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Representation learning algorithms are often used to extract essential features
from high-dimensional datasets. These algorithms commonly assume that such
features are independent. However, multimodal datasets containing
complementary information often have causally related features.
Consequently, there is a need to discover features purporting conditional
independencies. Bayesian networks (BNs) are probabilistic graphical models
that use directed acyclic graphs (DAGs) to encode the conditional
independencies of a joint distribution. To discover features and their
conditional independence structure, we develop pimaDAG, a variational
autoencoder framework that learns features from multimodal datasets,
possibly with known physics constraints, and a BN describing the feature
distribution. Our algorithm introduces a new DAG parameterization, which we
use to learn a BN simultaneously with a latent space of a variational autoencoder
in an end-to-end differentiable framework via a single, tractable evidence lower
bound loss function. We place a Gaussian mixture prior on the latent space and
identify each of the Gaussians with an outcome of the DAG nodes; this
identification enables feature discovery with conditional independence
relationships obeying the Markov factorization property. Tested against a
synthetic and a scientific dataset, our results demonstrate the capability of
learning a BN on simultaneously discovered key features in a fully
unsupervised setting.
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1 Introduction

To achieve autonomous scientific discovery, scientists are rapidly collecting large
scientific datasets with a growing number of complex modalities. Although traditional
multimodal datasets may consist of analogous text, image, and video modalities, these
scientific datasets may contain disparate modalities with varying fidelity and information,
such as 0D process parameters, 3D scanning electron microscopy imagery, and 1D X-ray
fluorescence spectroscopy. Such large, multimodal scientific datasets extend beyond the
limits of human cognition and thereby necessitate machine learning (ML)-driven methods
to identify hidden, underlying factors in the data (Boyce and Uchic, 2019; Sparkes et al.,
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2010). Machine learning methods for these tasks are increasingly
being asked to perform multiple tasks at once: to discover hidden
relationships that are latent to data, to fuse different data
measurements and modalities for novel scientific insights, and to
meaningfully link relationships in a causal manner. In this paper, we
propose a novel method called pimaDAG, designed to encode
multimodal data in a shared latent space, while simultaneously
learning an underlying causal structure within the latent
representation. We do so by enforcing a structured Gaussian
mixture prior on the latent space and then discovering a
Bayesian network that defines the mixing probabilities in the
Gaussian mixture.

As our method seeks to perform multimodal latent
representation learning and causal discovery simultaneously, we
summarize common relevant approaches for each below, to situate
our work in the context of existing methods.

1.1 Multimodal latent
representation learning

The field of disentangled representation learning seeks to
identify hidden features of data through an interpretable latent
representation (Bengio et al., 2013). Variational autoencoder
(VAE) frameworks are often used in representation learning to
provide a meaningful, disentangled representation of data in a latent
space (Higgins et al., 2017; Kingma andWelling, 2019). The original
VAE latent space assumes that data follow a standard Gaussian prior
once embedded into the latent space, tasking the encoders and
decoders to transform the data’s natural distribution to match the
latent normal prior; many other distributions for priors have been
proposed since.

Multimodal VAE approaches (e.g., Khattar et al., 2019)
additionally task the encoders and decoders to correlate features
between modalities, imposing an implicit structure on the latent
space in the sense that latent embedding must synthesize
representative features for each modality. These additional
modalities can improve classification and disentanglement
(Walker et al., 2024). These modalities, which include scalar-
valued data, time-series information, audio, and video, are ideally
complementary, each present novel information about the same
datum. This capability becomes increasingly important for scientific
datasets, which additionally consist of various modalities and obey
physics constraints.

In particular, for scientific tasks, physics-informed multimodal
autoencoders (PIMAs) have demonstrated the ability to detect
features in multimodal datasets while incorporating known
physics to aid in disentanglement Walker et al., 2024. This
approach uses a VAE framework to learn a joint representation
of multimodal data with optional physical constraints on the
decoders, fusing information from each modality through a
product-of-experts model.

Occasionally, multimodal representation methods consider
causal or correlative relationships, such as the method of Lyu
et al. (2022), which aims to maximize latent cross-view
correlations. In particular, PIMA and many other VAE methods
do not consider any dependencies, including causal relationships,
between its discovered features. For example, many VAE

frameworks assume that features (and modalities) are
independent. Real-world data, however, have natural correlative
and causal relationships, which, in the context of this work, we wish
to exploit so that wemay interpret relevant underlying factors within
the latent representations that are uncovered.

1.2 Causal discovery

As our aim is to discover latent features with plausible causal
relationships, we provide a few snapshots into the field of causal
learning. Our treatment is by no means a complete view of this field.

1.2.1 Causal representation learning
The general research area of causal representation learning

focuses on identifying causal relationships among latent variables.
One recurring goal of this relatively new, broad research area is
identifying latent features from data and a Bayesian network relating
those features (Schölkopf et al., 2021). Bayesian networks (BNs)
model conditional dependencies within a joint distribution of
random variables via directed acyclic graphs (DAGs) (Jensen,
2001). The set of nodes in the DAG represent the random
variables of the joint distribution, and the DAG dictates
conditional independencies of the variables by way of the
Markov factorization property.

Efforts in causal representation learning are fairly broad, and
many efforts exploit prior knowledge in order to identify a unique
graph within a larger causal learning framework. Some common
assumptions include linear structural models (Squires et al., 2023;
Kocaoglu et al., 2018), oracles aiding the causal discovery process
(Yang et al., 2021; Shen et al., 2022; Yao et al., 2024), time-dependent
data (Lippe et al., 2022, 2023b,a; Löwe et al., 2022; Yao et al., 2022),
or access to interventions (Yang et al., 2021; Squires et al., 2023;
Buchholz et al., 2023; Varici et al., 2023).

