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Introduction: Traditional adaptive cruise control systems ignore the impact of
the driver’s intentions and driving behavior on system performance.

Methods: In response to this issue, this study designs a new adaptive cruise
control system by combining personalized driving style recognition, dynamic
distance control, prospective energy management, and a model predictive
control framework that integrates long short-term memory neural networks
and ensemble learning.

Results: It was verified that the accuracy of the algorithm was 96.2%. In addition,
experts had average ratings of 95, 96, and 98 for the economy, safety, and
comfort of the system, respectively.

Discussion: This model is expected to achieve comprehensive performance
optimization and improvement of EREV in complex driving environments,
injecting new vitality and power into the intelligent development of electric vehicles.
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1 Introduction

Currently, Electric Vehicles (EVs) have received widespread attention as green and
environmentally friendly modes of transportation. Among them, Extended Range Electric
Vehicles (EREVs) have become a popular choice in the market due to their unique driving
method - they can still rely on internal combustion engines to generate electricity and
continue to operate after running out of battery. However, having only efficient energy
utilization methods is not enough to meet the safety and comfort needs of modern drivers.
Therefore, the Adaptive Cruise Control (ACC) strategy of EREV has become a focus of
research (Dinesh et al., 2017a; Dinesh et al., 2017b). ACC is a driver assistance technology that
adaptively adjusts vehicle distance to ensure safety. However, traditional ACC systems are
mostly designed based on fixed parameters and control logic, ignoring differences in driver
behavior. In actual driving, the driver’s reaction speed, following distance, and preferences for
acceleration and deceleration can all affect the performance of the ACC system. In view of this,
this study innovatively applies driver intention prediction, Model Predictive Control (MPC),
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modular central control unit design, and enhanced Long Short-Term
Memory Network (LSTM) integration algorithm to the adaptive
cruise control strategy of EREVs. Finally, a Boosted LSTM
Ensemble (BLE) algorithm is designed to achieve comprehensive
optimization of driving experience, energy management, safety
performance, and comprehensive performance, opening up a new
path for the intelligent development of EVs. The research mainly
includes four parts. The second part provides an overview of the
current research status in EREV adaptive cruise control, and
summarizes the research achievements and methods at home and
abroad. In the third part, a driving behavior model is first designed,
andMPC and BLE algorithms are combined for EREV adaptive cruise
control. In the fourth part, the optimization effect of the algorithm is
verified through comparative experiments and efficiency verification,
and the various performance aspects of the technology are tested in
practical use (Groumpos, 2023).

2 Related works

Nowadays, more scholars are dedicated to the research of control
strategies for EREV power systems. Lasocki et al. proposed three
control strategies for EREV power systems: pure electric mode, hybrid
mode with ICE continuous operation, and hybrid mode with ICE only
operating at high power demands. In pure electric mode, the battery
energy balance was negative, while in mixed mode using ICE
continuously or dynamically, the battery energy balance was
positive (Lasocki et al., 2022). Zhang and others proposed an
energy management strategy with multi-agent system network
technology to improve the fuel economy of EREVs. Compared to
traditional strategies, this strategy could significantly reduce fuel
consumption and total energy consumption, providing new
methods and theoretical support for energy management of hybrid
vehicles (Zhang et al., 2023). Rosolia et al. proposed a learning Model
Predictive Controller method for autonomous racing control, which
stored the system trajectory and input sequence for each lap. This
method effectively improved the performance of autonomous racing
by proposing a system recognition strategy (Rosolia and Borrelli,
2019). Researchers such as Sun et al. proposed a comprehensive
solution combining ACC and energy management strategy to
address the economic following problem of intelligent hybrid EVs.
The performance of fusion control and series control was compared
through MPC method, and fusion control could reduce fuel
consumption by about 5% compared to series control (Sun et al., 2019).

