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Introduction: Intelligent vehicles and autonomous driving have been the focus of
research in the field of transport, but current autonomous driving models have
significant errors in lateral tracking that cannot be ignored.

Methods: In view of this, this study innovatively proposes a lateral trajectory
algorithm for intelligent vehicles based on improved radial basis function (RBF).
The algorithm first models the lateral trajectory behaviour of the car based on the
pre-scanning steering theory, and then proposes an improved RBF network
model to compensate for the error of the lateral trajectory model and further
improve the accuracy.

Results: According to the simulation test results, after 20 iterations, the proposed
algorithm always shows the highest accuracy with the same number of iterations.
When the number of iterations reaches 370, the accuracy of the algorithm is
stable at 88%. In addition, the bending test shows that the proposed algorithm
performs best at low speeds with an overall error of 0.028 m, which is a higher
accuracy compared to the algorithm without neural network compensation.

Discussion: The maximum error of the proposed algorithm does not exceed
0.04 m in complex continuous curved terrain, which is safe within the normal
road width. Overall, the lateral tracking algorithm proposed in this research has
better lateral tracking capability compared to other improved algorithms of the
same type. The research results are of some significance to the field of lateral
tracking of automatic driving, which provides new ideas andmethods for the field
of lateral tracking of automatic driving technology and helps to promote the
overall development of automatic driving technology. By reducing the lateral
tracking error, the driving stability and safety of the self-driving car can be
improved, creating favourable conditions for the wide application of the self-
driving technology.
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1 Introduction

The current automotive manufacturing industry is constantly exploring the possibility
of intelligence. The development of automotive intelligence currently has multiple
directions, including production line automation, Internet of Things technology, and
intelligent supply chain management. Among these development directions,
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autonomous driving of intelligent vehicles is an important part
(Zhao et al., 2023). The tracking algorithms in autonomous driving
are mainly divided into longitudinal tracking and lateral tracking.
Longitudinal tracking is related to the speed control and following of
the vehicle, while lateral tracking is related to whether the car can
correctly perform turning and lane changing operations (Abadi
et al., 2023). The safety of autonomous driving in intelligent vehicles
is directly related to the accuracy and error of the tracking algorithm.
If the longitudinal tracking algorithm is not accurate, the vehicle
may exhibit abnormal acceleration and deceleration behavior,
leading to traffic congestion and increased accident risk (El-
Bayoumi, 2021). Lateral tracking mainly affects the performance
of vehicles driving on curves. Errors in lateral tracking algorithms
may cause vehicles to deviate from the lane, and even collide with
other vehicles or roadside obstacles, thereby affecting driving safety
(Fu and Fu, 2023). Although the current lateral tracking algorithm is
available, there are still significant errors, which may lead to safety
hazards for vehicles when facing complex road surfaces and
continuous bends (Halilaj et al., 2023). The most important part
of the smart car system is the navigation system, which includes path
planning and motion control. Path planning automatically calculates
the best driving route according to the driver’s destination and
considers avoiding congested roads or other unfavourable factors.
Motion control ensures that the vehicle is able to follow the planned
route accurately, including functions such as positioning, map display
and speed control. One of the core goals of route planning is to ensure
that the vehicle or robot can reach its destination safely while avoiding
collisions with obstacles. This needs to be achieved through
algorithms and techniques to ensure that the right decisions can
be made in complex environments (Yasin et al., 2020; Sunan et al.,
2019). Therefore, a lateral tracking algorithm for preview vehicles on
the grounds of neural network error compensation is proposed. In this
algorithm, an optimized RBF neural network is used to correct the
error of the lateral tracking algorithm, to improve the safety of
autonomous driving. The study consists of four parts in total. The
first part discusses the important research achievements in related
fields in recent years. The second part constructs the proposed
algorithm. The third part tests the proposed algorithm. The fourth
part summarizes the entire study.