A few of these methods consider multimodal data. For example,
Yao et al. (2024) focused on identifiable multi-view learning when
the graph of the latent variables is already known. As we decode to
different modalities from a joint latent space, we operate under a
similar multi-view assumption, but we instead recover our DAG by
training on data, and our learned feature distribution is a Bayesian
network. The methods presented in Morioka and Hyvarinen (2023)
provide another multimodal algorithm, where the authors
simultaneously perform causal discovery and representation
learning. Unlike our method, they base their feature
representation scheme on nonlinear independent component
analysis (NICA; Hyvarinen and Morioka (2017)). Our scheme
instead discovers a probabilistic shared representation of features,
enabling us to robustly capture uncertain observations of
multimodal features and provide for a larger range of
representations by using arbitrary deep architectures for the
encoders and decoders in our VAE.

Other works focus on temporal sequences to achieve identifiable
causal representations. For example, Lippe et al. (2022, 2023b,a),
Löwe et al. (2022), and Yao et al. (2022) build graphical causal
representations, but they do so with time-series data using notions of
Granger causality, which are distinct from Bayesian network
discovery in the sense that time directionality complicates the
notion of independence; these papers leverage temporal dynamics
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(or in the case of Löwe et al. (2022), amortize across multiple
instances of the same dynamics) to build latent representations,
from which these authors build notions of causality. In our case, we
do not presume time-dependent data, and instead, we leverage
common representations built from multimodal data to inform
our causal discovery process. Consequently, our work is more
general since we make no assumptions on the influence of time-
dependence in the data.

1.2.2 Observational DAG discovery
In the interest of extracting unique DAGs, the important

methods highlighted in Section 1.2.1 tend to make assumptions
that are not feasible in real-world or scientific settings. For example,
intervention data are often not practical or sometimes not possible
to obtain, particularly in observational studies. Consider, for
instance, a material science discovery setting where the process
parameters used to create a sample are typically believed to affect the
material’s microstructure, which, in turn, would affect the material’s
properties and performance. In such a material science setting, data
are typically collected on the process parameters, microstructure,
and properties. However, there is no way to intervene in a way that
the microstructure no longer affects the properties, meaning that
perfect interventions are not possible. Furthermore, the expense of
generating materials samples and data is not trivial, which might
limit the ability to collect more than one sample for a given set of
process parameters. Despite these challenges, however, there is still a
need to discover a feature distribution in high-dimensional scientific
data that have a conditional independence structure. As a result,
observational causal discovery has drawn much attention in recent
years (Glymour et al., 2019;Wang et al., 2024), especially in scientific
settings. Bayesian networks with discovered features can help
scientists formulate hypotheses to further direct their research.
Bayesian networks on discovered features can help identify
plausible causal relationships suitable for future investigation.
Consequently, we pursue an unsupervised representation learning
algorithm that learns a Bayesian network of discovered features from
any general set of (high-dimensional, multimodal, and scientific)
data. Specifically, our focus is thus to learn a DAG and
corresponding joint distribution of features (i.e., a Bayesian
network) in a smooth manner amenable to gradient descent and
coupling with a scientific, multimodal VAE (e.g., PIMA).

DAG discovery for Bayesian networks is, in general, an NP-
hard problem (Chickering et al., 2004), and as a result, algorithms
for DAG discovery have been the subject of their own line of
research. This literature encompasses a wide range of algorithms;
score-based methods, conditional independence testing, and
continuous optimization approaches are the most popular.
Both conditional independence testing and score-based
methods often rely upon combinatorial searches to test
conditional independence or to otherwise enforce acyclicity of
the learned DAG. Although recent algorithms, e.g., Ramsey et al.
(2017), Shimizu et al. (2006), and Spirtes et al. (2000), have made
strides in optimizing this search, these combinatorial methods
still remain expensive. Recently, continuous, differentiable
optimization methods have expedited the discovery of DAGs
through equality conditions enforcing the acyclic constraint,
thereby bypassing the otherwise laborious search in the space
of all DAGs (Zheng et al., 2018; Wei et al., 2020).

A breakthrough for continuous optimization schemes for learning
DAGs, entitled NO TEARS, was introduced in Zheng et al. (2018),
which developed new conditions for enforcing acyclicity in directed
graphs by reformulating the combinatorial graph problem to a
nonconvex optimization problem with an equality constraint. Works
such asWei et al. (2020), Kalainathan et al. (2022), Ng et al. (2019), and
Lee et al. (2020) further build off of this idea and introduce alternative
continuous constraints for learning DAGs. Applications of continuous
optimization of DAGs include Yu et al. (2021), Yu et al. (2019), Yang
et al. (2021), Pamfil et al. (2020), and Gao et al. (2022). In contrast, our
DAG parameterization is not constraint-based or penalty-based, but it
rather is natural parameterization for DAGs inspired by the Hodge
theory (Jiang et al., 2011; Lim, 2020), where we view edges as the flow of
information between nodes. In our words, this means our
parameterization defines a DAG exactly at every step of training. It
is important to note that sub-steps in Zheng et al. (2018) (and related
works) are notDAGs; only the final optimal solution of the continuous
optimization problem yields a DAG. When performing both
multimodal learning and causal discovery simultaneously, it is
desirable that at every training step, we maintain a DAG structure,
making such methods like the ones above less desirable. Furthermore,
our novel parameterization includes a temperature parameter that
regularizes the edge indicator function in order to avoid local
minima while training while still maintaining a valid DAG
throughout the continuous optimization training procedure. For
more references to DAG learning, see Vowels et al. (2022).