Kopczyński et al. analyzed and compared three modes for the
control strategy of the power system of EVs with extended range,
namely, pure electric, continuous operation of the range device and
operation only under high power demand. The results showed that the
battery energy was negative in the pure electric mode, the battery was
significantly positive in the continuous operatingmode, and the battery
was moderately positive in the active mode in the dynamic time
(Kopczyński et al., 2022). Wischnewski et al. established a robust
control model with TubeModel Predictive Control (TMPC) to address
the nonlinear effects and external disturbances experienced by
autonomous racing cars during handling limits. Compared with
MPC and infinite time LQR controllers, TMPC controllers reduced
constraint violations while maintaining similar performance levels and
have higher practicality (Wischnewski et al., 2022). Zhai et al.

developed a comprehensive control strategy to control the
trajectory tracking and handling stability of EVs during high-speed
driving. The method performed good effectiveness, with cumulative
lateral tracking errors reduced by 51.9% and 87.7%, respectively (Zhai
et al., 2022). Aiming at the fuel economy problemof EVswith extended
range, an energy control strategy based onmulti-agent system network
technology was proposed by Zhang et al. The results showed that
compared with the dynamic planning control strategy, the strategy
saved 3.3%, the total energy consumption was reduced by 1.4%;
compared with the traditional electric auxiliary control strategy, E.S
was 18.2%, and the total energy consumption was reduced by 16.6%
(Zhang et al., 2023). Li et al. established a model with recurrent neural
network to address the issue of lane change intention inference in
traffic scenarios. After training with TensorFlow and Next-Generation
Simulation (NGSIM) data in typical scenarios, the accuracy of intent
inference reached up to 96% (Li et al., 2021). Venkitaraman and
Venkata proposed a hybrid deep learning method for the low accuracy
ofmovement state power control in EVs. The recurrent neural network
was used to extract the features, and then the bidirectional gated cycle
cell framework was used to predict the EV state. The results showed
that this method could accurately predict the motor power
consumption of EVs, and compared with the traditional model, the
convergence rate was fast and the error rate was lower (Venkitaraman
and Venkata, 2023).

In summary, the LSTM algorithm and MPC provide a certain
reference for EREV control. However, traditional gesture
recognition systems rarely combine the advantages of the two to
enhance the accuracy and robustness. Therefore, the study combines
the improvedMPC algorithm to design a new type of EREV adaptive
cruise control system based on MPC, providing new ideas and
directions for the intelligent development of EVs.

3 EREV control system based on driving
behavior model

This chapter is divided into two sections. The first section
mainly focuses on the overall design of the ACC system and the
design of the MPC model. The second section establishes a driving
behavior model and establishes a BLE model.

3.1 Overall design and MPC optimization of
ACC system

The ACC system has three core functions that together enhance
driving comfort and efficiency. Firstly, it can accurately identify and
adapt to each driver’s unique driving style by analyzing their
behavioral data in depth. Whether they prefer smooth cruising or
are passionate about aggressive driving, ACC can perfectly replicate
this style while ensuring safety, tailoring a more intimate
autonomous driving experience for drivers (Yang and Yin, 2020;
Huang et al., 2022). Secondly, when the driver shows the intention of
overtaking, such as activating the steering signal or pressing on the
accelerator pedal, the ACC system will immediately respond and
intelligently adjust the distance control with the previous vehicle,
leaving enough space for the driver’s overtaking operation to ensure
the smooth and safe process. Dynamic distance control is a key
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function in the adaptive cruise control system. By adjusting the
distance from the car in front in real time, it can effectively respond
to various driving scenes. In terms of safety, dynamic distance
control can ensure that the vehicle keeps a safe distance from the
vehicle in front, avoid rear-end accidents, and improve driving
safety. In terms of comfort, the speed and distance can be
automatically adjusted according to the driver’s preferences and
road conditions, reducing the discomfort caused by frequent
acceleration and deceleration, and improving the driving
experience. Finally, energy management plays a crucial role in
optimizing the performance of adaptive cruise control systems,
particularly in improving the efficiency of EREVs. Its function is
mainly reflected in the following points: firstly, through precise
energy management, it can ensure that during the adaptive cruise
process, the car can efficiently utilize energy according to road
conditions and driving needs, reducing unnecessary energy
consumption (Sun et al., 2021; Luan et al., 2023; Yang et al.,
2023). In addition, combining intelligent scheduling and path
planning, energy management can optimize driving routes and
speeds, thereby reducing energy consumption and improving
overall efficiency. The system framework is shown in Figure 1.