2 Related works

As an effective self-learning technique, neural networks have
been studied both theoretically and practically. Bao et al.
investigated the three-dimensional (3-D) dynamic trajectory
tracking control of autonomous underwater vehicle (AUV), the
traditional control method based on the nominal model of AUV
could not guarantee the accuracy of the control system, Bao et al.
(2024) proposed a prediction model based on radial basis function
neural network (RBF-NN) based prediction model. The results show
that the proposed controller is more efficient and robust than the
standard model predictive controller (MPC) and standard model
predictive controller. Bhosle and Musande (2023) proposed a model
using deep learning convolutional neural networks for number
recognition, addressing the difficulty of recognizing characters
and numbers with different writing styles and techniques. This
model to some extent imitates the thinking process of the human

brain. Compared with feedforward neural networks and random
forest methods, this model exhibits higher accuracy, reaching 99.2%.
It is particularly effective in organizing and unstructured data such
as images, videos, and audio. In this study, Matveev (2020) modeled
a small autonomous hydrofoil vessel used for interception
operations. Adopting a 3-degree-of-freedom model including
heave, sway, and yaw to simulate the maneuvering motion of a
ship under wing loading conditions. In the simulation of horizontal
ship dynamics, the forces generated by propellers, rudders, and
struts were considered. The results indicate that the proposed model
and results can assist engineers in designing more effective motion
control methods for fast boats used for interception operations.

As a hot topic in the fields of artificial intelligence and
transportation, autonomous driving has received attention in
recent years. Liu led his team to propose a method of using an
unscented Kalman filter to fuse radar and LiDAR data for high-
precision detection and tracking of surrounding targets in
automotive autonomous driving. The actual vehicle test has
demonstrated the effectiveness of this fusion method in
accurately detecting and tracking peripheral targets. Compared
with a single sensor, this method has significant advantages and
enhances the intelligence of autonomous vehicle (Liu et al., 2021).
Wang et al. proposed an asynchronous supervised learning method
to improve the initial performance of the auto drive system on the
grounds of reinforcement learning. This method introduces prior
knowledge by parallel executing supervised learning processes on
multiple driving datasets during pre training. The evaluation of
TORCS simulator and actual vehicle deployment has verified the
reliability of this method, demonstrating a significant improvement
in initial performance and convergence speed during the training
process under this model (Wang et al., 2021). Hoffmann and Klein
proposed a depth distribution model for autonomous driving. The
model can generate calibrated steering angle density, which
performs well in marginal calibration and avoiding excessive
learning, increasing the interpretability of autonomous driving in
automobiles (Hoffmann and Klein, 2023). Stocco and Tonella
(2022) proposed a learning framework that can continuously
learn predictive factors for inappropriate behavior and adapt
using on-site behavioral data. The evaluation of the autonomous
vehicle simulator shows that while maintaining the original ability to
predict faults several seconds in advance, the false alarm rate and the
ability to adapt to behavior drift are significantly reduced.

On the grounds of the research achievements in the fields of
neural networks and autonomous driving in recent years, this
indicates that neural networks, as algorithms with self-learning
ability, have relatively mature applications in various industries.
In recent years, autonomous driving has received increasing
attention, but few studies have focused on the lateral tracking
branch in autonomous driving. The lateral tracking algorithms
used in current autonomous driving schemes often have certain
errors, which are particularly evident when dealing with non-linear
routes. Therefore, the study applies neural networks to the lateral
tracking of intelligent vehicles to fill the research gap in this branch.

Latest Technology Techniques MPC-based algorithms and
algorithms combining deep learning and reinforcement learning
usually have better performance in terms of accuracy and stability,
and are better able to adapt to complex and changing driving
environments. The optimised radial basis function neural
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network mentioned in the research methodology shows high
accuracy in cornering tests, but the stability and robustness in
complex scenarios may still need to be improved. The research is
specifically based on the theory of pre-aimed steering to model the
lateral trajectory behaviour of a car, and then proposes an improved
RBF network model to compensate the error of the lateral trajectory
model to further improve the accuracy.

3 Intelligent vehicle lateral tracking
algorithm on the grounds of
improved RBF

In response to the current problem of lateral tracking errors in
intelligent vehicles, this section proposes an intelligent vehicle lateral
tracking algorithm on the grounds of improved radial basis function
(RBF). This algorithm first models the lateral tracking behavior of
vehicles on the grounds of the theory of preview steering, and then
proposes an improved RBF network model to compensate for the
error of the lateral tracking model, further improving accuracy.