1.3 Our method: pimaDAG

Building off the feature discovery of PIMA (Walker et al., 2024),
we present pimaDAG, which simultaneously learns an efficient
representation of multimodal data in a shared latent space of a
VAE while also discovering causal structures between the features of
the discovered latent representations. The unique contributions of
pimaDAG are (1) a new DAG and BN parametrization and (2) the
linking of the trainable BN to PIMA, resulting in simultaneous BN
and feature discovery in multimodal data. To link PIMA with a
trainable BN, we assume that a Gaussian mixture (GMM) prior
structures the latent space and that the mixing probabilities of the
clusters of that GMM are defined by a trainable Bayesian network.
To train our BN simultaneously with the VAE, we pose a novel
continuous optimization scheme for parameterizing DAGs to match
data so as to construct an end-to-end training pipeline that performs
DAG discovery as a sub-step of training a VAE. Such training must
also be handled differently: the commonly used evidence-based
lower bound (ELBO) loss for VAEs must be adapted to include
the new DAG parameterization. The ELBO above is
computationally tractable through strategic framework decisions:
our framework (1) utilizes unimodal deep encodings with Gaussian
outputs, (2) fuses the unimodal deep encodings via a product of
experts (PoE), (3) models clusters in the latent space as a mixture of
Gaussians, (4) computes the probability of each cluster as the joint
probability of the nodes of a trainable DAG, and (5) utilizes a
mixture of deep decoders with the optional capability of physics-
informed decoders for modalities suitable for expert modeling. To
force better clustering in the latent space, we adapt the expectation
maximization (EM) algorithm for fitting Gaussian mixture models
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to data as a training sub-step while minimizing the ELBO in order to
calibrate the Gaussian mixture prior over the course of training. The
problem formulation and DAG parameterization are presented in
Section 2.1, and the training scheme is presented in Section 2.2.

2 Methods

For pimaDAG, we make very few assumptions regarding the
incoming datasets. Datasets can consist of one or many modalities,
where the modalities can vary greatly in complexity, e.g., from
scalars to images. Furthermore, the modalities may share
common data or be fairly complementary, or otherwise, they
may satisfy exploitable physical constraints. Regardless of the

dataset, the goal is to find a joint representation of all the
modalities, where key features have dependencies that are
described by a DAG. To this end, we do assume that there is a
set of discrete, discoverable features within the data, and we further
assume that each feature is a discrete random variable in a DAG. The
number of features (nodes) and the number of outcomes of each
feature serve as hyperparameters in pimaDAG. Knowing the
number of features and outcomes a priori would expedite
training, but otherwise, one can perform a hyperparameter sweep
on these values. We outline our framework in Section 2.1, where the
variational autoencoder setup (see orange box (a) in Figure 1) is
given in Section 2.1.1, and new DAG parameterization and nodal
distribution parameterization are given in Section 2.1.2 (see purple
box (b) in Figure 1). Section 2.2 contains training information,
including the single-sample ELBO and practical considerations.

For convenience, Table 1 in summarizes the notation used
throughout this section and the rest of the paper.

2.1 Algorithmic framework

Given data X � {X1, . . . , XM} from M distinct modalities, we
seek a common embedding into a latent space Z ∈ RJ, where the
latent space representation admits distinct clusters based on
encoded features of the data. To model these clusters, we assume
that Z is a Gaussian mixture model (GMM). We identify our
encoded GMM clusters with L discrete features
N � (N1, . . . ,NL). The probability distribution of N forms the

FIGURE 1
Cartoon description of the pimaDAG algorithm. Our algorithm uniquely links a Bayesian network (BN) prior (b) to the latent space clustering of a
multimodal VAE (a). Each modality is variationally encoded into latent space by a unimodal encoder; unimodal embeddings are joined through a product
of experts (Π). Points in the latent space are clustered by a Gaussianmixture prior. Gaussian clusters are linked to a trainable BN by identifying each cluster
with an outcome of the DAG nodes of the BN. More concretely, the probability of belonging to a given cluster is set equal to the probability of the
associated DAG nodal outcome. For example, given a trainable DAG with nodes A and B, the blue cluster is identified to the nodal outcome (A1 ,B1), and
thus, the probability of belonging to the blue cluster is equal to the probability p(A � A1 ,B � B1). Points in the latent space are decoded back into each
modality, with the option of incorporating known physics into the decoders.

TABLE 1 List of notation for pimaDAG derivation.

Notation Meaning Range

X All modalities

Xm Data from mth modality m � 1, . . . ,M

N All features

Nℓ One-hot vector for the ℓ
th feature space ℓ � 1, . . . , L

Nc1 ,...,cL One combination of features cℓ � 1, . . . , CL

Z Latent space representation
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mixing probabilities of the GMM. In other words, if each feature Nℓ

is a categorical random variable with Cℓ outcomes and we letNc1 ,...,cL

denote one outcome of N, then Z|N � Nc1 ,...,cL is normally
distributed and has the probability of belonging. Moreover, we
assume that there are shared latent dependencies between
features and that these dependencies are described by a directed
acyclic graph (DAG): each featureNℓ is a node in a DAGG. Thus, by
assuming the Markov factorization property,

p N( ) ≔ p N1, . . . ,NL( ) � ∏L
ℓ�1

p Nℓ |Pa Nℓ( )( ), (1)

where Pa(Nℓ) denotes the immediate parents of feature node Nℓ .
Supplementary Figure S1 shows how the DAG of features relates to
the latent space embedding.

For such a Gaussian mixture latent representation described by
Z and N, we aim to construct our embedding and latent space
representation through training a multimodal variational
autoencoder. Following works such as Dilokthanakul et al.
(2016), Jiang et al. (2017), and Walker et al. (2024), we train our
VAE to find the prior distribution p, the posterior distribution q, the
joint distribution of N, and the DAG G, which maximize the
evidence lower bound (ELBO) loss:

L � Eq Z,N|X( ) log
p X, Z,N( )
q Z,N|X( )[ ].

We assume independence of decoding mechanisms for each
modality for our prior, and we assume mean-field separability for
the posterior. These assumptions, respectively, give

p X|Z,N( ) � ∏M
m�1

p Xm|Z,N( ) and q Z,N|X( )

� q Z|X( )q N|X( ). (2)

With these assumptions, the ELBO separates as sums of expectations
of Gaussian distributions; see Equation 23. In the case of Gaussians
with diagonal covariance, Jiang et al. (2017) gave a closed-form
solution to compute such an expectation (see Corollary 5.1 in
Supplementary Material 5). For general Gaussian distributions,
we give the closed-form solution in Lemma 5.2 of Supplementary
Material 5, but, for simplicity, we assume Gaussian distributions
with diagonal covariances throughout this work.