In the framework of MPC, the Predictive Time Domain (Np)
defines the time span over which the future state of the system is
predicted, while the Control Time Domain (Nc) defines the time
period during which the control input is optimized, typically within
the range of Np. At the beginning of each control cycle, the system
obtains the current state information through sensor measurement
or estimation. Subsequently, set one or more optimization objectives
based on actual needs, such as reducing tracking errors, reducing
energy consumption, etc., as shown in Eq. 1.

J � ∑NP

t�0
α.Econsumed t( ) + γ e t( )����2 + δ

����� �����u t( ) − u t − 1( )����2 − βS t( )( )
(1)

In Eq. 1, J is the overall optimization objective function. NP is
the prediction time domain, representing the time span for

predicting future states. α, β, γ, δ are weight coefficient used to
balance different performance indicators. These coefficients need
to be adjusted according to specific application scenarios and
performance requirements. Econsumed (t) represents the energy
consumption at time t. e(t) is the tracking error at time t, which
can be defined as e(t) � yref(t) − y(t), wherein yref(t) is the
reference trajectory (expected output) and y(t) is the actual
output. u(t − 1) is the control input at time t. δ‖u(t) − u(t − 1)‖2
represents the square norm of the change in the control input, which
is used to measure the smoothness of the control input and avoid
drastic changes in the control signal. S(t) represents a security
indicator, which needs to be determined based on the actual security
needs of users. The state and control inputs are set with constraints
by considering the physical limitations and security standards of the
system, as shown in Eq. 2.

0≤ ubattery t( )≤ umax
battery

0≤ uengine t( )≤ umax
engine

{ (2)

In Eq. 2, ubattery(t) is the battery output control input at time t;
umax
battery is the maximum allowable value for battery output; uengine(t)

indicates the engine output control input at time t; uengine(t) denotes
the maximum allowable value for the engine output. Next, a set of
optimal control input sequences is generated by using efficient
optimization algorithms to solve the constructed optimization
problem. Throughout the entire control process, the system
continuously monitors the differences between actual output and
predicted output, and makes corresponding adjustments as needed.
This may include modifying the predictive model, adjusting
optimization objectives, or updating constraint conditions to
ensure the performance. The algorithm process is shown in Figure 2.

In EREV, the optimal power source (battery or engine/
generator) and allocation ratio can be determined by MPC based
on the information predicted by it for future driving conditions and
energy requirements, and then a method that accurately describes
the dynamic behavior of the EREV can be developed. This includes
battery discharge and charging models, fuel efficiency models for
internal combustion engines, vehicle power demand models, and

FIGURE 1
Schematic diagram of ACC system framework structure.
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possible environmental models (such as climate impacts). Firstly,
the vehicle power demand model is integrated with the predicted
driver intentions, as shown in Eq. 3.

a t( ) � faccel DriverIntent t( ), L,Q( ) (3)

In Eq. 3, L represents the road conditions on which the
vehicle is located, such as dry, slippery, snowy, icy, etc. Road
conditions can affect the power demand of vehicles, as different
road conditions require different traction to achieve the
expected acceleration. faccel is a model trained through LSTM
based on historical data, which is used to calculate expected
acceleration. It determines how the vehicle should respond
based on multiple parameters such as driver intent, road
conditions, and traffic conditions. L refers to the traffic
environment around the vehicle, including traffic density,
traffic flow speed, and whether there is congestion. Traffic
conditions can affect the behavior and decision-making of
drivers, thereby affecting the acceleration of vehicles.
Integrating driver intentions into future vehicle speed and
acceleration prediction models can further improve the
accuracy of energy demand prediction, as shown in Eq. 4.

v t + Δt( ) � v t( ) + ∫t+Δt

t
a t′( )dt′ (4)

By integrating the driver’s intentions, MPC can not only
respond to the vehicle’s energy state, but also predict and adapt
to the driver’s behavior. The central control unit mainly includes
6 core modules. Firstly, there is the data acquisition module, where
the CCU is responsible for collecting key data from the sensor
network, including battery state of charge, temperature, engine
status, vehicle dynamic parameters, etc. These data are the
foundation for accurate prediction and decision-making of MPC
strategies. Next is the data pre-processing module, where the CCU
cleans, filters, and converts the raw data to eliminate noise and
outliers. Kalman filtering is used to reduce sensor noise and estimate
the state of dynamic systems. The prediction steps are shown in
Eq. 5.

