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Blending physics with data using
an efficient Gaussian process
regression with soft inequality
and monotonicity constraints

Didem Kochan and Xiu Yang*

Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, United States

In this work, we propose a new Gaussian process (GP) regression framework
that enforces the physical constraints in a probabilistic manner. Specifically, we
focus on inequality and monotonicity constraints. This GP model is trained by
the quantum-inspired Hamiltonian Monte Carlo (QHMC) algorithm, which is
an efficient way to sample from a broad class of distributions by allowing a
particle to have a randommass matrix with a probability distribution. Integrating
the QHMC into the inequality and monotonicity constrained GP regression in
the probabilistic sense, our approach enhances the accuracy and reduces the
variance in the resulting GP model. Additionally, the probabilistic aspect of the
method leads to reduced computational expenses and execution time. Further,
we present an adaptive learning algorithm that guides the selection of constraint
locations. The accuracy and efficiency of the method are demonstrated in
estimating the hyperparameter of high-dimensional GP models under noisy
conditions, reconstructing the sparsely observed state of a steady state heat
transport problem, and learning a conservative tracer distribution from sparse
tracer concentration measurements.

KEYWORDS

constrained optimization, Gaussian process regression, quantum-inspired Hamiltonian
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1 Introduction

In many real-world applications, measuring complex systems or evaluating
computational models can be time-consuming, costly or computationally intensive.
Gaussian process (GP) regression is one of the Bayesian techniques that addresses this
problem by building a surrogate model. It is a supervised machine learning framework
that has been widely used in regression and classification tasks. A GP can be interpreted
as a suitable probability distribution on a set of functions, which can be conditioned
on observations using Bayes’ rule (Lange-Hegermann, 2021). GP regression has found
applications in various challenging practical problems including multi-target regression
problems Nabati et al. (2022), biomedical applications Dürichen et al. (2014), Pimentel et al.
(2013), robotics Williams and Rasmussen (2006) and mechanical engineering applications
Song et al. (2021), Li et al. (2023), etc. The recent research demonstrate that a GP
regression model can make predictions incorporating prior information (kernels)
and generate uncertainty measures over predictions. However, prior knowledge often
includes physical laws, and using the standard GP regression framework may lead to an
unbounded model in which some points can take infeasible values that violate physical
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laws (Lange-Hegermann, 2021). For example, non-negativity
is a requirement for various physical properties such as
temperature, density and viscosity (Pensoneault et al., 2020).
Incorporating physical information in GP framework can
regularize the behaviour of the model and provide more
realistic uncertainties, since the approach concurrently evaluates
problem data and physical models (Swiler et al., 2020;
Ezati et al., 2024).

A significant amount of research has been conducted to
incorporate physical information in GP framework, resulting in
various techniques and methodologies (Swiler et al., 2020). For
example, a probit model for the likelihood of derivative information
can be employed to enforce monotonicity constraints (Riihimäki
and Vehtari, 2010). Although this approach can also be used to
enforce convexity in one dimension, an additional requirement
on Hessian is incorporated for higher dimensions (Da Veiga and
Marrel, 2012). In (López-Lopera et al., 2022) an additive GP
approach is introduced to account for monotonicity constraints.
Although posterior sampling step can be challenging, the additive
GP framework enables to satisfy the constraints everywhere in
the input space, and it is scalable to higher dimensions. The
work presented in Gulian et al. (2022) presents a framework in
which spectral decomposition covariance kernels and differential
equation constraints are used in a co-kriging setup to perform GP
regression constrained by boundary value problems. With their
inherent advantages, physics-informed GP models that incorporate
physical constraints has applications in diverse areas, such as
manufacturing Qiang et al. (2023), forecasting in power grids
Mao et al. (2020) or urban flooding models Kohanpur et al.
(2023), mimicing drivers’ behavior Wang et al. (2021), monitoring
intelligent tire systems Barbosa et al. (2021), predicting fuel flow rate
Chati and Balakrishnan (2017), designing wind turbinesWilkie and
Galasso (2021), etc. Due to their flexibility, physics-informed GP
models can be combined with several approaches to enhance the
accuracy of model predictions. These works show that integrating
physical knowledge into the prediction process provides accurate
results.

Enforcing inequality constraints into a GP is typically
challenging as the conditional process, subject to these constraints,
does not retain the properties of a GP (Maatouk and Bay, 2017). One
of the approaches to handle thi s problem is a data augmentation
approach in which the inequality constraints are enforced at
various locations and approximate samples are drawn from the
predictive distribution (Abrahamsen and Benth, 2001), or using a
block covariance kernel (Raissi et al., 2017). Implicitly constrained
GP regression method proposed in (Salzmann and Urtasun,
2010) shows that the mean prediction of a GP implicitly satisfies
linear constraints, if the constraints are satisfied by the training
data. A similar approach shows that when we impose linear
inequality constraints on a finite set of points in the domain,
the resulting process is a compound Gaussian Process with a
truncated Gaussian mean (Agrell, 2019). Most of the approaches
assume that the inequalities are satisfied on a finite set of input
locations. Based on that assumption, the methods approximate
the posterior distribution given those constraint input points. The
approach introduced in (Da Veiga and Marrel, 2012) is an example
of these methods, where maximum likelihood estimation of GP
hyperparameters are investigated under the constraint assumptions.

In practice, this should also limit the number of constraint points
needed for an effective discrete-location approximation. In addition,
the method is not efficient on high-dimensional datasets as it takes
a large amount of time to train the GP model.

To the best of our knowlege, the first Gaussian method that
satisfies certain inequalities at all the input space is proposed by
Maatouk and Bay (2017). The GP approximation of the samples
are performed in the finite-dimensional space functions, and a
rejection sampling method is used for approximating the posterior.
The convergence properties of the method is investigated in
(Maatouk et al., 2015). Although using the rejection sampling to
obtain posterior helps convergence, it might be computationally
expensive. Similar to the previous approaches in which a set of
inputs satisfy the constraints, this method also suffers from the
curse of dimensionality. Later, the truncated Gaussian approach
(López-Lopera et al., 2018) extends the framework in (Maatouk
and Bay, 2017) to general sets of linear inequalities. Building
upon the approaches in (Maatouk and Bay, 2017; Maatouk et al.,
2015), the work presented in (López-Lopera et al., 2018) introduces
a finite-dimensional approach that incorporates inequalities for
both data interpolation and covariance parameter estimation. In
this work, the posterior distribution is expressed as a truncated
multinormal distribution. The method uses different Markov Chain
Monte Carlo (MCMC) methods and exact sampling methods
to obtain the posterior distribution. Among the various MCMC
sampling techniques including Gibbs, Metropolis-Hastings (MH)
and Hamiltonian Monte Carlo (HMC), the results indicate that
HMC sampling is the most efficient one. The truncated Gaussian
approaches offer several advantages, including the ability to achieve
high accuracy and the flexibility in satisfying multiple inequality
conditions. However, although those types of methods address
the limitations in (Maatouk and Bay, 2017), they might be time
consuming particularly in applications with large datasets or high-
dimensional spaces.