Our algorithmic framework thus consists of (a) a multimodal
VAE with a GMM prior and (b) a parameterization of our DAG and
BN that ties into the GMM of (a), as highlighted in Figure 1. We
describe each of these components in the subsections below.

2.1.1 Multimodal VAE with a GMM prior
Our multimodal representation learning framework amounts

to a VAE with a GMM prior on the latent space; see the orange
box (a) in Figure 1. Specifically, the latent space Z is assumed to be
a mixture of C � ∏L

ℓ�1Cℓ Gaussian distributions, where L is the
number of nodes and Cℓ is the number of outcomes of the ℓth node
Nℓ . The joint probability on the mixture assignment in the GMM
is additionally assumed to factorize with a Bayesian network prior
to obey the Markov factorization property in Equation 1.
Assignment to an individual cluster (c1, . . . , cL) has the
probability

Ac1 ,...,cL ≔ p Nc1 ,...,cL( ) � p N1 � c1, N2 � c2, . . . ,NL � cL( ),
and each cluster in the GMM has a Gaussian distribution

p Z|Nc1 ,...,cL( ) ~ N μ̃c1 ,...,cL, ~σ
2
c1 ,...,cL

I( ),
where the parameters ~μc1 ,...,cL ∈ RJ and ~σ2c1 ,...,cL ∈ RJ are recovered by
training with a first-order optimizer or computed using a block-
coordinate maximization strategy outlined in Section 2.2.2.

The multimodal embedding and decoding of the VAE is similar to
Walker et al. (2024). In particular, we use neural network encoders to
embed eachmodality as a Gaussian and then combine these embeddings
using a product of experts (see Π in Figure 1). In other words, for each
modality m, we assume q(Z|Xm) ~ N (μm, σ2mI), where [μm, σ2m] �
Fm(Xm; θm) for a neural networkFm with trainable parameters θm.We
deterministically compute the multimodal embedding from the
unimodal ones via the identity

q Z|X( ) ~ N μ, σ2I( ) � α∏M
m�1

N μm, σ
2
mI( ),

where α is a normalization constant, and

σ−2 � ∑M
m�1

σ−2m and
μ

σ2
� ∑M

m�1

μm
σ2m

.

During training, the multimodal distribution is sampled using the
reparameterization trick. In other words, we sample ϵ ~ N (0, I) and
compute z � μ + ϵ ⊙ σ, where ⊙ is the Hadamard product.

Our decoders output a Gaussian for each modality
p(Xm|Z,Nc1 ,...,cL) ~ N (μ̂m;c1 ,...,cL

, σ̂2m;c1 ,...,cL
I). The Gaussians’

parameters are determined by neural networks Dm;c1 ,...,cL,
i.e., [μ̂m;c1 ,...,cL

, σ̂2m;c1 ,...,cL
] � Dm;c1 ,...,cL(Z; θ̂m;c1 ,...,cL). Alternatively

our decoders Dm;c1 ,...,cL(Z; θ̂m;c1 ,...,cL) can be expert models, or
they can depend upon only Z, i.e., p(Xm|Z,Nc1 ,...,cL) � p(Xm|Z).

2.1.2 Directed acyclic graph and joint distribution
of nodes

The GMM prior in the previous section implicitly uses the Markov
factorization property, which requires knowledge of a DAG to relate the
causal dependencies between clusters; since we do not assume
knowledge of this DAG a priori, we must recover this DAG and the
accompanying probability distribution of the resulting BN while
simultaneously training our VAE. We first describe our DAG
parameterization, followed by our method to compute the resulting
joint probability distribution.

Our DAG parameterization builds off of concepts from Hodge
theory (Jiang et al., 2011; Lim, 2020). We parameterize an edge
indicator function as the graph gradient (G) on a set of nodes. By
using the graph gradient, we guarantee that our edge indicator
function is curl-free, and consequently, we define a complete DAG;
we introduce sparsity in the complete DAG through nonnegative
weightings (B) of edges.

As a brief summary, Hodge theory provides a generalization for
vector calculus concepts of gradient, curl, and divergence, and discrete
Hodge theory generalizes these notions to the discrete setting of graphs
to define the graph gradient, graph curl, graph divergence, etc. Through
these definitions, we can view numeric labels on nodes and edges as
functions on the nodes and edges, respectively. If we define the functions
on the edges to be the graph gradient of the edge’s adjacent node values,
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then we view the edges as the flow between the nodal values.
Furthermore, by defining edge values via the graph gradient, we
ensure that our edges define a curl-free function, which means that
our edge values define a DAG since curl-free functions on graphs have
no cycles by construction. We note that the graph gradient will define a
complete DAG, so we use trainable nonnegative coefficients (B) to
introduce sparsity. For more information on Hodge theory and the
generalization to graphs, see Trask et al. (2020); Lim (2020).

Explicitly, given a set of nodes, our DAG parameterization
assigns a trainable scalar score ξℓ to each node Nℓ . We denote
the vector of trainable node scores as �ξ. Each potential edge Eij

between nodes is assigned a value Fij given by

Fij � B · Gξ( )ij � Bij ξj − ξi( ),
where G is the graph gradient operator, and each Bij is a trainable
nonnegative scalar used to induce sparsity in G. In terms of Hodge
theory, one can view B as an L × L trainable nonnegative metric
tensor and Fij as a flow from node Nj to node Ni.

We use these edge values Fij to give a regularized edge
indicator function:

Eij � ReLU tanh
1
β
Fij( )( ), (3)

where the scalar β> 0 is a temperature parameter that controls the
sharpness of the regularization of the indicator function. We use this
temperature to control how easily the DAG can update during
training, as described in Section 2.2.3. With this formulation, we
assign edges in our DAG via the rule

Ni ⊆ Pa Nj( ) *0 limβ→0Eij � 1 *0 Bij ≠ 0 and ξi < ξj.