3.1 Intelligent vehicle lateral tracking
modeling on the grounds of preview theory

Non preview steering is a widely used lateral tracking control
algorithm in the field of intelligent vehicle tracking. This algorithm is
a steering control strategy that perceives the vehicle’s state and
environment in real time under specific assumptions, adjusts the
vehicle’s steering in real time, and drives it along a predetermined
trajectory without the need to obtain and analyze future path
information in advance. The geometric model of vehicle lateral
motion under non preview steering is shown in Figure 1.

According to Figure 1, the non preview model ignores the
steering system and suspension of the car, and instead uses the

front wheel angle as the steering input, without considering the pitch
and roll motion of the car. In addition, the influence of ground shear
on car tires has also been ignored (Peng et al., 2022). The
mathematical relationship between the curvature radius of the
desired trajectory of a car’s front wheel steering angle on the
same road under this theory is shown in Formula 1.

L

R
� tan δ (1)

In Formula 1, L represents the wheelbase of the car, R is the
expected curvature radius, and tan δ is the tan value of the front
wheel angle of the car. The lateral trajectory error under the non
preview model is shown in Figure 2.

According to the model in Figure 2, the tracking error of the
front wheel angle of the car can be obtained as the difference
between the car’s yaw angle and its expected yaw angle. Under
the non preview mechanism, there is a problem of significant
decrease in vehicle control accuracy with increasing vehicle
speed. Therefore, a vehicle lateral tracking model on the grounds
of the preview mechanism is introduced here. The preview
mechanism incorporates the concepts of preview point and
preview distance on the basis of traditional steering mechanisms.
The preview point refers to a point on the expected trajectory at a
certain distance in front of the car. This point is usually a part of the
expected trajectory, representing the position that the vehicle is
about to reach in the future. The preview distance refers to the arc
length distance between the point closest to the current point of the
car on the expected trajectory and the preview point. This is not the
length of the line connecting the preview point and the current point
of the car, but the actual path distance along the trajectory. The
geometric model of the vehicle’s lateral motion under the preview
steering mechanism is shown in Figure 3.

In Figure 3, ly is the preview distance, and ep is the tracking error
at the preview point. (gx, gy) represents the position of the preview
point in the current coordinate system. A longer preview distance
(ly) and smaller tracking error (ep) can improve the tracking
accuracy and stability of vehicles, but may also increase the
complexity and response time of the system. The selection of
preview distance ly directly affects the response speed and
tracking accuracy of the vehicle to changes in the road ahead. A
shorter preview distance may cause the vehicle to be unable to
respond to changes in the road ahead in a timely manner, while a
longer preview distance may allow for advance planning of the
driving path, but it may also introduce errors due to the uncertainty
of road information. On straight roads, a longer preview distance
may be more advantageous for improving tracking accuracy; In
curved or complex road conditions, a shorter preview distance may
be more helpful for vehicles to maintain stability and safety. The
magnitude and trend of tracking error ep will directly affect the
vehicle’s ability to correct deviations and the stability of driving.
Larger ep may take longer to correct, while smaller ep may return to
the expected path faster. According to Figure 3, the preview model
calculates the geometric relationship between the preview point and
the current vehicle position, and the system can plan and adjust the
vehicle’s steering angle in advance to better follow the desired
trajectory. Compared to non preview systems, the advantage of
preview steering is that it can better predict future paths, make
steering decisions in advance, and achieve smoother and more

FIGURE 1
Non preview model of car lateral tracking.
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efficient steering control. Therefore, in this study, the preview model
was used to construct the intelligent vehicle lateral tracking
algorithm. Under the preview mechanism, the expected steering
angle of the front wheels of the car is shown in Formula 2.

arc tan
L

R
� δ (2)

Defining the turning angle as A, the mathematical expression of
the turning angle is shown in Formula 3.

sinA � ep
ly

(3)

According to the definition of steering angle, Formula 4 can
be obtained.

arc tan
2L* sinA

ly
� δ (4)

The lateral tracking of a car is influenced by many factors,
among which the longitudinal speed has the most significant and

direct impact on the car’s steering ability. When driving at high
speeds, the inertia of the vehicle increases, and the lateral force
required for lateral motion also increases. This results in a more
sluggish response of the vehicle in the lateral direction, requiring
stronger lateral control. In addition, high-speed driving of a car can
also affect the response characteristics of the suspension system,
which will directly affect the lateral stability and steering
performance of the vehicle. Therefore, it is necessary to adjust
the preview distance on the grounds of the vehicle speed, as
shown in Formula 5.

ly � vk (5)

In Formula 5, v is the longitudinal speed of the car, and v is the
adjustment coefficient at the current speed. It substitutes the preview
distance and turning angle into the expression of tan δ, and obtains
Formula 6.