hatxk|k−1 � Fkx̂k−1 | k−1 + Bkuk

Pk|k−1 � FkPk−1 | k−1FT
k + Qk

{ (5)

In Eq. 5, Fk denotes the state transition matrix; Bk denotes the
control input matrix; uk denotes a control vector; Qk is the
covariance matrix of process noise, and the update steps are
shown in Eq. 6.

Kk � Pk|k−1HT
k HkPk|k−1HT

k + Rk( )−1
hatxk|k � x̂k|k−1 + Kk zk −Hkx̂k|k−1( )
Pk|k � I −KkHk( )Pk|k−1

⎧⎪⎨⎪⎩ (6)

In Eq. 6, Hk denotes the observation matrix; Rk denotes the
covariance matrix of observation noise; Kk is the Kalman gain;
hatxk|k and P are the estimated state and estimated covariance,
respectively. Then, feature extraction is performed to extract features
from the original data that are helpful in representing driving
intentions, such as the rate of change of the pedal and the
change in vehicle acceleration. The difference between
continuous data points is calculated to estimate, as shown in Eq. 7.

Δxt � xt − xt−1 (7)

In Eq. 7, xt−1 is the input data for the current and previousN − 1
time steps. Then the feature data should be normalized using
Z-Score, as shown in Eq. 8.

z � x − μ( )
σ

(8)

In Eq. 8, x is the original data point; μ denotes the sample
mean; σ denotes the standard deviation of the sample. This
transformation ensures that the feature data has zero mean
and unit variance. The third is the prediction module, where
the MPC algorithm running in the CCU utilizes historical data
and models to predict future driving conditions and energy
requirements. The prediction results help determine the
optimal control strategy to cope with the upcoming driving
scenario. The fourth optimization decision module, MPC
strategy, constructs and solves an optimization problem in

FIGURE 2
Schematic diagram of MPC algorithm flow.
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CCU. The optimization results generate a series of control
commands, such as engine switch status, power output, etc.
The fifth is the control instruction generation module, where
CCU converts the optimization results of MPC strategy into
specific control instructions. These commands are sent to various
actuators of the EREV, such as the engine, electric motor, and
battery management system. The sixth is the execution and
monitoring module, where the CCU monitors the execution of
control instructions to ensure that all components of the EREV
power system work as expected. The real-time feedback
mechanism allows CCU to adjust control strategies in a timely
manner to adapt to changing driving conditions.

3.2 Driving intention prediction and
BLE model

In complex MPC frameworks, LSTM is introduced to
accurately identify the driver’s intentions. Within the
framework of MPC, ensemble LSTM and ensemble learning
can effectively enhance the adaptability and responsiveness of
Adaptive Cruise Control Systems (ACCS). Firstly, LSTM can
process long sequence data, accurately identify driver intentions,
and provide accurate predictive information for MPC. Secondly,
ensemble learning can improve the generalization ability and
stability of the system by combining multiple learners, enabling
ACCS to respond quickly under different driving conditions.
Therefore, this integration method can significantly improve the
performance of ACCS and ensure driving safety. The input size
(N) is set in the range of 5–20 to adapt to the input of different
sensor data, including engine power, motor power, brake
pressure, etc. The output of the system is the goal of the
control strategy, reflecting changes in the system state,
including vehicle speed, acceleration, distance, etc. During the
control process, it is necessary to optimize the control signal for a
certain period of time in the future according to the following
formula, as shown in Eq. 9a.

ut � argminu ∑
N−1

k�0
l xt+k, ut+k( ) + g xt+N( ) (9a)