In this work, we use QHMC algorithm to train the GP model,
and enforce the inequality and monotonicity constraints in a
probabilistic manner. Our work addresses the computational
limitations caused by high dimensions or large datasets. Unlike
truncated Gaussian methods in (López-Lopera et al., 2018) for
inequality constraints, or additive GP (López-Lopera et al., 2022)
with monotonicity constraints, the proposed method can maintain
its efficiency on higher dimensions. Further, we adopt an adaptive
learning algorithm that selects the constraint locations. The
efficiency and accuracy of the QHMC algorithms are demonstrated
on inequality and monotonicity constrained problems. Inequality
constrained examples include lower and higher dimensional
synthetic problems, a conservative tracer distribution from sparse
tracer concentration measurements and a three-dimensional
heat transfer problem, while monotonicity constrained examples
provide lower and higher dimensional synthetic problems. Our
contributions can be summarized in three key points: i) QHMC
reduces difference between posterior mean and the ground truth,
ii) utilizing QHMC in a probabilistic sense decreases variance and
uncertainty, and iii) the proposed algorithm is a robust, efficient
and flexible method applicable to a wide range of problems. We
implemented QHMC sampling in the truncated Gaussian approach
to enhance accuracy and efficiency while working with the QHMC
algorithm.
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2 Gaussian process under inequality
constraints

2.1 Standard GP regression framework

Suppose we have a target function represented by values y =
(y(1),y(2),…,y(T))N, where y(i) ∈ ℝ are observations at locations X =
{x(i)}Ni=1. Here, x

(i) represents d-dimensional vectors in the domain
D ∈ ℝd. Using the framework provided in Kuss and Rasmussen
(2003), we approximate the target function by a GP, denoted as
Y(., .):D×Ω→ R. We can express Y as

Y (x) ≔ GP[μ (x) ,K(x,x′)] , (1)

where μ(.) is the mean function and K(x,x′) is the covariance and
mean functions in Equation 1 are defined as

μ (x) = 𝔼[Y (x)] , and K(x,x′) = 𝔼[Y (x) − μ (x)] [Y(x′) − μ(x′)] (2)

Typically, the standard squared exponential covariance kernel
can be used as a kernel function in Equation 2:

K(x,x′) = σ2 exp(−
‖x− x′‖22

2l2
)+ σ2nδx,x′ , (3)

where σ2 is the signal variance, δx,x′ is the Kronecker delta function
and l is the length-scale. We then assume that the observation
includes an additive independent identically distributed (i.i.d.)
Gaussian noise term ϵ and having zero mean and variance σ2n.
We denote the hyperparameters in Equation 3 by θ = (σ, l,σn), and
estimate them using the training data. The parameters can be
estimated by minimizing the negative marginal log-likelihood Kuss
and Rasmussen (2003), Stein (1988), Zhang (2004):

− log [p (Y|X,θ)] = 1
2
[(y− μ)TK−1 (y− μ) + log |K| +N log (2π)] .

(4)

The following section shows how the parameter updates are
performed using the QHMCmethod.

2.2 Quantum-inspired Hamiltonian Monte
Carlo

QHMC is an enhanced version of the HMC algorithm that
incorporates a random mass matrix for the particles, following
a probability distribution. In conventional HMC, the position is
represented by the original variables (x), while Gaussianmomentum
is represented by auxiliary variables (q). Utilizing the energy-time
uncertainty relation of quantummechanics,QHMCallows a particle
to have a random mass matrix with a probability distribution.
Consequently, in addition to the position and momentum variables,
a mass variable (m) is introduced within the QHMC framework.
Having a third variable offers the advantage of exploring various
landscapes in the state-space. As a result, unlike standard HMC or
conventional samplingmethods such asMH andGibbs, QHMC can
performwell on discontinuous, non-smooth and spiky distributions
Barbu and Zhu (2020), Liu and Zhang (2019). In particular, while
the performance of HMC and MH sampling degrade when the

distribution is ill-conditioned or multi-modal, the performance
of QHMC does not have these limitations. Moreover, QHMC
maintains its performance with almost zero additional cost of
resampling the mass variable. Due to its efficiency and adaptibility,
QHMC can easily integrate with other techniques, or be modified
to enhance its performance based on specific objectives and
applications. For example, stochastic versions of QHMC can yield
accurate solutions with increased efficiency, and the approach is
applicable to various scenarios involving missing data Liu and
Zhang (2019), Kochan et al. (2022).

The quantum nature of QHMC can be understood by
considering a one-dimensional harmonic oscillator example
provided in Liu and Zhang (2019). Let us consider a ball with a
fixed mass m attached to a spring at the origin. Assuming x is the
displacement, the magnitude of the restoring force that pulls back
the ball to the origin is F = − kx, and the ball oscillates around the
origin with period T = 2π√m

k
. In contrast to standard HMC where

the mass m is fixed at 1, QHMC incorporates a time-varying mass,
allowing the ball to experience acceleration and explore various
distribution landscapes.That is, QHMChas the capability to employ
a short time periodT, corresponding to a small massm, to efficiently
explore broad but flat regions. Conversely, in spiky regions, it can
switch to a larger time period T, i.e., larger m, to ensure thorough
exploration of all corners of the landscape Liu and Zhang (2019).

The implementation of QHMC is straightforward: i) construct
a stochastic process M(t) for the mass, and at each time t, ii)
sample M(t) from a distribution PM(M). Resampling the positive-
definitemassmatrix is the only additional step to the standardHMC
procedure. In practice, assuming that PM(M) is independent of x and
q, a mass density function PM(M)withmean μm and variance σ2m can
be where I is the identity matrix. QHMC framework simulates the
following dynamical system:

d(
x

q
) = dt(

M(t)−1q

−∇U (x)
). (5)

In this setting, the potential energy function of the QHMC
system is U(x) = − log [p(Y|X,θ)], i.e., the negative of marginal log-
likelihood. Algorithm 1 summarizes the steps of QHMC sampling,
and, here, we consider the location variables {x(i)}Ni=1 in GP model
as the position variables x in Algorithm 1. The method evolves the
QHMC dynamics in Equation 5 to update the locations x. In this
work, we implement the QHMCmethod for inequality constrained
GP regression in a probabilistic manner.

2.3 Proposed method

Instead of enforcing all constraints strictly, the approach
introduced in Pensoneault et al. (2020) minimizes the negative
marginal log-likelihood function in Equation 4 while allowing
constraint violations with a small probability. For example, for non-
negativity constraints, the following requirement is imposed to
the problem:

P [(Y (x) |x,θ) < 0] ≤ η, forall x ∈D, (6)

where 0 < η≪ 1.
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In contrast to enforcing the constraint via truncated Gaussian
assumption Maatouk and Bay (2017) or performing inference
based on the Laplace approximation and expectation propagation
Jensen et al. (2013), the proposed method preserves the Gaussian
posterior of the standard GP regression. The method uses a
slight modification of the existing cost function. Given a model
that follows a Gaussian distribution, the constraint in Equation
6 can be re-expressed by the posterior mean and posterior
standard deviation:

y∗ (x) +ϕ−1 (η) s (x) ≥ 0, forall x ∈D, (7)

where y∗(x) stands for the posteriormean, s is the standard deviation
and ϕ is the cumulative distribution function of a Gaussian random
variable. Following the work in Pensoneault et al. (2020), in this
study η was set to 2.2% for demonstration purposes. As a result,
ϕ−1(η) = − 2, indicating that two standard deviations below the
mean is still nonnegative. Then, using Equation 7 the formulation
of the optimization problem is given as

arg minθ − log [p (Y|X,θ)] suchthat

y∗ (x) − 2s (x) ≥ 0.
(8)

In this particular form of the optimization problem, a functional
constraint described by Equation 8 is existent. It can be prohibitive
or impossible to satisfy this constraint at all points across the entire
domain.Therefore, we adopt a strategy where Equation 8 is enforced
only on a selected set of m constraint points denoted as Xc = x

(i)
c

m
i=1.