δ � arctan
Lep

1
2 vk( )2( ) (6)

FIGURE 2
Lateral trajectory error under non preview conditions.

FIGURE 3
Preview model of lateral motion of a car.
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Although the intelligent vehicle lateral tracking model on the
grounds of the preview theory effectively explains the lateral tracking
process of the vehicle, it may have significant errors when dealing
with more complex nonlinear routes. On the one hand, terrain
changes such as slopes and bumps can have nonlinear effects on the
suspension system of vehicles, thereby affecting the accuracy of
lateral motion simulation. On the other hand, when dealing with
complex routes, the lateral dynamic characteristics of vehicles may
become more complex, such as nonlinear tire forces and suspension
feedback effects, which are difficult to incorporate into the
current model.

3.2 Improved RBF network for tracking error
compensation

Due to the existence of errors, a single preview model is
obviously unable to accurately handle various complex situations
on the road surface, which may pose potential risks to the driver’s
personal safety and traffic order. Therefore, it is necessary to try to
eliminate such errors as much as possible. Due to the self-learning
ability of neural networks, they can effectively cope with common
road conditions through training with a large amount of nonlinear
data. Therefore, neural network technology is used here to
compensate for the error of the preview model (Sun et al., 2022).
RBF neural network has excellent nonlinear approximation ability
and can approximate any nonlinear function. This feature makes
RBF neural network very suitable for dealing with nonlinear error
problems in intelligent vehicle lateral tracking. The structure is
relatively simple, the training process is concise, and the learning
convergence speed is fast. This helps to achieve high-quality lateral
tracking control effects within a limited time, meeting the real-time
requirements of intelligent vehicles. RBF neural network achieves
global optimality through local approximation, overcoming the
problem of global approximation networks such as BP neural

network being prone to getting stuck in local optima. Although
RBF neural networks perform well in lateral tracking control of
intelligent vehicles, other types of neural networks may also achieve
similar performance. For example, DNN, CNN, and other networks
also have strong nonlinear approximation and generalization
abilities, but these networks may require more data and
computing resources during the training process, and the
training time may be relatively long. The RBF network model
adopted by the research institute is shown in Figure 4.

As shown in Figure 4, the output values of neurons in the RBF
network are radially distributed in space, and the input can bemapped
to a high-dimensional space. This feature enables RBF networks to
better handle nonlinear problems, enabling RBFs such as Gaussian
functions to capture the nonlinear features of input data (Sohrabi
et al., 2023). In the proposed intelligent car lateral tracking algorithm,
the output of the RBF network and the preview model jointly
determine the direction and size of the front wheel steering angle
of the car, thereby controlling the lateral tracking trajectory of the car.
Assuming that the number of neurons in the input layer, hidden layer,
and output layer is n, m, and p respectively, and the corresponding
vectors are represented by X, R, and Y. Formula 7 describes the
expression for calculating the output of the hidden layer.

R C −X‖ ‖( ) � exp − X − C( )T+1
2σ2i

[ ] (7)

In Formula 7, C represents the center of the basis function,
whose dimension is always consistent with the input vector. σ2i
represents the square of the width of the I-th RBF. ‖C −X‖ is the
distance between two vectors. Formula 8 is the expression for the
output layer result.

∑m
i�1
wibRi X( ) � yb (8)

b in Formula 8 is an integer with a value range between 1 and
p. And wib is the weight between the neuron output and the hidden
layer.m represents the total number of floors. Although having self-
learning ability, traditional RBF neural networks are prone to falling
into local minima without optimization. This may make it difficult
for the model to achieve global optimum during the training process,
thereby limiting algorithm performance. In response to this issue,
the RBF network process has been optimized, as shown in Figure 5.