In Eq. 9a, ut is the optimal control signal at time t. Assuming
u represents the search for a control signal u that can minimize
the subsequent summation expression. N is the predicted time
range or optimization range, indicating how many steps of the
control signal to consider in the future. l(xt+k, ut+k) is the loss
function at time t + k, which depends on the current state xt+k
and the control signal. ut+k is used to measure the gap between the
system state and the control objective, as well as the size or rate of
change of the control signal (which can reflect the smoothness or
energy consumption of the control). g(xt+N) is the terminal loss
function at the end of the prediction range, which only depends
on the final state x. t +N is used to ensure that the system can
reach an ideal state or approach a stable state at the end of the
prediction range. xt+k is the system state at time t + k. The state
variables include vehicle speed, acceleration, distance, etc., and
ut+k is the control signal at time t + k. Control signals may include
throttle opening, braking force, etc., which are used to regulate

system behavior to achieve expected goals. Meanwhile, the
sequence length (T) is set to 5–30 time steps, ensuring that
the network can process critical driving data from a few
seconds to tens of seconds. In terms of hidden layers, select
128 LSTM units. Finally, for the task of identifying driver
intentions, the study sets the number of output categories (C)
to 3, corresponding to acceleration, deceleration, and braking
intentions, so that the network can output clear intention
prediction results. In Figure 3, the algorithm process of using
LSTM model for continuous driver intention recognition can be
split into the following 8 steps.

Eq. 9b shows the expression for its forget gate.

ft � σ Wf · ht−1, xt[ ] + bf( ) (9b)

In Eq. 9b, ft denotes the output; Wf denotes a weight matrix;
ht−1 denotes the hidden state of the previous time step; bf denotes
the input; σ is a bias term. Eq. 10 shows the expression for updating
the unit state.

Ct � ft*Ct−1 + it*C
%
t (10)

In Eq. 10, C%
t denotes the unit state of the current time step; Ct−1

denotes the unit state of the previous time step. Eq. 11 shows the
output gate.

ot � σ Wo · ht−1, xt[ ] + bo( )
ht � ot* tanh Ct( ){ (11)

In Eq. 11, ot is the output of the output gate; ht is the hidden state
of the current time step, which is the element wise product of the
tanh activation function output of the output gate and unit state Ct.
This hidden state will be passed on to the next time step and used for
the final output prediction. Wo is the weight matrix; bo is the bias
term, as illustrated in Figure 4.

The third step is to select a loss function. For classification tasks
such as driver intent recognition, the loss function used in the study
is Cross Entropy Loss. The fourth step is to select an optimizer. The
research adopts the Adam optimizer, which combines the ideas of
Momentum and RMS prop, and can automatically adjust the
learning rate of each parameter. In the later stage of training, it
can approach the optimal solution more stably. The driver intention
model is shown in Eq. 12.

DriverIntent t( ) � fintent SteeringAngle t( ),ThrottlePosition t( ),(
BrakePressure t( ), v t( ))

(12)
In Eq. 12, SteeringAngle(t) is a measure of the turning angle at

time point t, usually expressed in degrees or radians.
BrakePressure(t) is the pressure on the brake pedal is reflected at
time point t and is expressed in absolute force units (such as
Newton) or relative percentages. ThrottlePosition(t) indicates the
position of the accelerator pedal at time point t. v(t) represents the
real-time speed of the vehicle at time point t. The fifth step is to train
the network, and the sixth step is to conduct model evaluation,
selecting suitable evaluation indicators to evaluate model
performance. The seventh step is to optimize the model and
adjust hyper-parameters based on its performance on the
validation set. Finally, the trained model is deployed to the actual
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vehicle control system. To improve the accuracy of model
prediction, boosting ensemble learning is studied to train
multiple LSTM models, and their prediction results are averaged
or voted to determine the final prediction. Each LSTM model is
trained on the data set. The data points predicted incorrectly by the
previous model will be given higher weights. When making
predictions, the predictions of each model are weighted based on
its performance, and then integrated to ultimately design the BLE
algorithm, as shown in Figure 5.

4 Performance verification and
application effect analysis of
3 algorithms

This chapter consists of two sections. The first section mainly is
the performance verification and comparative experiments of the
BLE algorithm. The second section mainly focuses on conducting
horizontal comparison and simulation experiments on the proposed
ACC system.

FIGURE 3
Algorithm flow of LSTM model for continuous driver intention recognition.

