurations used in field
operation. The synthetic data for these cases are obtained by
executing drilling dynamics simulations described in Section 3
offline, and these cases are defined with DOE (Design of
Experiments) method (Barad, 2014). The parameters and their
range used in the construction of the DOE matrix are based on
operational need and summarized in Table 2. There are two
stabilizers (Stabs) on the LWD tool of interest, and some
stabilizers on other tools along the BHA, as shown in Figure 11.
The size of the stabilizers, the distances between the stabs, and bit
size are considered as BHA-related parameters. Furthermore,

different well trajectories, and drilling conditions in terms of
RPM and WOB are considered. Obviously for each parameter, a
range of changes needs to be specified. There could be numerous
combinations of these parameters. A random sampling technique
called Latin hypercube sampling (Shields and Zhang, 2016) is used
to effectively generate simulation matrix that contains a total
of 60 cases.

The DOE results obtained from drill dynamics simulations can
then be used as the synthetic dataset to further evaluate the transfer
function developed for the BHA.Whirling of the LWD tool occurred
in 37 cases among the total of 60 cases that were simulated, in which
25 cases contain whirl only, and 12 cases involve transition between
whirl and stable drilling. The remaining 23 cases are associated with
stable drilling only. Figure 12 shows the overview of the obtained
results for some representative cases in the DOE matrix for whirl
only, stable drilling only, and whirl/stable drilling transition,
respectively, with and without applying the transfer function. The
motion sensor measurements, the prediction by the transfer
function at the formation evaluation sensor according to Eqs 4,
5, and true states of motions at the formation evaluation sensor are
overlaid in the figure for comparison. The motion trajectory
statistics of maximum lateral displacement and mean lateral
velocity are plotted in blue, light green, and brown, which
represent the ground truth at the formation evaluation sensor,
the transfer function prediction at the formation evaluation
sensor based on Eqs 4, 5, and the measurements at the motion
sensor, respectively. The statistics calculate the mean of the lateral
velocity and the maximum of the lateral displacement with the
rolling time windows, and the duration of each time window is 2 s
(Also refer to Figure 10 for more details). As shown in the figure,
with whirling only, the true motion trajectory at the formation
evaluation sensor tends to carry higher risk for LWD quality due to
its higher motion magnitude; under pure stable drilling, the
trajectory at the formation evaluation sensor likely carries lower

TABLE 1 Summary of mean relative errors for velocity and displacement,
respectively. Mean Relative Errors (Velocity, Displacement).

RPM WOB (klbf) Well size (inch)

5.875 6.125 6.75

80 21 (−11%, −7%) (3%, −5%)

120 21 (17%, 21%)

150 21 (13%, 0%)

200 21 (−1%, 0%)

200 40 (4%, 19%) (2%, 5%) (9%, 11%)

TABLE 2 Summary of parameters and their range for varying BHA configurations studied.

BHA configuration Well
trajectory

Drilling
conditions

Bit size
(inch)

Distance
between stabs
(below) (ft)

Distance
between stabs
(above) (ft)

Under gage of
stab downhole

(inch)

Under gage of
stab uphole

(inch)

Inclination
(deg)

RPM
(revs/
min)

WOB
(klbf)

5.875~6.75 15~106 34~103 −0.75 ~ −0.125 −0.75 ~ −0.125 0~90 50~200 5~40

FIGURE 11
Schematic of varying BHA configurations. FE, Formation evaluation.
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risk due to its smaller motion magnitude; interestingly, when there is
a transition between whirl and stable drilling, the true motion
trajectory at the formation evaluation sensor can be characterized
by a long tail that crosses different risk zones. A closer look at the
figure shows that there is obvious discrepancy between the ground
truth at the formation evaluation sensor and the measurements at
the motion sensor; however, applying the transfer function brings
the estimation of the motion trajectory at the formation evaluation
sensor much closer to the ground truth especially when whirling
develops. To quantitively measure the prediction accuracy of the

dynamic states, the mean and standard deviation (std) of the motion
trajectories for the prediction by the transfer function and ground
truth are provided with tabular values in the figure, where the first
and second values in the parentheses denote lateral velocity mean,
and lateral displacement max, respectively. These tabular values are
calculated for every case defined in the DOE matrix, which are used
to form the summary of relative errors to be elaborated in the
following figure.

After applying the same method and testing the transfer
function to each case defined in the DOE matrix, the resulting
distributions of mean and standard deviation (STD) relative errors
of velocity and displacement for the cases of varying BHA
configurations can be found in Figure 13, where the green and
red dots represent the results for velocity and displacement with and
without applying the transfer function, respectively. It can be learnt
from Figure 13A that the mean relative error between the transfer
function prediction based on Eqs 4, 5 and ground truth at the
formation evaluation sensor is within 40% with a mean value of
about 20% considering 99.3% confidence (the remaining 0.7% is by
convention considered as outliers statistically). Without using the
transfer function, the mean relative error between the motion sensor
measurements and ground truth at the formation evaluation sensor
can even get to 75% with the mean value of almost 60%. Similar
observations can be found for the standard deviation (STD) relative
error of the motion trajectories as well, as shown in Figure 13B. The
comparative results indicate that overall, use of the transfer function
can help reduce mean relative errors of velocity and displacement by
almost a factor of 3 considering different BHA configurations and
drilling conditions. It can be found that the vast majority of the cases
are within the requirements for drilling operations, which
significantly enhanced the confidence of proceeding with physical
V&V with roll test data.