As shown in Figure 5, the study first introduced the Fast Density
Peak Clustering (FDPC) algorithm in RBF. FDPC is a clustering
algorithm that efficiently discovers density peaks in a dataset, divides
data points into different clusters, and thus better initializes the
parameters of the RBF network (Yang et al., 2022). The optimized
parameters can prevent the algorithm from getting stuck in local
minima and missing possible optimal values, thereby improving the
global optimization ability of the model (Li et al., 2021; Zheng et al.,
2024). This algorithm is used to process data streams, and the
distance between nodes is shown in Formula 9.

∑
i,j�1

xi − xj( )2⎛⎝ ⎞⎠ 1
2 � d xi, xj( ) (9)

In Formula 9, d(xi, xj) is the distance between node xi and node
xi. When the value of the distance is less than the set threshold, the

FIGURE 4
Preview model under RBF network model compensation.
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corresponding node is divided into the same cluster. The density of a
cluster is determined by the number of nodes within it, as shown in
Formula 10.

χ x( )*∑
j

χ dij − dc( ) � ρi (10)

In Formula 10, ρi represents the cluster density of cluster i. And
χ(x) is a judgment function. Its value is fixed to 1 or 0. When the
value of the judgment function is 1, node j is classified in cluster i,
otherwise node j does not belong to that cluster. Due to the presence
of outliers affecting the performance of FDPC, a new parameter is
added here to identify outliers and process them, as shown in
Formula 11.

γ � min
j: pi>pj

dij( )*ρi (11)

In Formula 11, γ is the parameter used to distinguish outliers,
and the larger the value, the less likely the corresponding node is to
be an outlier. In addition to FDPC, Adam optimization is also
introduced in the output process of RBF network to modify the
neural network. The Adam algorithm is a gradient based
optimization algorithm that combines first-order moment
estimation and second-order moment estimation of gradients. By
adaptively adjusting the learning rate, it can more effectively
optimize model parameters (He et al., 2023). In addition,
compared to traditional gradient descent schemes, Adam avoids
the problem of operators manually setting the descent step size and
reduces the negative impact and bias caused by subjectivity (Al-
Kasasbeh, 2022). The gradient estimation process of Adam
optimization is shown in Formula 12.

g � θk−1L f x̂i, θk−1( ), yi( )
m

(12)

In Formula 11, g represents gradient estimation. θk−1 represents
the learning parameter for the corresponding number of layers,
while x̂i represents the sample data. According to the results of
gradient estimation, the accumulated gradient value can be
obtained, and its mathematical process is shown in Formula 13.

−g α − 1( )( ) + αAVt−1 � AVt (13)

In Formula 13, AV accumulates the sign of the gradient, and α

represents the momentum parameter. Under the current Adam

setting, the search speed for the minimum gradient is often slower,
so the gradient is squared to speed up the search. The calculation
process of this processing is shown in Formula 14.

Trk � ρ*Trk−1 − g2* ρ − 1( ) (14)

The Tr in Formula 14 represents the accumulated square
gradient. After squared processing, further moment estimation
correction is added to optimize the descent speed, as shown in
Formula 15.

Tr′t �
rt

1 − ρ
(15)

In Formula 15, Tr′t is the corrected cumulative square gradient.
At this point, the construction and optimization process of the RBF
network has been completed. The overall process of the proposed
optimized RBF network is shown in Figure 6.

As shown in Figure 6, the algorithm first uses the cluster centers
obtained by the FDPC algorithm as the initial parameters of the RBF
neural network. Then, the RBF neural network is trained, using
sample data for forward and backward propagation, and
continuously updating weight parameters through Adam
algorithm to optimize network performance. The role of Adam
algorithm is to optimize the calculation gradient, cumulative
gradient, and cumulative squared gradient of RBF neural
network, and perform parameter correction. Finally, the network
parameters are continuously updated through iteration until the
stopping condition is met or the specified number of iterations is
reached. This combination of clustering and optimization is aimed
at overcoming the problem of RBF neural networks easily falling
into local minima in the initial state, and improving the global
optimization ability of the model. After training, the proposed RBF
model is introduced into the intelligent vehicle lateral tracking
algorithm to compensate for the errors generated by the
preview model.