The optimization problem can be reformulated as

arg minθ − log [p (Y|X,θ)] suchthat

y∗ (x(i)c ) − 2s(x
(i)
c ) ≥ 0 forall i = 1,2,…,m,

(9)

where hyperparameters are estimated to enforce bounds. Solving
this optimization problem can be very challenging, and hence,
in Pensoneault et al. (2020) additional regularization terms are
added. Rather than directly solving the optimization problem, this
work adopts the soft-QHMC method, which introduces inequality
constraints with a high probability (e.g., 95%) by selecting a specific
set of m constraint points in the domain. Then non-negativity on
the posterior GP is enforced at these selected points. The log-
likelihood in Equation 4 is minimized using the QHMC algorithm.
Leveraging the Bayesian estimation Gelman et al. (2014), we can
approximate the posterior distribution by log-likelihood function
and prior probability distribution as shown in the following:

p (X,θ|Y) ∝ p (X,θ,Y) = p (θ)p (X|θ)p (Y|X,θ) . (10)

The QHMC training flow starts with the Bayesian
learning shown in Equation 10 this Bayesian learning and proceeds
with an MCMC procedure for drawing samples generated by
the Bayesian framework. A general sampling procedure at step t
is given as

X(t+1) ∼ π (X|θ) = p(X|θ(t),Y) ,

θ(t+1) ∼ π (θ|X) = p(θ|X(t+1),Y) .
(11)

The workflow of soft inequality-constrained GP regression
with the sampling procedure in Equation 11 is summarized in
Algorithm 2, where QHMC sampling (provided in Algorithm 1) is
used as a GP training method. In this version of non-negativity
enforced GP regression, the constraint points are located where the
posterior variance is highest.

Input: Initial point x0, step size ϵ, number of

       simulation steps L, mass distribution

       parameters μm and σm.

1: for t = 1,2,… do

2:   Resample Mt ∼ PM(M)

     Resample qt ∼ N(0,Mt)

     (x0,q0) = (x
(t),q(t))

     q0← q0 −
ϵ
2
∇U(x0)

3:  for i = 1,2,…,L−1 do

4:    xi← xi−1 + ϵM−1t qi−1

      qi← qi−1 −
ϵ
2
∇U(xi)

5:  end for

   xL← xL−1 + ϵM−1t qL−1

   qL← qL−1 −
ϵ
2
∇U(xL)

   (x̂, q̂) = (xL,qL)

   MH step: u ∼ Uniform[0,1];

   ρ = e−H(x̂,q̂)+H(x
(t),q(t));

6:  if u < min (1,ρ) then

7:   (x(t+1),q(t+1)) = (x̂, q̂)

8:  else

9:     (x(t+1),q(t+1) = (x(t),q(t))

10:  end if

11: end for

    Output: {x(1),x(2),…}

Algorithm 1. QHMC Training for GP with Inequality Constraints.

1: Specify m constraint points denoted by Xc =

x
(i)
c

m

i=1, where corresponding observation y
∗
(xc)(i).

2: for i = 1,2,…,m do

3:  Compute the MSE of s2(x(i)c ) of MLE prediction

    y
∗
(xc) for xc ∈D.

    Obtain observation y
∗
(xc)(i) at x

(i)
c

    Locate x
(i+1)
c for the maximum of s2(x(i)c ) for

    xc ∈D.

4: end for

   Construct the MLE prediction of y
∗
(x) using

   QHMC training.

Algorithm 2. Soft Inequality-constrained GP Regression.

2.3.1 Enforcing monotonicity constraints
Monotonicity constraints on a GP can be enforced using the

likelihood of derivative observations. After the selection of active
constraints, non-negativity constraints are incorporated in the
partial derivative, i.e.,

∂ f
∂xi
(xi) ≥ 0, (12)

where f is a vector of N latent values. In the soft-constrained
GP method, we introduce the non-negativity information in
Equation 12 on a set of selected points, and apply the same
procedure as in Equation 9.
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Since the derivative is also a GP with mean and covariance
matrix Riihimäki and Vehtari (2010):

μ(x′) = 𝔼[
∂Y (x)
∂xi
], and K(x,x′) = ∂

∂xi
∂
∂x′i

K(x,x′) , (13)

the new posterior distribution using the parameters in Equation 13
is given as

p (y∗,θ|y,x,x∗) = ∫p (y∗,θ| f∗)p ( f∗|y,x,x∗)d f,

p ( f∗|y,x,x∗) = ∫∫p( f∗|x∗, f, f′)p( f, f′|x,y)d fd f′,
(14)

where y
∗
and f
∗
denote the predictions at location x

∗
. The general

sampling procedure for the posterior distribution in Equation 14 is
the same as in Equation 11.

3 Theoretical analysis of the method

In this section, employing Bayes’ Theorem, we demonstrate
how QHMC is capable of producing a steady-state distribution that
approximates the actual posterior distribution. Then, we examine
the convergence characteristics of the probabilistic approach on the
optimization problem outlined in Equation 9.

3.1 Convergence of QHMC training

The study presented in Liu and Zhang (2019) demonstrates that
the QHMC framework can effectively capture a correct steady-state
distribution that describes the desired posterior distribution p(x) ∝
exp (−U(x)) via Bayes’ rule. The joint probability density of (x,q,M)
can be calculated by Bayesian theorem:

p (x,q,M) = p (x,q|M)PM (M) , (15)

The conditional distribution inEquation 15 is approximated as follows:

p (x,q|M) ∝ exp (−U (x) −K (q)) = exp (−U (x))exp(−1
2
qTM−1q),

(16)

Then, using Equation 16, p(x) can be written as

p (x) = ∫
q
∫
M
dqdMp (x,q,M) ∝ exp (−U (x)) . (17)

Equation 17 shows that the marginal steady distribution approaches
the true posterior distribution Liu and Zhang (2019).

3.2 Convergence properties of
probabilistic approach

In this section, we show that satisfying the constraints on a set
of locations x in the domain D preserves convergence. Recall the
following inequality-constrained optimization problem:

arg minθ − log [p (Y|X,θ)] suchthat

y∗ (x(i)c ) − 2s(x
(i)
c ) ≥ 0 forall i = 1,2,…,m.

(18)

Now, it is necessary to demonstrate that the result obtained by
using the selected set of input locations as in Equation 18 converge to
the value of the regressionmodel’s output.This convergence ensures
that probabilistic approach will eventually result in a model that
satisfy the desired conditions.

Note that throughout the proof, it is assumed that D is finite.
The proof can be constructed for the cases whether the domain is
countable or uncountable.

(i) Assume that the domain D is a countable set containing
N elements. Then, select a subset Dm ∈D with m points,
where x(1)c ,x

(2)
c ,…,x

(m)
c ∈Dm. For each point x ∈D, there exists

a Gaussian probability distribution. The set of distributions
associated with x ∈D is denoted as P . For the constraint
points x ∈Dm, there arem constraints and their corresponding
probability distributions, which can be defined as Pm.
Additionally, we introduce a set H(x) such that

H (x) ≔ {θ|p (Y|X,θ) < 0} , (19)

which covers the locations where the non-negativity constraint is
violated. For each fixed x ∈D, define

v (x) ≔ inf
P∈P

P (Y|X,θ) < 0 ≡ inf
P∈P

P (H (x)) , and

vm (x) ≔ inf
P∈Pm

P (Y|X,θ) < 0 ≡ inf
P∈Pm

P (H (x)) .
(20)

(ii) Assume that the domain D is a finite but uncountable set. In
this case, a countable subset ̃D with x ∈ ̃D can be constructed.
The set of probability distributions are defined as in case (i).
SinceD is finite, the setD ∪ {x} is also finite. Consequently, the
setsH(x),v(x) and vm(x) can be constructed as in the first case,
(Equations 19, 20). Next steps establish a convergence of vm
over v as Pm converges to P .

First, let us provide distance metrics used throughout the proof.
Following the definitions in Guo et al. (2015), let

d (x,A) ≔ inf
x′∈A
‖x− x′‖ (21)

denote the distance from a point x to a set A. Then, the distance of
two compact sets A and B can be defined as

𝔻(A,B) ≔ sup
x∈A

d (x,B) . (22)

Then, using the definitions in Equations 21, 22, the
Hausddorff distance between A and B is defined as ℍ(A,B) ≔
max {𝔻(A,B),𝔻(B,A)}. Finally, we define a pseudo-metric d to
describe the distance between two probability distributions P and
̃P as

d(P, ̃P) ≔ sup
x∈D
|P (H (x)) − ̃P (H (x)) |, (23)

whereD is the domain specified in Section 3.2.