(4)
Theorem 2.1. Let A be the adjacency matrix of a directed graph G.

Then G is a DAG if and only if A � limβ→0E for some matrix E with
entries given by Equation 3.

Our DAG parameterization does guarantee a DAG, and
parameterization is flexible enough to learn any possible DAG.
Formal proofs are given in Supplementary Material 3.

Proof: see Lemma 3.4 and Proposition 3.6 in
Supplementary Material 3.

We now proceed to compute the joint probability distribution
on N as per the Markov factorization property. This means that we
must parametrize the probability distribution at each node �πℓ �
p(Nℓ|Pa(Nℓ)) and have a method for computing p(N) from �πℓ . Our
parametrization must be flexible enough to allow for the direction of
the edge dependencies in the DAGG to change during training, and,
as a result, the number of causal factors that are parents of a given
node (i.e., Pa(Nℓ)) may change as well. We therefore build, for each
nodeNℓ , a parameterization of these probabilities that allows for any
subset of nodes to be parents via a trainable tensor Wℓ ; we
downselect which nodes are parents by using the DAG edge
indicator scores from Equation 3 and averaging out those modes
that are not parents. For ease of notation, we let A � p(N).

For each ℓ � 1, . . . , L, we define Wℓ to be a nonnegative rank-L
tensor of size C1 ×/× CL constrained so that for
any c1, . . . , cℓ−1, cℓ+1, . . . , cL,

∑Cℓ

cℓ�1
Wℓ

c1 ,...,cL
� 1.

This constraint ensures that the entries of Wℓ represent the
probabilities

Wℓ: � p Nℓ |Nk for k ≠ ℓ( )
Wℓ

c1 ,...,cL
� p Nℓ � 1cℓ|Nk � 1ck for k ≠ ℓ( ),

where 1c is a one-hot encoding, with the cth entry set to 1.
With this definition, we now proceed to describe our

downselection algorithm for parameterizing the probabilities
over the structure of a given DAG. If a node Nk is not a parent
node of Nℓ , then we remove mode k from Wℓ by contracting Wℓ

against 1
Ck
1 (where 1 is the vector of all ones) along mode k. In

essence, we are replacing the mode k in Wℓ by its average. This
contraction makes Nℓ independent of Nk when Nk is not a
parent of Nℓ . If the node Nk is a parent of Nℓ , then we can
contract against the realizations of the parent one-hot
encodings since they are already known. We, therefore, end
up with an expression for the categorical distribution on
Nℓ|Pa(Nℓ) via
�πℓ � p Nℓ|Pa Nℓ( )( ) � Wℓ �×1v1 �×2v2 . . . �×ℓ−1vℓ−1 �×ℓ+1vℓ+1 . . . �×LvL

� ∑L
k�1
k≠ℓ

∑Ck

ck�1
Wℓ

c1 ,...,cL
vk,ck,

where �×k denotes the contractive n-mode tensor product against
mode k (see Kolda and Bader (2009); Bader and Kolda (2006) for
more details), and

vk �
Nk if Nk ⊆ Pa Nℓ( )
1
Ck

1 if Nk ⊆ Pa Nℓ( )c and k ≠ ℓ.

⎧⎪⎪⎨⎪⎪⎩
Using our DAG representation, these cases can be written as follows:

vk �
Nk if Ek,ℓ � 1

1
Ck

1 if Ek,ℓ ≠ 1 and k ≠ ℓ,

⎧⎪⎪⎨⎪⎪⎩
or more concisely as

vk � 1
Ck

1 − Ek,ℓ
1
Ck

1 − Nk( ) for k ≠ ℓ,

which has the benefit of allowing us to handle relaxations of E when
E is not necessarily a binary matrix (such as when the temperature β
is small but not yet sufficiently close to 0). With vk defined as such,
we can write �πℓ via

�πℓ � ∑L
k�1
k≠ℓ

∑Ck

ck�1
Wℓ

c1 ,...,cL

1
Ck

1 − Ek,ℓ
1
Ck

1 − Nk( )( )
ck

. (5)

From the tensorsWℓ and the vectors �πℓ , we can now compute A.
By Corollary 3.5, we may assume that the categorical variables

N1, . . . ,NL are ordered such that ∀k< ℓ, Nk ⊂ Anc(Nℓ); if not, we
reassign the indices via the permutation σ. Observe that, by
assumption of the Markov factorization property,
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Aℓ ≔ p N1, . . . ,Nℓ( )
� p Nℓ|Pa Nℓ( )( )Aℓ−1,

where A0 � 1 and where the expression for p(Nℓ|Pa(Nℓ)) is given
by �πℓ in Equation 5. This inductive process of computing A � AL is
given in Algorithm 1.

Require: E an upper-triangular DAG score matrix

Require: W1, . . . ,WL tensors, where Wℓ � p(Nℓ |Nk fork ≠ ℓ)
A0 = 1

for ℓ � 1 to L do

Wℓ ← reduce_mean(Wℓ ,axis � [ℓ + 1, . . . ,L],keepdims � False)
for k � 1 to ℓ − 1 do

Wℓ ← Eℓ,k · Wℓ + (1.0 − Eℓ,k) · reduce
_mean(Wℓ ,axis � k,keepdims � True)

end for

Aℓ ← Wℓ

...,: ⊙ Aℓ−1

end for

output A ← AL

Algorithm 1. Algorithm for computing joint distribution kernel A.

As a result of Algorithm 1, we have flexible parameterization for
the joint distribution on N, which is used for the GMM mixing
probabilities in our VAE. This parameterization, of both N and the
underlying DAG, are differentiable and amenable to automatic
differentiation, allowing us to train in an end-to-end fashion.
Our training approach is described in the next section.

2.2 ELBO loss and training

We now describe the loss function used to train pimaDAG. The
ELBO loss for training is similar to that of Walker et al. (2024), albeit
with a different notation and an additional computation of cluster
assignment based on the DAG.