Label noise refers to errors or inconsistencies in the labels in a
dataset. In the field of intelligent vehicles and autonomous driving,
this leads to models learning incorrect driving behaviors or patterns,
thereby affecting the safety and accuracy of autonomous driving.
Transfer learning can transfer knowledge learned from one task to
another related task. In the presence of label noise, a relatively clean
dataset (source domain) can be used to pre train the model, and then

FIGURE 5
Optimized RBF network.
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transferred to the target domain (i.e., dataset with label noise) for
fine-tuning. In this way, the model can utilize knowledge from the
source domain to improve performance in the target domain (Bailin
et al., 2022). Data dispersion refers to the uneven distribution of data
in the feature space, resulting in poor performance of the model in
certain regions. In the field of intelligent vehicles and autonomous
driving, data dispersion may arise from various factors such as road
conditions, driving behavior, and vehicle types. For the problem of
data dispersion, distribution calibration techniques can be used to
mitigate its impact. For example, the data distribution of each
category can be estimated and resampled or weighted to balance
the data distribution between different categories. This method
helps the model better learn the boundaries between different
categories (Yang et al., 2021).

4 Simulation testing of RBF optimized
lateral tracking algorithm for
intelligent vehicles

This section uses simulation software to test the proposed
intelligent vehicle lateral tracking algorithm. The testing is mainly
divided into two parts. In the first part, the study tested the proposed
optimized RBF network and evaluated its performance from
different perspectives. In the second part, the RBF optimized
intelligent vehicle lateral tracking algorithm was tested and
simulated using simulation car dynamics software and road models.

4.1 Optimizing testing of RBF networks

The software and hardware environment and experimental
parameters used in this experiment are shown in Table 1. The
hardware used in the experiment includes an Intel Core i5 13, 400 F
CPU, 32 GB DDR5 memory, and 4 TB hard drive, as well as an
NVIDIA RTX 3070 GPU. The operating system is Windows 11 and
the protocol is TCP/IP. In terms of automotive dynamics, the
Virtual Dynamics Analysis of Vehicle (veDYNA) model was

used. Matlab is a high-performance mathematical calculation and
simulation software that provides a rich library of mathematical
functions and toolboxes. It can easily handle complex mathematical
operations and data analysis, making it very suitable for virtual
dynamic analysis of vehicles. The veDYNA model can accurately
simulate the dynamic characteristics of vehicles under different
conditions, including acceleration, braking, steering, and the
interaction between vehicles and the ground. By combining
Matlab and veDYNA models, it is possible to simulate vehicle
dynamics characteristics that are close to the real world,
including the dynamic response of vehicles, the impact of road
conditions on vehicle performance, and so on. The data processing
tool uses Matlab. The specific parameter settings for the experiment
include an initial learning rate of 0.70, UCI dataset selection, training

FIGURE 6
Optimized RBF network flowchart.

TABLE 1 Experimental environment and related parameters.

Hardware Software and environment

Item Detail Item Detail

CPU I5 13400F Protocol TCP/IP

Memory 32G DDR5 Operating system Windows 11

Hard disk 4T Automotive dynamics model veDYNA

GPU RTX 3070 Data processing Matblab

Parameters

Item Detail

Initial learning rate 0.70

Data set UCI

Training set size 70

Test set size 40

Input layer unit amount 4

Output layer unit amount 1
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set size of 70, test set size of 40, input layer containing 4 units, and
output layer containing 1 unit. These configurations will be used for
conducting experiments and evaluating results.

Compared with traditional model-based control methods,
neural networks focus more on data-driven approaches. As long
as there is sufficient data, neural networks can learn control
strategies through training without the need to establish precise
mathematical models. The experiment uses a driving simulator to
simulate driving. By simulating different road and traffic conditions,
the driving data of vehicles in various situations is collected, and
neural network training is carried out through this data to obtain the
training data of the neural network.