Assumption 1: Suppose that the probability distributions P and Pm
satisfy the following conditions:

1. There exists a weakly compact set ̃P such that P ⊂ ̃P and Pm ⊂
̃P .
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2. lim
m→N

d(P ,Pm) = 0, with probability 1.
3. lim

m→N
d(Pm,P) = 0, with probability 1.

Now, we show that Theorem 1 holds under the assumptions in
Assumption 1. Recall that we have

ℍ (convV,convVm) =max {|sup
P∈Pm
P (H (x)) − sup

P∈P
P (H (x))| ,

| inf
P∈Pm
P (H (x)) − inf

P∈P
P (H (x))|} .

Based on the definition and property of Hausdorff distance Hess
(1999) we also have

ℍ(convV,convVm) ≤ ℍ(V,Vm) ≤max{𝔻(V,Vm) ,𝔻(Vm,V)} .
(24)

Consider the distance of two sets:

𝔻(V,Vm) = sup
v∈V

inf
v′∈Vm
‖v− v′‖

= sup
P∈P

inf
̃P∈Pm

‖P (H (x)) − ̃P (H (x))‖

≤ sup
P∈P

inf
̃P∈Pm

sup
x∈D
‖P (H (x)) − ̃P (H (x))‖

= d(P ,Pm) ,

(25)

where d is defined in Equation 23 and apply the same procedures as
in Equations 24, 25 to obtain𝔻(Vm,V) ≤ d(Pm,P). Hence,

ℍ(convV,convVm) ≤ ℍ(V,Vm) ≤ ℍ(Pm,P) . (26)

Consequently from Equation 26, we obtain

|vm (x) − v (x) | ≤ | infP∈Pm
P (H (x)) − inf

P∈P
P (H (x))|

≤ ℍ(convV,convVm)

≤ ℍ(Pm,P) .

(27)

Theorem 1: vm converges to v as Pm converges to P , that is

lim
m→N

sup
x∈D
|vm (x) − v (x) | = 0.

Proof.Let us assume that x ∈D is fixed, and define

V≔ {P (H (x)) :P ∈ clP} , and, Vm ≔ {P (H (x)) :P ∈ clPm} ,
(28)

where cl represents the closure. Note that both V and Vm are
bounded subsets in ℝd. Let us define a,b,am and bm such that

a≔ inf
v∈V

v, b≔ sup
v∈V

v, am ≔ inf
v∈Vm

v, bm ≔ sup
v∈Vm

v, (29)

The Hausdorff distance between convex hulls (conv) of the sets
V and Vm are calculated as Hess (1999).

ℍ(convV,convVm) =max{|bm − b|, |a− am|} . (30)

Since we know that

bm − b = sup
v∈Vm

v− sup
v∈V

v, and am − a = inf
v∈Vm

v− inf
v∈V

v, (31)

combining the result in Equation 27, and the definitions in
Equations 28–31

ℍ (convV,convVm) =max {|sup
P∈Pm
P (H (x)) − sup

P∈P
P (H (x))| ,

| inf
P∈Pm
P (H (x)) − inf

P∈P
P (H (x))|}

(32)

Based on the Equation 32 and the definition and property of
Hausdorff distance Hess (1999) we have

ℍ(convV,convVm) ≤ ℍ(V,Vm) , (33)

The inequality in Equation 33 yields Guo et al. (2015).

|vm (x) − v (x) | ≤ ℍ(V,Vm) ≤ ℍ(P ,Pm) . (34)

In this setting, x can be any point in D, and the right hand side
of the inequality is independent of x. The proof can be completed
by taking the supremum of each side in Equation 34 with respect to
x Guo et al. (2015).

4 Numerical examples

In this section, we evaluate the performance of the proposed
algorithms on various examples including synthetic and real data.
The evaluations consider the size and dimension of the datasets.
Several versions of QHMCalgorithms are introduced and compared
depending on the selection of constraint point locations and
probabilistic approach.

Rather than randomly locating m constraint points, the
algorithm starts with an empty constraint set and determine the
locations of the constraint points one by one adaptively.Throughout
this process, various strategies are employed to add constraints. The
specific approaches are outlined as follows:

1. Constraint-adaptive approach: While constructing the set
of constraint points, this approach evaluates whether the
constraint is satisfied at a given location. The function value
at that point is calculated, and if the constraint is found to be
violated, a constraint point is added to indicate this violation.
This helps track areas where the constraint is not met and
allows for adjustments to be made accordingly.

2. Variance-adaptive approach: This approach calculates the
prediction variance in the test set. Constraint points are
identified at the positions where the variance values are
highest. As outlined in Algorithm 2, new constraints are
located at the maxima of s(x). The goal here is basically to
reduce the variance in predictions and increase the stability.

3. Combination of constraint and variance adaption: In this
approach, a threshold value (e.g., 0.20) is determined for the
variance, and the algorithm locates constraint points to the
locations where the highest prediction variance is observed.
Once the variance reduces to the threshold value, the algorithm
switches to the first strategy, in which it locates constraint
points where the violation occurs.

We represent the constraint-adaptive, hard-constrained
approach as QHMCad and its soft-constrained counterpart as
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QHMCsoftad. Similarly, QHMCvar refers to the method focusing
on variance, whileQHMCsoftvar corresponds to its soft-constrained
version. The combination of the two approaches with hard and
soft constraints are denoted by QHMCboth and QHMCsoftboth,
respectively. For the sake of comparison, truncated Gaussian
algorithms using an HMC sampler (tnHMC) and a QHMC
sampler (tnQHMC) for inequality-constrained examples are
implemented, while additive GP (additiveGP) algorithm is adapted
for monotonicity-constrained examples.

For the synthetic examples, the time and accuracy performances
of the algorithms are evaluated while simultaneously changing the
dataset size and noise level in the data. Following Pensoneault et al.
(2020), as our metric, we calculate the relative l2 error between the
posterior mean y

∗
and the true value of the target function f(x) on

a set of test points Xt = {x
(i)
T }

Nt

i=1:

E =

√√√√√

√

Nt

∑
i=1
[y∗ (x(i)T ) − f(

(i)
x
T
)]

2

Nt

∑
i=1

f(x(i)T )
2
. (35)

We solve the log-likelihoodminimization problem inMATLAB,
using the GPML package Rasmussen and Nickisch (2010). For
the constrained optimization, we use the fmincon from the
MATLAB Optimization Toolbox based on the built-in interior
point algorithm. Additionally, in order to highlight the advantage
of QHMC over HMC, the proposed approach is implemented
with using the standard HMC procedure. The relative error,
(calculated as in Equation 35), posterior variance and execution time
of each version of QHMC and HMC algorithms are presented.

4.1 Inequaltiy constraints

This section provides two synthetic examples and two real-
life application examples to demonstrate the effectiveness of
QHMC algorithms on inequality constraints. Synthetic examples
compare the performance QHMC approach with truncated
Gaussian methods for a 2-dimensional and a 10-dimensional
problems. For the 2-dimensional example, the primary focus is
on enforcing the non-negativity constraints within the GP model.
In the case of the 10-dimensional example, we generalize our
analysis to satisfy a different inequality constraint, and evaluate
the performances of truncated Gaussian, QHMC and soft-QHMC
methods. Third example considers conservative transport in a
steady-state velocity field in heterogeneous porous media. Despite
being a two-dimensional problem, the non-homogeneous structure
of the solute concentration introduces complexity and increases the
level of difficulty. The last example is a 3-dimensional heat transfer
problem in a hallow sphere.

4.1.1 Example 1
Consider the following 2D function under non-negativity

constraints:

f (x) = arctan 5x1 + arctanx2, (36)

where {x1,x2} ∈ [0,1]2. In this example, the GP model is trained via
QHMC over 20 randomly selected locations.

