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The entry and propagation of pores inside an adhesive interface between an
elastomer and a rigid sphere were studied experimentally and simulated
numerically. It was shown that mutually interacting events involving
attachment–detachment of different segments of the elastomer to the
indenter resulted in non-trivial patterns of spatially distributed contacts
between them, which were additionally influenced by air penetration of the
pores.
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1 Introduction

One of the actively developing areas in contact mechanics is associated with the study of
adhesive contacts (Brörmann et al., 2013; Sahli et al., 2018; Liu et al., 2024; Siniscalco et al.,
2024). There is increasing interest regarding the study of adhesion because adhesion
phenomena are easily observable in daily life. However, complex processes occur within
adhesive contacts related to restructuring of the contact boundaries when the contacting
surfaces shift mutually. These could be a combination of propagation of elastic waves in the
contact zone, hysteresis phenomena, etc. Adhesion also has high significance in various
applications, including robotics (Weston-Dawkes et al., 2021; Singh and Gupta, 2022),
medicine (Ge and Chen, 2020; Zemljič-Jokhadar et al., 2021), biology (Gorb et al., 2019; van
den Boogaart et al., 2022; Phiri et al., 2023), and other areas (Chernov et al., 2014; da Silva
et al., 2018; Lyashenko and Liashenko, 2020).

This work is devoted to the experimental study of an intriguing phenomenon like the
propagation of elastic waves that are generated in the adhesive contact zone when a solid
indenter slides along the surface of a soft elastomer. Analogous waves were first observed in
a classical work (Schallamach, 1971) and were therefore named as Schallamach waves. It has
been shown that adhesion leads to complex processes caused by restructuring of the contact
during tangential movements (Schallamach, 1971; Brörmann et al., 2013). The specificity of
the present work is the consideration of quasistatic contacts since the indenter moves along
the surface of the elastomer at a very low speed. Despite this, the passage of elastic waves is
observed within the contact. The present work also proposes a dynamic model that allows
description of the occurrences of the observed waves and their propagation using relatively
simple and clearly observed dynamics with two-dimensional representations. Our
experiment reveals a highly interesting feature: changes in the friction mode and
characteristics of elastic wave propagation resulting from contamination of the friction
surfaces and decrease in adhesion. Since the contact characteristics rely heavily on adhesive

OPEN ACCESS

EDITED BY

Noshir Sheriar Pesika,
Tulane University, United States

REVIEWED BY

Qiang Li,
Technical University of Berlin, Germany
Milan Bukvic,
University of Kragujevac, Serbia
Varvara Romanova,
Institute of Strength Physics and Materials
Science (ISPMS SB RAS), Russia

*CORRESPONDENCE

Iakov A. Lyashenko,
i.liashenko@tu-berlin.de

RECEIVED 13 March 2024
ACCEPTED 18 June 2024
PUBLISHED 12 August 2024

CITATION

Lyashenko IA, Filippov AE and Popov VL (2024),
Propagation of elastic waves in adhesive
contacts: experiment and numerical model.
Front. Mech. Eng 10:1400366.
doi: 10.3389/fmech.2024.1400366

COPYRIGHT

© 2024 Lyashenko, Filippov and Popov. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Mechanical Engineering frontiersin.org01

TYPE Brief Research Report
PUBLISHED 12 August 2024
DOI 10.3389/fmech.2024.1400366

https://www.frontiersin.org/articles/10.3389/fmech.2024.1400366/full
https://www.frontiersin.org/articles/10.3389/fmech.2024.1400366/full
https://www.frontiersin.org/articles/10.3389/fmech.2024.1400366/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmech.2024.1400366&domain=pdf&date_stamp=2024-08-12
mailto:i.liashenko@tu-berlin.de
mailto:i.liashenko@tu-berlin.de
https://doi.org/10.3389/fmech.2024.1400366
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://doi.org/10.3389/fmech.2024.1400366


strength that varies over time, building a general theory or model of
tangential adhesive contact presents a fundamentally difficult
challenge. This implies that a different theory should be
developed or adapted for each experimental system.

2 Experimental results

Using the experimental setup detailed in Lyashenko et al. (2024),
we conducted an experiment in which a steel sphere of radius R �
40 mm was pressed into a TANAC CRG N3005 elastomer sheet of
thickness h � 5 mm to a depth dmax � 0.7 mm. After reaching dmax,
the indenter was moved in the tangential direction by a distance
xmax � 15 mm. Further, the indenter was pulled out in the vertical
direction while the contact disappeared. The speed of the indenter
was v � 3 μm/s, which allows the contact to be considered as
quasistatic (Lyashenko and Popov, 2021).