To improve the reliability and comparability of the experiment,
three similar algorithms were used as controls to evaluate the
performance of the proposed algorithm. The three comparison
algorithms are K-means Improved Radial Basis Function (K-means
Improved RBF), Adam Improved Radial Basis Function (Adam
Improved RBF), and Fast Density Peak Clustering Improved
Radial Basis Function (FDPC Improved RBF). K-means improved
RBF is a cutting-edge and widely used optimized RBF network in this
field. In addition, RBF optimized using Adam and FDPC separately
was also utilized to compare the proposed combination optimization
scheme. Firstly, the proposed optimized RBF network was tested for
its Central Processing Unit (CPU) runtime on the UCI dataset, as
shown in Figure 7. Figure 7A shows the data of the algorithm during
the training phase, and Figure 7B shows the data of the algorithm
during the testing phase. In the two stages of training and testing, there
was no significant difference in the standard deviation of the running
time of each algorithm, so the analysis was mainly conducted from the
perspective of average time. During the training phase, the average
running time of the proposed algorithm is 838 s, which is the shortest
among the four algorithms. The longest duration is K-means
improved RBF, which takes an average of 883 s during the
training phase. During the testing phase, the average time taken by
the proposed algorithm was 0.37 s, while the average time taken by
Adam improved RBF was 0.42 s. The other two algorithms took
longer than this value.

After comparing the CPU running time, the next step is to
compare the accuracy of each algorithm in testing with the number
of iterations. The comparison results are shown in Figure 8.

According to the test results, after 20 iterations, the proposed
algorithm consistently shows the highest accuracy at the same
number of iterations. When the number of iterations reaches
370, the accuracy of the algorithm stabilizes at 88%. In contrast,
the FDPC improved RBF algorithm achieved an accuracy of 79% at
this iteration, while the accuracy of the other two algorithms was
lower than this value. The trend of image changes shows that the
proposed algorithm has the most significant increase in accuracy at
different iteration stages, and its performance is more outstanding
compared to the other three algorithms. Among the four algorithms,
the Adam improved RBF algorithm showed the earliest convergence
trend, but the final accuracy was only 72%, which is more than 10%
lower than the proposed algorithm. This emphasizes the advantages
of the proposed algorithm in terms of convergence speed and final
performance. This experimental result provides strong support for
algorithm performance.

4.2 Simulation testing of intelligent vehicle
lateral tracking algorithm

After testing the performance of the proposed RBF network, it is
necessary to further test the performance of the intelligent vehicle
lateral tracking algorithm that integrates the RBF network. The first
project to be tested at this stage is the stability of the RBF network
combined with the preview model. Real road surface data was used
as standard values here to fit the proposed algorithm for testing. For
the convenience of comparative research, the current K-means
improved RBF network is still used as a comparison, and the
results are shown in Figure 9. Figure 9A shows the running
results of the proposed algorithm, while Figure 9B shows the
comparison results of the K-means improved RBF network.
From the trend of curve changes, the proposed algorithm’s curve
trend is closer to the standard value. It shows slightly lower than the
standard value at some extreme points, but can fit the trend more
completely. The comparison results of K-means improved RBF
networks show a greater difference. The K-means improved RBF
network has a low degree of fit with the standard value data under
these conditions, and the error at the extreme points is also greater
than the fitting results of the proposed algorithm.

FIGURE 7
Algorithm CPU runtime. (A) Training. (B) Testing.

Frontiers in Mechanical Engineering frontiersin.org08

Su et al. 10.3389/fmech.2024.1400888

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1400888


Due to significant differences in the steering ability and handling
of vehicles at different longitudinal speeds, it is necessary to test the
output error of the proposed algorithm at slow and fast speeds to
evaluate its usability and safety. Here, vehicle speeds of 5 m/s and
20 m/s were selected as experimental standards for different vehicle
speeds, and the test results are shown in Figure 10. Figure 10A shows
the lateral tracking error of the algorithm at slow speeds, and
Figure 10B shows the lateral tracking error of the algorithm at
fast speeds. This indicates that at slow speeds, the pre aiming
trajectory without neural network compensation exhibits the
maximum error, with a maximum absolute value of 0.1 m. The
proposed algorithm has the smallest overall error, with a maximum
absolute value of only 0.028. The algorithm error under K-means
RBF compensation is between the two. At fast speeds, although the

curve shape and trend are more complex, the error ranking of the
three algorithms is similar to that at slow speeds. The overall error of
the proposed algorithm is the smallest, with a maximum absolute
error of 0.08 m, while the maximum absolute error of the preview
tracking without neural network compensation is 0.14 m.