In Table 1, the comparison between QHMC and HMC
algorithms with a dataset size of 200 is presented. The relative error
values indicate that QHMC yields approximately 20%more accurate
results than HMC, and it achieves this with a shorter processing
time. Consequently, QHMC demonstrates both higher accuracy
and efficiency compared to HMC.

Figure 1 presents the relative error values of the algorithms
with respect to two parameters: the size of the dataset and signal-
to-noise ratio (SNR). It can be seen that the most accurate
results without adding any noise are provided by QHMCboth and
tnQHMCalgorithmswith around 10% relative error.However, upon
introducing the noise to the data and increasing its magnitude, a
distinct pattern is observed. The QHMC methods exhibit relative
error values of approximately 15% within the SNR range of 15%
to 20%. In contrast, the relative error of the truncated Gaussian
methods increases to 25% within the same noise range.This pattern
demonstrates that QHMCmethods can tolerate noise and maintain
higher accuracy under these conditions.

Further, we compare the time performances of the algorithms
in Figure 2 which demonstrates that QHMC methods, especially
the probabilistic QHMC approaches can perform much faster than
the truncated Gaussian methods. In this simple 2D problem in
Equation 36, the presence of noise does not significantly impact
the running times of the QHMC algorithms. In contrast, truncated
Gaussian algorithms are slower under noisy environment even
when the dataset size is small. Additionally, it can be observed
in Figure 3 that the QHMC algorithms, especially QHMCvar and
QHMCboth are the most robust ones, as their small relative error
comes with a small posterior variance. In contrast, the posterior
variance values of the truncated Gaussian methods are higher than
QHMC posterior variances even when there is no noise, and gets
higher along with the relative error (see Figure 1) when the SNR
levels increase. Combining all of these experiments, the inference
is that QHMC methods achieve higher accuracy within a shorter
time frame. Consequently, these methods prove to be more efficient
and robust as they can effectively tolerate changes in parameters.
Additionally, it is worth noting that a slight improvement is
achieved in the performance of truncated Gaussian algorithms by
implementing tnQHMC. Based on the numerical results obtained
by tnQHMC, it can be concluded that employing tnQHMC not
only yields higher accuracy but also saves some computational time
compared to tnHMC.

4.1.2 Example 2
Consider the 10D Ackley function Eriksson and Poloczek

(2021) defined as follows:

f (x) = −a exp(−b√ 1
d

d

∑
i=1

x2i)− exp(−b√
1
d

d

∑
i=1

cos cxi)+ a+ exp 1,

(37)

where d = 10, a = 20, b = 0.2 and c = 2π. We study the performance
of the algorithms on the domain [−10,10]10 while enforcing the
function in Equation 37 to be greater than 5. Table 2 shows the
comparison between QHMC and HMC algorithms with 200 data
points. Similar to the previous example, the results indicate that
QHMC yields approximately 20% more accurate results than HMC
in a shorter amount of time.

Frontiers in Mechanical Engineering 07 frontiersin.org

https://doi.org/10.3389/fmech.2024.1410190
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org


Kochan and Yang 10.3389/fmech.2024.1410190

TABLE 1 Comparison of QHMC and HMC on 2D, inequality.

Method Error Posterior
Var

Time Method Error Posterior
Var

Time

QHMC-ad 0.10 0.14 46 s HMC-ad 0.12 0.17 52 s

QHMC-soft-ad 0.11 0.16 39 s HMC-soft-ad 0.13 0.19 48 s

QHMC-var 0.11 0.12 40 s HMC-var 0.13 0.14 46 s

QHMC-soft-var 0.12 0.15 34 s HMC-soft-var 0.15 0.14 42 s

QHMC-both 0.08 0.13 48 s HMC-both 0.10 0.14 53 s

QHMC-soft-both 0.09 0.13 39 s HMC-soft-both 0.12 0.15 44 s

FIGURE 1
Relative error of the algorithms with different SNR and data sizes for Example 1 (2D), inequality.

Figure 4 illustrates that QHMCboth, QHMCsoftboth and
truncated Gaussian algorithms yield the lowest error when there is
no noise in the data. However, as the noise level increases, truncated
Gaussian methods fall behind all QHMC approaches. Specifically,
both the QHMCboth andQHMCsofthboth algorithms demonstrate
the ability to tolerate noise levels up to 15% with an associated
relative error of approximately 15%. However, other variants of
QHMC methods display greater noise tolerance when dealing with
larger datasets. With fewer than 100 data points, the error rate
reaches around 25%, but it decreases to 15− 20% when the number
of data points exceeds 100.

Figure 5 illustrates the time comparison of the algorithms, where
QHMC methods provide around 30− 35% time efficiency for the
datasets larger than a size of 150. Combining this time advantage
with the higher accuracy of QHMC indicates that both soft and hard
constrained QHMC algorithms outperform truncated Gaussian
methods across various criteria. QHMCmethods offer the flexibility

to employ one of the algorithms depending on the priority of the
experiments. For example, if speed is the primary consideration,
QHMCsoftvar is the fastest method while maintaining a good level
of accuracy. If accuracy is the most important metric, employing
QHMCboth would be a wiser choice, as it still offers significant time
savings compared to other methods.

Figure 6 presents that the posterior variance values of truncated
Gaussian methods are significantly higher than that of the QHMC
algorithms, especially when the noise levels are higher than 5%.
As expected, QHMCvar and QHMCsoftvar algorithms offer the
lowest variance, while QHMCboth and QHMCsoftboth follow
them. A clear pattern is shown in the figure, in which QHMC
approaches can tolerate higher noise levels especially when the
dataset is large. It is notable that our method demonstrates a
significant increase in efficiency as the dimension increases. When
comparing this 10D example to the 2D case, the execution times
of the truncated Gaussian methods are notably impacted by the
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FIGURE 2
Execution times (in seconds) of the algorithms with different SNR and datasizes for Example 1 (2D), inequality.

FIGURE 3
Posterior variances of the algorithms with different SNR and datasizes for Example 1 (2D), inequality.

dimension, even in the absence of noise in the datasets. Although
their relative error levels can remain low without noise, it takes
1.5 times longer than the QHMC methods to offer those accuracy.
Additionally, this observation holds only for cases where the
data is noise-free. As soon as noise is present, the accuracy of
truncated Gaussianmethods deteriorates, whereas QHMCmethods
can withstand the noise and yield good results in a shorter time

span. In all tables, bold values indicate the best performance in each
metric.

4.1.3 Example 3: solute transport in
heterogeneous porous media

Following the example in Yang et al. (2019), we examine
conservative transport within a constant velocity field in
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TABLE 2 Comparison of QHMC and HMC on 10D, inequality.

Method Error Posterior
Var

Time Method Error Posterior
Var

Time

QHMC-ad 0.10 0.13 39 m 17 s HMC-ad 0.12 0.15 43 m 33 s

QHMC-soft-ad 0.11 0.14 36 m 21 s HMC-soft-ad 0.13 0.15 41 m 10 s

QHMC-var 0.11 0.11 37 m 4 s HMC-var 0.13 0.12 41 m 31 s

QHMC-soft-var 0.12 0.11 34 m 23 s HMC-soft-var 0.14 0.12 37 m 42 s

QHMC-both 0.09 0.12 40 m 8 s HMC-both 0.10 0.14 44 m 23 s

QHMC-soft-both 0.10 0.12 37 m 53 s HMC-soft-both 0.12 0.14 42 m 5 s

FIGURE 4
Relative error of the algorithms with different SNR and data sizes for Example 2 (10D), inequality.

heterogeneous porousmedia. Let us denote the solute concentration
by C(x, t)(x = (x,y)T), and suppose that the measurements of
C(x, t) are available at various locations at different times.
Conservation laws can be used to describe the processes of flow
and transport. Specifically, Darcy flow equation describes the flow
by Yang et al. (2019).