FIGURE 4
Schematic diagram of lLSTM neural network structure.
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4.1 BLE algorithm performance verification

To fully evaluate the superiority of BLE algorithm in the field of
driving intention recognition, the experiment introduces the Graph
LSTM algorithm proposed in reference (Zhang et al., 2020), LS,
Bidirectional LSTM algorithm proposed in reference (Varghese
et al., 2020), and Stacking LSTM algorithm for horizontal
comparison with BLE algorithm. Table 1 shows the
experimental results.

In Table 1, the Graph LSTM algorithm shows relatively good
performance in three metrics: MSE, RMSE, and MAE, but it is not
optimal compared to other algorithms. The BLE algorithm achieves
the best performance in MSE and RMSE metrics, indicating that it
has lower errors in predicting driving intentions. Compared to
Graph LSTM, Bidirectional LSTM performs slightly worse in
MSE, RMSE, and MAE metrics. Among all algorithms, Stacking
LSTM performs relatively poorly on three metrics: MSE, RMSE, and

MAE. In Figure 6, the experiment also records the changes in
accuracy and loss values of five algorithms during the
training process.

In Figure 6A, the BLE algorithm proposed in this study
demonstrates excellent performance among five different
algorithms. After 250 iterations, its accuracy gradually stabilizes
and ultimately reaches a high level of 95.6%. In contrast, the
accuracy performance of Graph LSTM, Bidirectional LSTM,
Stacking LSTM, and LSTM algorithms is slightly inferior,
converging to 90.4%, 80.3%, 80.4%, and 76.6%, respectively. In
Figure 6B, the BLE algorithm performs equally well in terms of
loss values. After 270 iterations, its loss value gradually decreased
and steadily converges to a low level of 0.11. Meanwhile, the loss
values of Graph LSTM, Bidirectional LSTM, Stacking LSTM, and
LSTM converge to relatively high values of 0.15, 0.25, 0.26, and 0.27,
respectively. To eliminate the influence of dataset selection on the
experiment, the NGSIM dataset and the Advanced Driving
Simulation Dataset (HighD) are also used for 500 iterations to
verify the accuracy of the model by comparing the dataset and
the identified labels with the model prediction labels. The
experimental results are shown in Figure 7.

In the testing of the NGSIM data set in Figure 7A, the BLE
algorithm stands out with a high accuracy of 96.1%, significantly
outperforming the other four algorithms. In contrast, the accuracy
of Graph LSTM, Bidirectional LSTM, Stacking LSTM, and LSTM
converge to 90.3%, 82.3%, 81.9%, and 76.4%, respectively. Although
they also perform well, they are slightly inferior in comparison. In
Figure 7B, the BLE algorithm also demonstrates its powerful
performance in the evaluation of the HighD data set, leading

FIGURE 5
Schematic diagram of BLE algorithm structure.

TABLE 1 Training parameters of the models.

Model MSE RMSE MAE

Graph LSTM 0.000126 0.0123 0.0022

BLE 0.000101 0.0111 0.0068

Bidirectional LSTM 0.000159 0.0156 0.0099

Stacking LSTM 0.000256 0.0196 0.0135

LSTM 0.000295 0.0251 0.0268
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again with an accuracy of 96.2%. High accuracy means that the
system can more accurately predict driving intentions, thus
providing more accurate and safer control instructions for the
adaptive cruise control system, which will greatly improve the
system’s response capability in complex driving environments
and reduce the possibility of misjudgment and error. Secondly,
high accuracy will also enhance the users’ trust in the system. Graph
LSTM, Bidirectional LSTM, Stacking LSTM, and LSTM have also
achieved certain results, with accuracy rates of 84.1%, 92.3%, 83.3%,
and 77.5%, respectively.

4.2 ACC system simulation experiment and
comparative analysis

In the simulation experiment of comparing the SOC values of
power batteries, the characteristics of the battery and power train, as
well as the physical properties of the vehicle, are defined. The choice

of driving cycle is a standardized test cycle, such as NEDC, FTP-75,
or WLTP. The parameters of the control strategy, including
acceleration, speed, shift logic, and energy management, need to
be set to ensure comparability. The initial SOC and charging and
discharging limits of the battery should be in line with actual
operation. The experiment introduces the Nonlinear Model
Predictive Control algorithm (NMPC) proposed in reference
(Rathai et al., 2019) and the stochastic MPC scheme proposed in
reference (Tran et al., 2020) as a comparison. Professional
simulation software Simulink is used to simulate vehicle
dynamics and battery response, and data on SOC changes under
different strategies is collected. The experimental results are shown
in Figure 8.