5.2 Experimental roll test data

In addition to the synthetic data obtained from drilling
dynamics simulations in Section 5.1, physical test data described
in Section 4 are also considered for further evaluating the developed
modeling methodology. During experiments, backward whirl is
triggered, and the accuracy of the developed transfer function is
evaluated, which is elaborated as follows.

Figure 14 shows the experimental lateral motions of the LWD
tool assembly when the rotation speed reaches 110 RPM. It can be
observed that the friction between the LWD tool assembly and the
impact ring causes the tool assembly to slide along the impact ring in
the opposite direction of the rotation, in which backward whirl is
excited, as shown in the figure. Figure 15 shows the comparison of
lateral motion trajectories based on roll test data of backward whirl.
In the figure, blue, light green, and brown represent the ground truth
at the formation evaluation sensor, the transfer function prediction
at the formation evaluation sensor according to Eqs 4, 5, and the
measurements at the motion sensor, respectively. The prediction at
the formation evaluation sensor matches reasonably well with the
ground truth as shown in Figure 15, whereas large discrepancy is
observed between the motion sensor data and the ground truth at
the formation evaluation sensor. Similarly, the mean and standard
deviation (std) of the motion trajectory clusters for the transfer

FIGURE 12
Lateral motion trajectories for representative cases in the DOE
study based on synthetic data: (A)whirling only, (B) stable drilling only,
and (C) whirl/stable drilling transition. FE, Formation evaluation.
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function prediction and ground truth are given with tabular values
in the figure to quantitively gauge the prediction accuracy of the
motion states, in which the first and second values in the parentheses

represent lateral velocity mean, and lateral displacement max,
respectively. The relative errors between the prediction mean and
ground true mean are 16.7% and 15.4% for lateral velocity mean and
lateral displacement max, respectively, which are considered small
for engineering applications. This once again demonstrates good
confidence in utilizing this transfer function method to predict the
responses from one point to another point.

6 Conclusion

In this paper, a Bayesian data assimilation approach that can
merge physics with motion sensor measurement is presented to
estimate the dynamic states at points of interest on the BHA with
proper uncertainty quantification. A 4.75 inch-LWD tool has been
taken as the use case, in which the dynamic states at the formation
evaluation sensor can be predicted in real time with the developed
transfer function and the measurements at the motion sensor as the
required inputs. The accuracy and precision of the transfer function
has been assessed with synthetic data obtained from multi-fidelity

FIGURE 13
Summary of errors for the DOE study: (A) mean relative error, and (B) STD relative error.

FIGURE 14
Motions of the LWD tool assembly at representative positions during backward whirl: (A) lowermost, (B) leftmost, (C) uppermost, and (D) rightmost.

FIGURE 15
Comparison of lateral motion trajectories based on roll test data
of backward whirl.

Frontiers in Mechanical Engineering frontiersin.org12

Song et al. 10.3389/fmech.2024.1410360

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1410360


drilling dynamics simulations for various BHA configurations and
drilling conditions. It has been observed that the prediction by the
transfer function matches favorably well with the true states of
motion at the formation evaluation sensor. The developed transfer
function method is further evaluated with experimental roll test
data, which is considered as close to drilling conditions. It has been
shown that the prediction by the transfer function is consistently
close to the ground truth when whirling develops, which validates
the developed data assimilation approach for drilling and
measurement applications. Kalman Filter types assume that our
belief in the states of the system can be approximately expressed with
Gaussian. To achieve more accurate prediction, Particle Filter (PF)
may be pursued in the future, which is more elastic as it is based on a
sequential Monte Carlo method and does not assume Gaussian
nature of noise in the data, but PF is more computationally
expensive. However, the UKF approach selected in this study
aims to provide a trade-off between the low computational effort
of the Kalman filter and the high performance of the particle filter.
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Glossary

BHA Bottomhole assembly

LWD Logging-while-drilling

FEA Finite element analysis

FE Formation evaluation

DA Data assimilation

UKF Unscented Kalman Filter

(PF) Particle Filter

Trf Transfer function

V&V Verification and validation

RPM Revolution per minute

DOE Design of experiment

OD Outer diameter

ID Inner diameter

WOB Weight on bit

3D Three-dimensional

STD Standard deviation

DOF Degree of freedom

FPS Frame per second

Stab Stabilizer

Tr(•) Transmissibility

E(•) Expected value of distribution

f (•) State transitioning mapping

h(•) Measurement mapping

[M] Mass matrix

[C] Damping matrix

[K] Elasticity stiffness matrices

_U(t) Velocity vector

€U(t) Acceleration vector

k Time step

Xk System state at time step k

w and v Noises

Uy f e sensor ,Uz f e sensor Lateral displacements at formation evaluation sensor

Vy f e sensor ,Vz f e sensor Lateral velocities at formation evaluation sensor
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