{{{{{{{{
{{{{{{{{
{

∇ ⋅ (K∇h) = 0, x ∈ 𝔻,
∂h
∂n
= 0, y = 0ory = L2,

h =H1, x = 0,

h =H2, x = L1,

(38)

where h(x,w) is the hydraulic head, 𝔻 = [0,L1] × [0,L2] is the
simulation domain with L1 = 256 and L2 = 128, H1 and H2
are known boundary head values and K(x,w) is the unknown

hydraulic conductivity field. The field is represented as a stochastic
process, with the distribution of values described by a log-normal
distribution. Specifically, it is expressed as K(x,w) = exp Z(x,w),
where is a second-order stationary GP with a known exponential
covariance function, Cov{Z(x),Z(x′)} = σ2Z exp (−|x− x

′|/lz)
where variance σ2Z = 2 and correlation length lz = 5. The solute
transport by the advection-dispersion equation Emmanuel and
Berkowitz (2005), Lin and Tartakovsky (2009), Yang et al.
(2019) can be described by

{{{{{{{
{{{{{{{
{

∂C
∂t
+∇ ⋅ (vC) = ∇ ⋅ (

Dw
τ
+ α‖v‖2)∇C, x in𝔻,

C = Qδ (x− x∗) , t = 0,
∂C
∂n
= 0, y = 0ory = L2orx = L1,

C = 0, x = 0.
(39)
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FIGURE 5
Execution times (in minutes) of the algorithms with different SNR and datasizes for Example 2 (10D), inequality.

FIGURE 6
Posterior variances of the algorithms with different SNR and datasizes for Example 2 (10D), inequality.

In this context, C(x, t;w) represents the solute concentration
defined over 𝔻× [0,T] ×Ω, v denotes the fluid velocity given
by v(x;w) = −K(x;ω)∇h(x,ω)/ϕ with ϕ being porosity; Dw is
the diffusion coefficient, τ stands for the tortuosity, and α is
the dispersivity tensor, with diagonal components αL and αT.
In this study, the transport parameters for Equations 38, 39 are

defined as: ϕ = 0.317,τ = ϕ1/3,Dw = 2.5× 10−5,αL = 5 and αT = 0.5.
Lastly, the solute is instantaneously injected at x∗ = (50,64) at t =
0 with the intensity Q = 1 Yang et al. (2019). In Figure 7, the
ground truth with observation locations and constraint locations
are presented to provide an insight into the structure of solute
concentration.
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FIGURE 7
Observation locations (black squares) and constraint locations (black stars).

TABLE 3 Comparison of QHMC and HMC on solute transport with nonnegativity.

Method Error Posterior
Var

Time Method Error Posterior
Var

Time

QHMC-ad 0.18 0.13 83 s HMC-ad 0.20 0.14 89 s

QHMC-soft-ad 0.19 0.13 75 s HMC-soft-ad 0.22 0.15 83 s

QHMC-var 0.20 0.12 80 s HMC-var 0.23 0.13 91 s

QHMC-soft-var 0.21 0.13 71 s HMC-soft-var 0.24 0.14 79 s

QHMC-both 0.13 0.12 86 s HMC-both 0.15 0.14 97 s

QHMC-soft-both 0.14 0.13 74 s HMC-soft-both 0.15 0.15 82 s

tnQHMC 0.15 0.13 96 s tnHMC 0.16 0.16 103 s

Table 3 presents a comparison of all versions of QHMC and
HMC methods, along with the truncated Gaussian algorithms.
Similar to the results observed with synthetic examples,
the QHMCboth, QHMCsoftboth, and tnQHMC algorithms
demonstrate the most accurate predictions with a relative error
of 13− 15%. Notably, QHMCsoftboth emerges as the fastest
among the methods while achieving higher accuracy. For
instance, the error value obtained by QHMCsoftboth is 0.14,
whereas tnQHMC’s error is 0.15. However, QHMCsoftboth
delivers a 20% time efficiency gain with slightly superior
accuracy. In Figure 8, a comprehensive comparison of the
algorithms is presented. The decrease in relative error values
is noticeable as constraints are gradually added, following
the adopted adaptive approach. Initially, the error is 0.5 and
gradually decreases to approximately 0.13. Furthermore, it is
evident that the QHMCboth and QHMCsoftboth methods
consistently deliver the most accurate results at each step,
whereas the performance of the QHMCsoftvar method is
outperformed by other approaches.

FIGURE 8
The change in relative error while adding constraints, solute transport.
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4.1.4 Example 4: heat transfer in a hallow sphere
This 3-dimensional example considers a heat transfer problem in

a hallow sphere. Let Br(0) represent a ball centered at 0 with radius
r. Defining the hallow sphere as D = B4(0) −B2(0), the equations
are given as Yang et al. (2021).

{{{{{{{{{{
{{{{{{{{{{
{

∂u (x, t)
∂t
−∇ ⋅ (κ∇u (x, t)) = 0, x ∈ D,

κ
∂u (x, t)
∂n
= θ2(π− θ)2ϕ2(π−ϕ)2, if‖x|2 = 4andϕ ≥ 0,

κ
∂u (x, t)
∂n
= 0, if‖x‖2 = 4andϕ < 0,

u (x, t) = 0, if‖x‖2 = 2.

(40)

In this context, n denotes the normal vector pointing outward,
whileθandϕrepresenttheazimuthalandelevationangles,respectively,
ofpointswithin thesphere.Wedetermine thepreciseheatconductivity
in Equation 40 using κ = 1.0+ exp (0.05u). The quadratic elements
with 12,854 degrees of freedom are employed, and we set y(x) =
u(x,10) to solve the partial differential equations (PDE). Starting
with 6 initial locations at 0 on the surface, 6 new constraint locations
are introduced based on the active learning approach of the QHMC
version. In Figure 9, the decrease is evident in relative error while
the constraints are added step by step. In addition, Figure 10 shows
the ground truth and the GP result obtained by QHMCsoftboth
algorithm, where QHMCsoftboth y∗(x)matches the referencemodel.
Theconstraint locationsof the result are showninFigure 11.Moreover,
itsposteriorvariance is smallbasedontheresults showninTable 2.The
table alsoprovides theerror,posteriorvarianceand timeperformances
of QHMC and HMC algorithms, where the advantages of QHMC
over HMC in all categories, even with the truncated Gaussian
algorithm are observed. Although all of the algorithms complete the
GP regression in less than 1 min, comparing the truncated Gaussian
method with QHMC-based algorithms, 40− 60% time efficiency
along with compatible accuracy of QHMC algorithms is achieved. In
addition to the time and accuracy performances, it is shown that the
posteriorvariancevaluesaresmallestwithQHMCvarandQHMCboth
approaches, followed by tnQHMC and QHMCad approaches. Using
HMC sampling in all methods generates larger posterior variances.

4.2 Monotonicity constraints

This section provides two numerical examples to investigate
the effectiveness of our algorithms on monotonicity constraints. As
stated in Section 2.3.1, the monotonicity constraints are enforced
in the direction of active variables. Similar to the comparisons in
previous section, we illustrate the advantages of QHMC over HMC,
and then compare the performance of QHMC algorithms with
additive GP approach introduced in López-Lopera et al. (2022) with
respect to the same criteria as in the previous section.

4.2.1 Example 1
Consider the following 5D function with monotonicity

constraints López-Lopera et al. (2022):

f (x) = arctan (5x1) + arctan (2x2) + x3 + 2x
2
4 +

2
1+ exp−10(x5 −

1
2
)
.

(41)

FIGURE 9
The change in relative error while adding constraints, heat equation.