2.2.1 Single-sample ELBO
The full ELBO derivation is in Supplementary Material 4. After

dropping constant terms, the single-sample ELBO is

L � − ∑M
m�1

log σ̂2m( ) + Xm − μ̂m
σ̂m

�������
�������
2

+∑J
j�1

log σ2j( )
+ ∑C1

c1�1
/ ∑CL

cL�1
γc1 ,...,cL · 2 log

Ac1 ,...,cL

γc1 ,...,cL
( ) −∑J

j�1
log ~σ2c1 ,...,cL ;j( )⎡⎢⎢⎣

+ σ2j
~σ2c1 ,...,cL ;j

+ + μj − ~μc1 ...,cL ;j( )2
~σ2c1 ,...,cL ;j

⎛⎝ ⎞⎠, (6)

where γc1 ,...,cL is an estimate for the posterior distribution q(N|X)
and, following Jiang et al. (2017), is computed by

γ: � q N|X( ) � p N|Z( ) � p N( )p Z|N( )
p Z( )

γc1 ,...,cL � p Nc1 ,...,cL( )p Z|Nc1 ,...,cL( )∑C1
c1′�1/∑CL

cL′�1p Nc1′,...,cL′( )p Z|Nc1′,...,cL′( )
� Ac1 ,...,cLp Z|Nc1 ,...,cL( )∑C1

c1′�1/∑CL

cL′�1Ac1′,...,cL′p Z|Nc1′...cL′( ),
(7)

where we recall A ≔ p(N) for convenience. Note that A and γ are
both tensors with Lmodes of size C1 ×/× CL. The tensor A can be
calculated via Algorithm 1 in Section 2.1.2. The values of p(Z|N)
can be computed by sampling from each Gaussian in the Gaussian
mixture model. All other values are parameters in our model.
Table 2 summarizes the assumed distributions on each term in
the architecture and lists how the variables are computed and
updated during training.

2.2.2 Training
To train our causal model, we seek tomaximize the ELBOL over

the entire dataset. In other words, if we use Ld to denote Equation 6
for the dth datapoint, then we want to minimize −∑dLd.
Throughout training, we alternate between (1) updating the
neural network, expert model, and DAG parameters via gradient
descent and (2) updating the Gaussian mixture centers and
variances using block-coordinate maximization, similar to Walker
et al. (2024). In particular, we compute the optimal Gaussian
mixture centers and variances by taking the derivative of −∑dLd

TABLE 2 Choices of distributions.

Distribution Prior Computation Update

p(Xm|Z,N) N (μ̂m, σ̂2mI) [μ̂m, σ̂m] � Dm(Z; θ̂m) Trained θ̂m

p(Z|Nc1 ,...,cL) N (~μc1 ,...,cL , ~σ2c1 ,...,cL I) ~μc1 ,...,cL �
∑d

μ(d)γ(d)c1 ,...,cL∑d
γ(d)c1 ,...,cL

Computed

~σ2c1 ,...,cL � ∑d
((μ(d)−~μc1 ,...,cL )

2+σ2(d) )γ(d)c1 ,...,cL∑d
γ(d)c1 ,...,cL

Computed

p(Nℓ |Pa(Nℓ)) Cat( �πℓ) �πℓ � (Equation 5) Trained Wℓ , E

q(Zm|Xm) N (μm, σ2mI) [μm, σm] � Fm(Xm; θm) Trained θm

q(Z|X) N (μ, σ2I) σ2 � (∑M
m�1σ−2m )−1 Computed

μ � σ2∑M
m�1

μm
σ2m

Computed
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with respect to these parameters and solving for the global
minimizers:

~μc1 ,...,cL � ∑dμ
d( )γ d( )

c1 ,...,cL∑dγ
d( )
c1 ,...,cL

,

~σ2c1 ,...,cL �
∑d μ d( ) − ~μc1 ,...,cL( )2 + σ2 d( )( )γ d( )

c1 ,...,cL∑dγ
d( )
c1 ,...,cL

,

(8)

where d indexes the dth data point, and, in particular, μ(d) and σ2(d)

are, respectively, the encoded mean and variance of the dth data
point. Our training procedure follows Algorithm 2.

input data x � {X1 , . . . ,XM} in batches B
Compute γ(d)c1 ,...,cL

for all x(d) ∈ x via Equation 7

Compute ~μc1 ,...,cL
and ~σ2c1 ,...,cL

via Equation 8

for i � 1 to Nepochs do

for b ∈ B do

Perform optimizer update on ELBO

end for

Calculate γc1 ,...,cL
for all x(d) ∈ x via Equation 7

Update ~μc1 ,...,cL
and ~σ2c1 ,...,cL

via Equation 8

end for

Algorithm 2. Training algorithm for pimaDAG.

2.2.3 Practical considerations
We implement several tools for aiding training and algorithm

adaptation. These tools are described here, and the use of these tools
in each experiment is detailed in Supplementary Material 2.

2.2.3.1 Pre-training
We sometimes found that before fitting a DAG, we need a

reasonable latent embedding, in the sense that the DAG is meant to
relate informative latent features instead of random features at
initialization. Thus, we implemented an optional pre-training
regimen, following Jiang et al. (2017) and Kingma and Welling
(2014). As our first step in pre-training, we fix the pre-initialized
encoders and initialize the cluster means and variances via Equations
7, 8. This initialization has the benefits of providing a good GMM fit for
the initial latent embedding, but if the initial latent embedding is poor or
undiscriminating, then the initial GMM fitting by these steps might not
focus on any informative features. Our next step in pre-training is to
train the weights and biases of the encoders and decoders via the
reconstruction term or by fitting a unit-normal Gaussian variational
autoencoder (Kingma and Welling, 2014). Following this training, we
find a good initial GMM fit through iterations of Equations 7, 8. This has
the benefit of finding a good initial embedding, from which block-
coordinate maximization can recover meaningful features.