In Figure 8, under the NMPC control strategy, the SOC value of
the power battery is maintained at a high level (about 0.8), which is
mainly due to the excess energy caused by the range extender
charging. Under the BLE optimal control strategy, the SOC
change curve follows closely the optimal SOC curve derived from

FIGURE 6
Changes in accuracy and loss values of each algorithm (A) Changes in accuracy of each algorithm (B) Changes in loss values for each algorithm.

FIGURE 7
Accuracy performance of various algorithms in different datasets (A) NGSIM Dataset (B) HighD Dataset.
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the stochastic MPC algorithm. In the power consumption phase
(CD mode), when the speed is low at the beginning (0–800 s), the
SOC change curves of the three control strategies are basically the
same. In the range of 800–3,000 s, at 3,000–4,500 s under BLE

control, the battery SOC drops below 0.3, the battery cost rises, and
the SOC decline rate slows down compared with the stochastic MPC
algorithm. During the charge maintenance phase (CS mode), the
power battery cost is converted to equivalent fuel consumption, at

FIGURE 8
SOC variation data under different strategies.

FIGURE 9
Energy consumption of three algorithms at 60 km under the same conditions (A) stochastic MPC (B) NMPC.
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which point the SOC is maintained with the help of a range extender.
In addition, the experiment also simulates the 60 km energy
consumption of the three algorithms respectively under the same
conditions, as shown in Figure 9.

Figure 9 shows the power consumption characteristics of the
three different models under the uniform acceleration curve. In the
BLE model, power consumption slowly rises as it transitions from
the acceleration phase to the steady state, eventually reaching a total
power consumption of 6, 130 kJ per hour. In contrast, Figure 9B
shows the same power consumption growth trend in the NMPC
model, but the total power consumption is significantly higher than
that in the BLE model, at 9,630 kJ/h. In the stochastic MPC model
shown in Figure 9C, power consumption also rises slowly, with the
total power consumption between the first two at 8,130 kJ per hour.
Among the models studied, BLE model is the most economical in
power utilization, while NMPC model consumes more power. To
explore the impact of NMPC system on vehicle comfort, the
Random Reinforcement Learning Algorithm (JReLM) proposed
by reference (Purushothaman and Vijaya, 2020) is introduced as
a comparison. Using two vehicles, one NMPC system, and the other
vehicle, the JReLM system is used as the control group. Both cars
travel 2.5 km simultaneously. The acceleration and turbulence
during driving are recorded, and the experimental results are
shown in Figure 10.

In Figure 10A, vehicles without NMPC system exhibit
extremely unstable changes in acceleration during driving,
with significant gradient fluctuations. This instability can
bring passengers a very uncomfortable experience, such as
moving forward in constant bumps and shaking, which can
easily make people feel motion sickness and discomfort. After
installing the NMPC system, the acceleration curve of the vehicle
becomes significantly smoother, which means that the impact
and shaking felt by passengers inside the car will be greatly
reduced, and the riding experience will undoubtedly be
significantly improved. In Figure 10B, vehicles without NMPC
system experience very severe bumps during driving, even
reaching a maximum bump height of 8 cm. However, after
installing the NMPC system, the vehicle’s jolt amplitude is
significantly reduced and controlled within 4 cm. This is
undoubtedly a huge improvement, as it will greatly enhance

passenger comfort and driving safety. In the ablation
experiment, the study evaluates the effect of each function on
the overall performance of the system by gradually removing the
different functions of the ACC system. First, the performance of
the full system is tested, including driving style fitness, overtaking
safety, energy efficiency, and system response time. Then, the
behavioral adaptation function, overtaking response function,
and energy optimization function are removed, respectively, and
tested again by them. The experimental results are shown
in Table 2.