In this example, we enforce the function in Equation 41 to be
non-decreasing with x ∈ [0, 1]^5. Table 5 shows the performances
of HMC and QHMC algorithms, where we observe that QHMC
achieves higher accuracy with lower variance in a shorter amount
of time. The comparison proves that each version of QHMC is
more efficient than HMC In addition, Figure 12 shows the relative
error values of QHMC and additive GP algorithms with respect
to the change in SNR and dataset size. Based on the results, it
is clear that QHMCboth and QHMCsoftboth provide the most
accurate results under every different condition, while the difference
is more remarkable for the cases in which noise is higher. Although
QHMCboth andQHMCsoftboth provides themost accurate results,
other QHMC versions also generate more accurate results then
additive GP method. Moreover, Figure 13 shows that the soft-
constrainedQHMCapproaches are faster than the hard-constrained
QHMC, while hard-constrained QHMC versions are still faster
than additive GP algorithm. Additionally, we can see in Figure 14
that QHMC, both hard and soft constrained versions, can reduce
the posterior variance. Unlike the additiveGP method, QHMC
approaches generate small variances even under high noise.

4.2.2 Example 2
We provide a 20-dimensional example to indicate the

applicability and effectiveness of QHMC algorithms on higher
dimensions with monotonicity constraint. We consider the target
function used in López-Lopera et al. (2022), Bachoc et al. (2022).

f (x1,x2,…,xd) =
d

∑
i=1

arctan 5[1− i
d+ 1
]xi (42)

with d = 20. We enforce monotonicity constraint on the 20D
function in Equation 42.

Table 6 illustrates accuracy and time advantages of QHMC
over HMC. For each version of QHMC and HMC, using QHMC
sampling in a specific version accelerates the process while
increasing the accuracy. Overall comparison shows that among
all versions with QHMC and HMC sampling, QHMCboth is the
most accurate approach, while QHMCsoftboth is the fastest and
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FIGURE 10
Comparison of the ground truth and QHMCsoftboth result. (A) Heat
equation data, ground truth y(x). (B) QHMCsoftboth prediction y∗(x).

ranked second in accuracy. Figures 15, 16 show the relative error
and time performances of QHMC-based algorithms, HMCsoftboth
and additive GP algorithm, respectively. In this final example
with the highest dimension, the same phenomenon is observed as
in previous results: soft-constrained versions demonstrate greater
efficiency, while hard-constrained QHMC approaches remain faster
than additive GP across different conditions, including high noise
levels. Based on Figure 15, QHMCboth can tolerate noise levels up
to 10%with the smallest error, and it can still provide good accuracy
(error is around 0.15) even when the SNR is higher than 10%. It
is also worth to mention that although the error values generated

FIGURE 11
Initial locations (squares) and adaptively added constraint locations
(stars). (A) Initial locations. (B) Constraint locations added by QHMC.

by HMCsoftboth and additiveGP are pretty close, HMCsoftboth
performs faster than additiveGP, especially when the dataset is
larger and noise level is higher. Furthermore, QHMC reduces the
posterior variance as in shown in Figure 17. The behavior of the
algorithms follows the same trend as 5-dimensional example, where
the methods can tolerate the noise in the data, especially with
larger datasets.

4.3 Discussion

In the scope of the proposed QHMC-based method, this
work investigates the advantages and disadvantages of using soft-
constrained approach on physics-informed GP regression. The
comparison ofmodified versions of proposed algorithm alongwith a
recent method is further performed to validate the superiority of the
approach. The significant findings and the corresponding possible
reasons are summarized as follows:

1. Synthetic examples are designed to highlight the
robustness and efficiency of proposed method. In one
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FIGURE 12
Relative error of the algorithms with different SNR and data sizes for Example 1 (5D), monotonicity.

FIGURE 13
Execution times (in seconds) of the algorithms with different SNR and data sizes for Example 1 (5D), monotonicity.

example, considering two criteria: dataset size and
SNR. The QHMC-based algorithms are evaluated in
an environment with a range of 0− 20% SNR, and
results provided in Figures 1, 4, 12, 15 have shown that
both soft and hard-constrained versions of proposed

method tolerate the noise in the data, especially if it
is less then 10%. In addition, the methods are more
tolerant when the dataset size increases. This part of
the experiments for each synthetic example proved the
robustness of the proposed method.
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FIGURE 14
Posterior variances of the algorithms with different SNR and data sizes for Example 1 (5D), monotonicity.

FIGURE 15
Relative error of the algorithms with different SNR and data sizes for Example 2 (20D), monotonicity.

2. Additionally, the numerical results of synthetic
examples include the execution times for when the
SNR and dataset size increase in each example.
The goal is to underscore the effectiveness of the
proposed algorithm. Figures 2, 5, 13, 16 show the time

advantages of the algorithms, especially for the soft-
constrained versions.

3. The dimensions of synthetic examples are selected
to verify that the robustness and efficiency of the
algorithms remain for higher dimensions. For inequality-
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FIGURE 16
Execution times (in minutes) of the algorithms with different SNR and data sizes for Example 2 (20D), monotonicity.

FIGURE 17
Posterior variances of the algorithms with different SNR and data sizes for Example 2 (20D), monotonicity.

constrained scenarios, evaluations are performed on
2D and 10D problems, while for monotonicity-
constrained algorithms evaluations are performed on
5D and 20D problems. The results have verified that
the performance of proposed methods can maintain
the accuracy for higher-dimensional cases in a
relatively short amount of times.

4. The real-life applications are chosen to verify that the
proposed method is promising to generalize different
type of problems. The solute concentration example is
a 2D problem with non-homogeneous structure, while
heat transfer problem is a 3D problem that requires PDE
solving. On the contrary of synthetic examples, in this
set of experiments, the dataset size is fixed and there
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TABLE 4 Comparison of QHMC and HMC on heat transfer with nonnegativity.

Method Error Posterior
Var

Time Method Error Posterior
Var

Time

QHMC-ad 0.04 0.04 34 s HMC-ad 0.06 0.07 40 s

QHMC-soft-ad 0.05 0.04 30 s HMC-soft-ad 0.07 0.07 32 s

QHMC-var 0.05 0.02 30 s HMC-var 0.09 0.05 27 s

QHMC-soft-var 0.06 0.03 26 s HMC-soft-var 0.10 0.05 29 s

QHMC-both 0.02 0.03 32 s HMC-both 0.04 0.05 37 s

QHMC-soft-both 0.03 0.03 27 s HMC-soft-both 0.05 0.06 35 s

tnQHMC 0.04 0.05 51 s tnHMC 0.06 0.07 56 s

TABLE 5 Comparison of QHMC and HMC on 5D, monotonicity.

Method Error Posterior
Var

Time Method Error Posterior
Var

Time

QHMC-ad 0.11 0.16 2 m 23 s HMC-ad 0.13 0.17 3 m 14 s

QHMC-soft-ad 0.14 0.18 1 m 57 s HMC-soft-ad 0.17 0.20 2 m 48 s

QHMC-var 0.12 0.15 2 m 13 s HMC-var 0.15 0.17 2 m 58 s

QHMC-soft-var 0.15 0.17 1 m 42 s HMC-soft-var 0.18 0.19 2 m 16 s

QHMC-both 0.10 0.13 2 m 25 s HMC-both 0.12 0.15 2 m 58 s

QHMC-soft-both 0.12 0.14 1 m 55 s HMC-soft-both 0.14 0.15 2 m 39 s

TABLE 6 Comparison of QHMC and HMC on 20D, monotonicity.

Method Error Posterior
Var

Time Method Error Posterior
Var

Time

QHMC-ad 0.13 0.18 33 m 1 s HMC-ad 0.15 0.21 35 m 38 s

QHMC-soft-ad 0.15 0.19 31 m 21 s HMC-soft-ad 0.18 0.22 33 m 41 s

QHMC-var 0.14 0.16 32 m 53 s HMC-var 0.17 0.17 34 m 21 s

QHMC-soft-var 0.16 0.17 29 m 42 s HMC-soft-var 0.19 0.18 31 m 17 s

QHMC-both 0.11 0.14 33 m 45 s HMC-both 0.14 0.16 36 m 21 s

QHMC-soft-both 0.12 0.15 29 m 48 s HMC-soft-both 0.15 0.17 33 m 11 s

is no injected Gaussian noise in the data. We present a
comprehensive comparison of all methods along with the
truncated Gaussian algorithm. Step by step decrease in the
error is presented in Figures 8, 9, where the success of all
versions are verified.