In actual autonomous driving scenarios, continuous turns pose
significant challenges to autonomous driving algorithms. It has
continuous changes in curvature and radius, which requires
automatic tracking algorithms to adapt and adjust the vehicle’s
driving trajectory in a timely manner. In order to further verify
the practicality of the algorithm, a continuous road surface was
simulated and tested using the proposed algorithm and existing
algorithms. The existing algorithm is a tracking method proposed
in reference (Liu et al., 2021) that uses an odorless Kalman filter to fuse

FIGURE 8
Changes in algorithm accuracy under test set.

FIGURE 9
Comparison of algorithm stability. (A) Proposed. (B) K-means RBF.
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FIGURE 10
Error comparison of the algorithm at different vehicle speeds. (A) 5 m/s. (B) 20 m/s.

FIGURE 11
Performance of the tracking algorithm under continuous bends. (A) Error. (B) Route.
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radar and LiDAR data. The results are shown in Figure 11. Among
them, Figure 11A is a topographic map of continuous curves. It can be
seen that the error of the proposed algorithm still fluctuates to some
extent during the turning process, but the overall error has been stably
controlled. However, the existing methods have frequent and unstable
fluctuations, resulting in overall instability. Figure 11B shows the error
situation of the proposed algorithm during the driving process. The
maximum error does not exceed 0.04 m, and considering the width of
a normal road surface, this error is a relatively safe range in actual
driving. However, the tracking of existing methods during continuous
turns is a rough process, and the tracking is not precise enough.

Complex terrain such as mountains, hills, canyons, etc., with
significant terrain undulations and elevation differences, may cause
multipath effects, diffraction, scattering, and other phenomena in
wireless signal propagation, thereby affecting positioning accuracy.
The initialization parameters of RBF neural network have a
significant impact on algorithm performance. If the initialization
parameters are not selected properly, it may cause the algorithm to
fall into local minima in the early stages of training, thereby affecting
the final positioning accuracy. Increasing the density of sensor nodes
in complex terrain or high-altitude areas can improve network
connectivity and data redundancy, thereby enhancing the
robustness and positioning accuracy of the algorithm. Combining
the RBF neural network positioning algorithm with other
positioning technologies such as GPS and inertial navigation to
achieve multi-source fusion positioning. By integrating the
advantages of various positioning technologies, the overall
positioning accuracy and reliability can be improved.

The research results can be disseminated through news media,
social media, and other channels, including press releases, videos,
graphics, etc., to increase public interest and attention to
autonomous driving technology. Carry out science popularization
and education activities on autonomous driving technology, such as
holding lectures, seminars, workshops, etc., to popularize the
principles, applications, and development prospects of
autonomous driving technology to the public.

5 Conclusion

Intelligent vehicles and their autonomous driving are the current
development direction of the automotive industry, but the current
autonomous driving algorithms have significant errors in lateral
tracking. A smart car lateral tracking algorithm combining RBF
neural network and preview tracking mechanism is proposed to
address this issue. According to the simulation test results, the
proposed algorithm has the smallest overall error at slow driving
speed, with a maximum absolute value of only 0.028 m. At this
point, the maximum error of the algorithm without neural network
compensation reached 0.1m.At fast speeds, the proposed algorithmhas
the smallest overall error, with a maximum absolute error value of
0.08 m, while the maximum absolute error value of preview tracking
without neural network compensation is 0.14 m. In addition, in
complex terrain with continuous bends, the maximum error of the
proposed algorithm does not exceed 0.04 m. Considering the width of
normal road surfaces, this error is a relatively safe range of error in
actual driving. In theory, this study introduces attention mechanisms,
feature fusion, and other strategies to further reveal the internal working

mechanism of neural networks in processing complex information,
providing a new theoretical perspective for designing and optimizing
neural networks. In practice, the application of attention mechanism,
feature fusion, regularization and optimization strategies has enhanced
the adaptability of the auto drive system to complex and changing
environments, improved the robustness and generalization ability of the
system, accelerated the research and development and optimization
process of automatic driving technology, promoted the commercial
application of automatic driving technology, and provided strong
support for the development of intelligent transportation and smart
cities. The car dynamics model used in this modeling is on the grounds
of the preview mechanism, and there is a lot of idealization and
simplification in the modeling and restoration of vehicle and road
conditions, which to some extent limits the accuracy and leads to errors.
Therefore, in future research, more parameters and models will be
added to more accurately simulate vehicle and road conditions, further
reducing errors.
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