According to the above table data, it can be seen that under the
complete system configuration, the ACC system performs the best.
The adaptability of driving style, overtaking safety, energy efficiency,
and system response time are all superior to other experimental
groups. Among them, the driving style adaptation score is the
highest, indicating that the system can adapt well to the driving
habits of different drivers and provide a personalized driving
experience. Meanwhile, the overtaking safety score is also high,
indicating that the system can provide sufficient safety protection
during the overtaking process. In terms of energy efficiency, the
complete system group has the lowest energy consumption,
indicating that the system has effectively reduced energy
consumption and increased driving range by optimizing energy
management. In addition, the system response time is also relatively
short, indicating that the system can quickly respond to the driver’s
operations and provide a smooth driving experience. In contrast,
other experimental groups have some shortcomings in various
performance indicators. For example, systems without behavioral
adaptation function score lower in driving style adaptation, while
systems without overtaking response function score lower in
overtaking safety. Therefore, a complete system configuration can
better meet the needs of drivers and provide a safer and more
comfortable driving experience. Nine experts in the field of
automotive control are recruited to assign the economy, safety
and comfort of the NMPC and BLE systems, using the
percentage system as the evaluation system, as shown in Figure 11.

In Figure 11A, the average scores of the experts on the
economy, safety and comfort of the NMPC system are 73,
82 and 85, respectively, which reflect the positive evaluation
of the NMPC system for its combined performance in terms of

FIGURE 10
Acceleration and turbulence during NMPC system (A) Comparison of acceleration during driving process before and after ins talling NMPC system
(B) Comparison of vehicIe bumps during driving before and after installing the NMPC system.
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cost control, safety and ride comfort. In Figure 11B, the
average scores of experts on economy, safety and comfort of
BLE system are 95, 96 and 98, respectively. These scores clearly
indicate that BLE systems are highly recognized and praised
by experts for their superior performance in saving costs,
ensuring safe use and enhancing the ride experience in all
dimensions.

5 Conclusion

To solve the problem that the traditional adaptive cruise
control system neglected the influence of the driver’s intention
and driving behavior on the system performance, a new ACC
control system based on BLE was designed. In the test of NGSIM
data set, BLE algorithm stood out with its high accuracy of 96.1%,
which was significantly better than the other four algorithms. In
contrast, the accuracy rates of Graph LSTM, Bidirectional LSTM,
Stacking LSTM and LSTM converged to 90.3%, 82.3%, 81.9% and
76.4%, respectively. In the evaluation of the HighD data set, the
BLE algorithm also demonstrated its strong performance, once
again leading the field with 96.2% accuracy. The algorithms
Graph LSTM, Bidirectional LSTM, Stacking LSTM and LSTM
also achieved certain effects, with the accuracy rate reaching
84.1%, 92.3%, 83.3% and 77.5%, respectively. In the simulation

experiment, under the BLE optimal control strategy, the SOC
change curve followed closely the optimal SOC curve derived
from the stochastic MPC algorithm. In the power consumption
phase (CD mode), when the speed was low at the beginning
(0–800 s), the SOC change curves of the three control strategies
were basically the same. In the range of 800–3,000 s, at
3,000–4,500 s under BLE control, the battery SOC dropped
below 0.3, the battery cost rose, and the SOC decline rate
slowed down compared with the stochastic MPC algorithm.
During the charge maintenance phase (CS mode), the power
battery cost was converted to equivalent fuel consumption, at
which point the SOC was maintained with the help of a range
extender. In summary, the EREV adaptive cruise control system
had the advantages of high accuracy, effective SOC management
and strong adaptability. But the computational complexity may
also be relatively high. This may affect the real-time
responsiveness of the system, which is also an area that needs
to be improved in subsequent research.
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TABLE 2 Results of ablation experiments of the ACC system model.

Experimental
group

Shot at the driving
adaptability score

Overcoming safety
score

Energy efficiency (dry
focus/km)

System response time
(milliseconds)

Complete system 95 90 6,130 200

No behavior to adapt 70 85 7,500 220

No overtaking response 90 75 6,500 180

No energy optimization 85 88 8,000 210

Basic control 50 60 9,000 300

FIGURE 11
Expert evaluation statistics on various aspects of two systems (A) NMPC (B) BLE.
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