5. The proposed method is a combination of QHMC algorithm
and a probabilistic approach for phiysics-informed GP.
QHMC training provides accuracy due to its broad state

space exploration, while probabilistic approach lowers the
variance. In each case, we start with the experiments conducted
with fixed dataset size and zero SNR to demonstrate the
superiority of QHMC over HMC. The HMC versions of
the proposed methods are implemented and compared to
the corresponding QHMC algorithms in Tables 1, 3–6. The
findings for every single case confirm that QHMC enhances
the accuracy, robustness and efficiency. After demonstrating
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the superiority of QHMC method, a comprehensive
evaluation is performed for QHMC-based methods in
different scenarios. Again, for the sake of verification of
efficiency of soft-constrained QHMC, we implemented
the hard constrained versions by choosing the violation
probability as 0.005. The findings indicate that the soft-
constrained approaches reduce computational expenses
while maintaining accuracy comparable to that of the hard-
constrained counterparts. Releasing the constraints by a
probabilistic sense has brought efficiency, while decreasing
the posterior variance.

6. We should also note that while the numerical results indicate
that the current approach is a robust and efficient QHMC
algorithm, the impact of the probability of constraint
violation should be further investigated. The experiments
were conducted with a relatively low probability of
releasing the constraints (around 5%) and the accuracy
was maintained under these conditions. However, allowing
for more violations may pose limitations. In addition, the
performance of the proposed approach on different type
of constrained optimization problems, including those
involving equality constraints, can be more challenging.
Addressing these challenges can be both a limitation and a
potential future work for QHMC-based, physics-informed GP
regression.

7. While our examples demonstrate the efficiency of the proposed
approach in higher dimensions (up to 20), evaluating the
performance of the algorithms in much higher dimensions,
such as 100 or more, remains a subject for future work.
Based on the current results, we expect that the QHMC
will outperform HMC, due to its sampling advantages. For
example, in Liu and Zhang (2019) a stochastic version of
QHMC approach is efficiently applied to train a two-layer
neural network for classifying the MNIST dataset, where
the weight matrices have dimensions of 784× 200 and 200×
10. Similarly, a stochastic QHMC approach in Kochan et al.
(2022) is employed for image reconstruction on MNIST
data, treating the dataset as a 60,000× 784 matrix. However
for constrained GP problems, the algorithm might need
further improvements to effectively address the challenges
posed by the curse of dimensionality in more demanding
scenarios.

5 Conclusion

Leveraging the accuracy of QHMC training and the efficiency
of probabilistic approach, this work introduced a soft-constrained
QHMC algorithm to enforce inequality and monotonicity
constraints on the GP. The proposed algorithm reduces the
difference between ground truth and the posterior mean in the
resulting GP model, while increasing the efficiency by attaining the
accurate results in a short amount of time. To further enhance the
performance of the QHMC algorithms across various scenarios,
modified versions of QHMC are implemented adopting adaptive
learning. These versions provide flexibility in selecting the most
suitable algorithmbased on the specific priorities of a given problem.

We provided the convergence of QHMC by showing that its
steady-state distribution approach the true posterior density, and
theoretically justified that the probabilistic approach preserves
convergence. Finally, we have implemented our methods to
solve several types of optimization problems. Each experiment
initially outlined the benefits of QHMC sampling in comparison
to HMC sampling. These advantages remained consistent across
all cases, resulting in approximately a 20% time-saving and
15% higher accuracy. Having demonstrated the advantages of
QHMC sampling, further evaluation on the performances of
the algorithms across various scenarios was performed. The
examples cover higher-dimensional problems featuring both
inequality and monotonicity constraints. Furthermore, the
evaluations include real-world applications where injecting physical
properties is essential, particularly in cases involving inequality
constraints.

In the context of inequality-constrained Gaussian processes
(GPs), we explored 2-dimensional and 10-dimensional synthetic
problems, along with two real applications involving 2-dimensional
and 3-dimensional data. For synthetic examples, the relative
error, posterior variance and execution time of the algorithms
were compared while gradually increasing the noise level and
dataset size. Overall, QHMC-based algorithms outperformed the
truncated Gaussian methods. Although the truncated Gaussian
methods provide high accuracy in the absence of noise and are
compatible with QHMC approaches, their relative error and
posterior variances increase as the noise appeared and increased.
Moreover, the advantages of soft-constrained QHMC became
more evident, particularly in higher-dimensional cases, when
compared to truncated Gaussian and even hard-constrained
QHMC. The time comparison of the algorithms underscores
that the truncated Gaussian methods are significantly impacted
by the curse of dimensionality and large datasets, exhibiting
slower performance under these conditions. In real-world
application scenarios featuring 2-dimensional and 3-dimensional
data, the findings were consistent with those observed in the
synthetic examples. Although the accuracy level may not reach
the highest levels observed in the synthetic examples and 3-
dimensional heat equation problem, the observed trend remains
consistent. The lower accuracy observed in the latter problem
can be attributed to the non-homogeneous structure of solute
concentration.

In the case of monotonicity-constrained GP, we addressed
5-dimensional and 20-dimensional examples, utilizing the same
configuration as employed for inequality-constrained GP. A
comprehensive comparison was conducted between all versions
of QHMC algorithms and the additive GP method. The results
indicate that QHMC-based approaches hold a notable advantage,
particularly in scenarios involving noise and large datasets. While
additive GP proves to be a strong method suitable for high-
dimensional cases, QHMC algorithms performed faster and yielded
lower variances.

In conclusion, the work has demonstrated that soft-constrained
QHMC is a robust, efficient and flexible method that can be
applicable to higher dimensional cases and large datasets. Numerical
results have shown that soft-constrained QHMC is promising
to be generalized to various applications with different physical
properties.
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Nomenclature

Abbreviations

additiveGP Additive Gaussian Process method

GP Gaussian Process

HMC Hamiltonian Monte Carlo

HMCad Hard-constrained Hamiltonian Monte Carlo with

adaptivity

HMCboth Hard-constrained Hamiltonian Monte Carlo with both

adaptivity and variance

HMCsoftad Soft-constrained Hamiltonian Monte Carlo with adaptivity

HMCsoftboth Soft-constrainedHamiltonianMonte Carlowith both adaptivity

and variance

HMCsoftvar Soft-constrained Hamiltonian Monte Carlo with variance

HMCvar Hard-constrained Hamiltonian Monte Carlo with variance

MCMC Markov chain Monte Carlo

MH Metropolis-Hastings

PDE Partial differential equations

QHMC Quantum-inspired Hamiltonian Monte Carlo

QHMCad Hard-constrainedQuantum-inspiredHamiltonianMonteCarlo
with adaptivity

QHMCboth Hard-constrainedQuantum-inspiredHamiltonianMonteCarlo

with adaptivity and variance

QHMCsoftad Soft-constrained Quantum-inspired Hamiltonian Monte Carlo

with adaptivity

QHMCsoftboth Soft-constrained Quantum-inspired Hamiltonian Monte Carlo

with both adaptivity and variance

QHMCsoftvar Soft-constrained Quantum-inspired Hamiltonian Monte Carlo

with variance

QHMCvar Hard-constrainedQuantum-inspiredHamiltonianMonteCarlo

with variance

SNR Signal-to-noise ratio

tnHMC Truncated Gaussian method with Hamiltonian Monte

Carlo sampling

tnQHMC Truncated Gaussian method with Quantum-inspired

Hamiltonian Monte Carlo sampling

Symbols

δx,x′ Kronecker Delta

σ2 Signal variance

θ Hyperparameters of Gaussian model

l Length-scale
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