2.2.3.2 Edge indicator function adaptations
We have two optional adaptations to the edge indicator function.

The first is to add random noise to the node scores ξ. This noise is
included to break free of local minima and may additionally test edge
orientation. Our second adaptation is to anneal β during training. In
Equation 3, β serves as a temperature parameter, and, as β → 0, E
approaches a true indicator function. Our annealing implementation
is simple, where we specify the initial β, the final β, and the update
frequency of β.

2.2.3.3 Updates on GMM parameters
The cluster center and variance updates in Equation 8, paired

with the gamma calculation in Equation 7, are reminiscent of
expectation-maximization. The traditional maximization step
would, however, also update the probability of belonging to each
cluster (A). Although there is no closed-form expression for an
update on A from our ELBO since they depend on the underlying
causal factorization, we alternatively perform extra gradient-descent
steps to update A after each update of the cluster means and
variances. Furthermore, we also implemented the option to
perform multiple iterations of GMM variable updates per epoch.

3 Results

Although we prove in Proposition 3.6 that our DAG
parameterization is capable of learning any DAG, we
demonstrate this capability in Section 3.1. We then test
pimaDAG on a synthetic dataset consisting of circle images and
a scientific dataset consisting of 3D-printed lattices. All
architectures, hyperparameters, and training details for the
experiments can be found in Supplementary Material 2.

3.1 Efficacy of DAG parameterization

We test the ability of our DAG parameterization (Equation 3) to
recover any DAG. First, we generate a random set of DAGs of
various sizes, i.e., the number of nodes L � {6, 12, 24, 48}, by
generating a (random) consistent ordering, inducing a DAG on
the complete graph of L nodes, and then randomly discarding edges
from the complete graph by a Bernoulli distribution with probability
p � 0.25 that an edge is discarded. For each graph in our dataset, we
train to recover the specified DAG’s adjacency matrix, comparing
the edge adjacency matrix of the predicted graph to that of the true
graph using binary cross-entropy (BCE) as our loss and Adam as our
optimizer. We use a learning rate of λ � 0.001 and train for 25K
steps with a batch size of 16. For the largest size L � 48, training was
extended to 50K steps as the loss had not converged after the first
25K steps; this slowdown in convergence is expected, given that the
number of unique DAGs grows superexponentially with the number
of vertices in a graph (Kuipers and Moffa, 2015). Training begins
with an initial temperature β of 0.5, and we reduce β by 1% every
100 steps to a minimum temperature of βmin � 0.001. We repeat this
test for Nsamples � 20 for each size graph. In Table 3, we report the
average and standard deviation of the BCE loss for each of the
sampled DAGs for each size. In every sample at every size in our test,
with the exception of a single sample for L � 48, the largest graph
size, we recover the adjacency matrix within 1.0 × 10−4 entry-wise
accuracy, often with accuracies of 10−6 or smaller; the maximum
absolute entry-wise error (MAE) in the predicted adjacency graph
across all entries and all samples of that size is also reported in
Table 3. Similar statistics are shown for common test DAGs, taken
from the BNLearn (Scutari, 2010) repository of Bayesian networks,
yielding comparable results, as shown in Table 4.

We additionally compare our ability to recover the DAG adjacency
matrix against NO TEARS (Zheng et al., 2018) on the same benchmarks
in Table 4 using the same metrics for success used in Table 3. To make
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pimaDAG and NO TEARS comparable, we do not perform any
optional enhancement of the discovered DAG in Zheng et al.
(2018), such as weight thresholding or L1 regularization, and we
otherwise use the same parameterization, as provided for in their
original work. We note a handful of key differences between these
two methods, namely, that (1) pimaDAG’s parameterization yields
an unconstrained nonlinear optimization problem, while NO
TEARS yields a linear problem (depending on choice of loss, as
described in Zheng et al. (2018)) with a nonlinear constraint; (2)
pimaDAG uses a first-order optimizer, while NO TEARS uses a
second-order optimizer as part of an augmented Lagrangian
scheme; and (3) pimaDAG always guarantees a DAG by
construction, while NO TEARS guarantees a DAG only when
the constraints are satisfied, which is not guaranteed a priori in
the augmented Lagrangian formulation. Thus, we see in Table 4
that when NO TEARS successfully finds a DAG, it generally does
so more efficiently and accurately, which is unsurprising given its
more sophisticated optimization approach but that for the larger
graphs (N> 10) tested from the BNLearn repository, NO TEARS
fails to recover a DAG and generally performs poorly on these
problems. This behavior motivates the need for methods like
pimaDAG, which guarantee a DAG by construction during all
stages of end-to-end training.

3.2 Circles

For our first pimaDAG experiment, we generated a synthetic
unimodal dataset consisting of images of circles with three

different features: hue h (red and blue), radius r (Gaussian
mixture of big and small), and shift s (Gaussian mixture of left
and right). We generated 4,096 circles using the decision tree in
Supplementary Figure S2 where we purposefully overlapped
distributions of h, r, and s to necessitate the discovery of a
DAG describing the generative process. We ran this
experiment with three nodes in the DAG, where each node was
a binary categorical random variable. The latent space showed
disentanglement in the three different features. The learned
DAG is in subpanel (E) of Figure 2. By comparing cluster
labels to features characteristic of each cluster, we see that
node N1 in the DAG corresponds to the radius, node N2

corresponds to the hue, and node N3 corresponds to the shift.
For example, we conclude that N2 corresponds to the hue as all
clusters with red circles have a 0 in the second entry of their label.
Under this identification, the resulting directed acyclic graph
demonstrates that the radius and hue play a key role in the
outcome of the shift.

3.3 Lattices

Our next experiment uses a dataset of 3D-printed lattices
(Garland et al., 2020). In this dataset, two different lattice
geometries were printed (octet and gyroid) from 316 L stainless
steel, where each respective geometry was printed using the same 3D
model but different print process parameters. Each lattice was a 10-
mm cube with three 3 × 3 unit cells. Strut diameters for the octets
and wall thicknesses for the gyroids were both 0.5 mm in the model

TABLE 3 Training performance on DAG recovery tests from randomly generating graphs in experiment 3.1 for DAGs of various sizes.

# Nodes 6 12 24 48

Number of recovered graphs 20/20 20/20 20/20 19/20

BCE mean 2.9419 × 10−6 3.4262 × 10−6 4.0661 × 10−6 2.1706 × 10−3

BCE standard deviation 1.6130 × 10−7 9.8669 × 10−8 3.4922 × 10−8 9.4594 × 10−3

MAE 9.4530 × 10−6 9.7788 × 10−6 1.1585 × 10−5 1.0000 × 100

MAE of recovered graphs 9.4530 × 10−6 9.7788 × 10−6 1.1585 × 10−5 2.0760 × 10−6

TABLE 4 Training performance on DAG recovery tests for various DAGs from the BNLearn repository in experiment 3.1 comparing our pimaDAG algorithm
against NO TEARS. Results marked with a dagger † denote that the algorithm failed to return a DAG.

pimaDAG NO TEARS

Graph # Nodes BCE MAE BCE MAE

‘asia’ 8 3.0218 × 10−6 9.5203 × 10−6 6.3999 × 10−11 2.9653 × 10−17

‘cancer’ 5 2.9809 × 10−6 9.4264 × 10−6 2.4999 × 10−11 5.1834 × 10−28

‘child’ 20 3.4374 × 10−6 1.0305 × 10−5 1.1610 × 102 † 9.1486 × 10−1 †

‘earthquake’ 5 2.9809 × 10−6 9.4264 × 10−6 2.4999 × 10−11 5.1834 × 10−28

‘mildew’ 35 4.1184 × 10−6 1.3321 × 10−5 1.3551 × 103 † 9.1121 × 10−1 †

‘sachs’ 11 3.1986 × 10−6 9.6564 × 10−6 1.3991 × 101 † 7.1290 × 10−1 †

‘survey’ 6 2.9042 × 10−6 9.4530 × 10−6 3.5999 × 10−11 7.0260 × 10−32
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FIGURE 2
Results from the synthetic circles dataset. Subpanels (A–C) show the latent space colored by hue, radius, and shift, respectively. Panel (D) shows the
image of the datapoint nearest the cluster mean for each cluster. Subpanel (E) contains the learned DAG where edges are weighted by the probability of
each edge. Subpanel (F) gives the probability of feature nodeNℓ � n, given the parent nodeNj � m. By identifying key features in each cluster with its label,
we see that N1 represents the circle radius, N2 represents the hue, and N3 represents the shift.

FIGURE 3
Results from the lattice experiment. Subpanel (A) shows the latent space, where two standard deviations for each cluster are shown as gray ellipses.
Points in the latent space are colored by lattice type: gyroid (red) and octet (blue). Subpanel (B) shows the stress–strain curves colored by lattice type
(gyroid in red and octet in blue) and the expert model for each cluster shown by dashed lines. Subpanel (C) shows the learned DAG; subpanel (D) shows
the probability of feature node Nℓ � n, given the parent node Nj � m. Subpanel (E) shows the mean of each cluster decoded as an image. By
comparing the cluster labels with the nodes of the graph, we see that N2 corresponds to the lattice type and influences N1, which corresponds to the
stress–strain curve. This suggests that the mechanical response (stress–strain curve) follows from the microstructure imagery.
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design. Although wall thicknesses and strut diameters were set to
0.5 mm, actual thicknesses and diameters varied due to the varied
print process parameters. This dataset included a total of
91 printed lattices, where two modalities for each lattice
sample were collected: an image (X1) of the lattice and a
stress–strain curve produced by a high-throughput uniaxial
compression machine (X2). The stress–strain curves represent
a physics-imbued modality, where curves can be modeled via
continuous piecewise linear functions; see Trask et al. (2022).
Consequently, for the stress–strain modality, we used an expert
model decoder composed of two piecewise linear segments.
Specifying two binary feature nodes resulted in a latent space
organized by the lattice type and stress–strain curves, see Figure
3. The two clusters consisting of the octet geometry merged, and
the corresponding expert models are nearly identical. This result
is consistent with the distribution of octet stress–strain curves,
which has a lower variance than the gyroid stress–strain curves.
By comparing cluster labels to features characteristic of each
cluster, we see that node N2 corresponds to the lattice type while
N1 corresponds to the stress–strain curve profile. The learned
DAG suggests that the lattice type influences the
stress–strain curve.

By way of comparison, note that Trask et al. (2022) tested PIMA
on this same lattice dataset. In their Figure 6, they found two
clusters: one for each lattice type. Their latent space provided a
disentanglement of the data but did not give the additional insight
given by our DAG, which identifies dependencies between
stress–strain profiles and the lattice type. We thus anticipate that
pimaDAG can aid in the discovery of hidden, dependent features in
scientific datasets.

4 Conclusion

We present a general-purpose framework, pimaDAG, for
discovering a Bayesian network of latent features in high-
dimensional data. This framework is capable of handling
multiple modalities and physics constraints to encourage
disentanglement of data with a conditional independence
structure. We introduce a new parameterization for learning
DAGs, and we prove that this parameterization is capable of
discovering any DAG; for a selection of DAGs, we confirm this
via numerical experiments. We demonstrate the efficacy of
pimaDAG on synthetic and real data, and we were able to
achieve interpretable dependent features. These results show that
meaningful disentanglement via a trainable Bayesian network is
possible, even in purely exploratory settings.

There are some limitations to this framework. First, our model
assumes discrete features, which means it may be less suitable for
continuous features. Next, variational autoencoders are notoriously
difficult to train to identify features amenable to analysis or that
match extant intuition. In part, this follows from the fact that
variational autoencoders only provide interpretable latent
representations under certain constraints. Although the aim
of this work was to discover a Bayesian network and its
feature nodes for general data, with perhaps multiple
modalities and physics constraints to provide pseudo-labels,
future work will investigate the conditions necessary to

generate unique features and conditional relationships within
pimaDAG. We furthermore plan to investigate the possibility of
including interventional data.
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