An important feature of this experiment is the possibility of
direct observation of the contact area as an optically transparent
elastomer is used. This enables real-time observation of the dynamic
processes inside the continuously restructuring contact zone.
Figure 1 shows the experimental time dependences of the normal
FN and tangential Fx forces, contact area A, and average
tangential stress

〈τ〉 � Fx

A
. (1)

The value 〈τ〉 in Eq. (1) increases slightly with increase in the
external load FN (Lyashenko et al., 2024). However, the maximum
tangential stress τ0 at which sliding begins is a material parameter.
To determine τ0, the two-term friction law (Berardo et al., 2019) can
be used in the following form:

Fx � τ0A + μFN (2)
where μ is the friction coefficient. However, our experiments
demonstrated that the adhesive properties decrease during
sliding, consequently decreasing τ0 as well. Thus, we do not
utilize Eq. (2) but rely on the friction force Fx � 〈τ〉A, which is
derived from Eq. (1). The dependences in Figure 1 demonstrate
12 characteristic points, whose contact configurations are as shown.
Note that the two-term friction law of Eq. (2) is often used in
tribology. As additional examples, the classical Derjaguin’s law
(Derjaguin, 1934) and friction law for the boundary regime
(Lyashenko et al., 2011) can be cited.

The point 1 in Figure 1 corresponds to the final moment of
normal indentation. Up to this point, the contact area can be
approximated as A ≈ πRd (Hertz, 1881), where d is the
indentation depth and a ≈ (Rd)1/2 is the contact radius. Thus,
the contact area at the indentation increases linearly, and the
tangential force Fx and stresses 〈τ〉 are equal to zero. As seen
from the photographs on the right side in Figure 1, during tangential
movement, folds are formed initially on the surface of the elastomer
owing to deformation at the leading edge of the contact; in our

FIGURE 1
Experimental dependences of the (A) normal FN and (B) tangential Fx forces, (C) contact area A, and (D) average value of shear stress 〈τ〉 � Fx/A over
time t. The right-side panel of the figure shows photographs of the contact area corresponding to points 1–12, which are indicated on all the experimental
dependences.
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experimental pictures, these folds are seen as bright white stripes.
Similar behaviors were observed in a recent experimental work (Yan
et al., 2023), where it was shown via vertical cross sections that folds
are realized. The number of folds increases with time, following
which their partial sliding along the surface of the elastomer is
realized. The process of fold sliding shows various dynamic
phenomena: collapse of the folds into several folds or their
unification and recombination.

The frictional force in the contact is Fx � 〈τ〉A, where the
contact area A at a fixed indentation depth changes slightly. On the
one hand, the frictional force increases with increases in the
tangential stresses in the areas where the indenter has not yet
reached the slip zone. These areas are instantly closer to the
trailing edge of contact. On the other hand, Fx decreases due to
elastomer slipping at the leading edge of the contact. Owing to the
actions of these two competing factors, the frictional force reaches a
maximum at point 8, although the first instance of complete sliding
over the entire surface of the indenter occurs later in the vicinity of
point 9. This moment is marked in all the dependences by vertical
arrows. We note that the contact may become non-simply
connected during the friction process (photo 10 in Figure 1).
Owing to air entrapment at the leading front, pores are formed
in the contact zone (photos 10 and 11 in Figure 1), which then
propagate along with the elastic deformation waves. Straightening
and disappearance of the deformation folds are also often observed,
because of which air pores may be formed in particular places. All
mentioned processes are clearly visible in Supplementary Video S1.
There are many studies that demonstrate the propagation of elastic
waves in various adhesive systems (Brörmann et al., 2013;
Viswanathan et al., 2015; Zhibo et al., 2021). However, in our
work, we illustrate transitions between different adhesive regimes
within a single experiment. Additionally, in the supplementary
video, we present the evolution of the contact area alongside
normal and tangential contact forces, contact areas, and shear
stresses. These provide a better understanding of the processes
occurring during wave propagation.

The observed folds propagation represents Schallamach waves
(Schallamach, 1971; Viswanathan and Chandrasekar, 2022) in
adhesive contacts. An interesting feature of the case considered
here is that over time, the propagation of folds in the contact stops
completely (photo 12 in Figure 1). Surprisingly, this occurs in the
same experimental run and indicates a transition to a different
friction regime.

It is noted that before the experiment, the indenter surface was
briefly treated with a FeCl3 solution, which greatly increased the
adhesive strength of the contact against pull-off, meaning that the
contact also becomes stronger to shearing. The properties of the
indenter surface prepared in this manner degrade quickly upon
contact with the elastomer and especially upon sliding. During
sliding, the average stress 〈τ〉 (Figure 1D) decreases. And after
some time, the shear stress is not sufficient to deform the elastomer
enough for fold formation.

Another important feature is the specific character of elastic
wave propagation. In our case, these waves are visualized as the
propagation of folds from the leading to trailing edges of the
contact. However, the waves propagate intermittently. After the
next slip of the fold, further propagation stops since it is fixed in
another place of the indenter where the position is stable. This is

because the stresses must reach a maximum value τ0 for a local
slip to occur (Carpick and Salmeron, 1997; Degrandi-Contraires
et al., 2012; Yashima et al., 2015; Sahli et al., 2018; Mergel et al.,
2021), but the stresses decrease quickly and become less than τ0
during a slip, which is necessary for continued slip. For further
propagation of the fold, it is necessary that the stresses again
reach τ0, for which the indenter must again move to a critical
value that requires time.

This is clearly visible in Supplementary Video S1, even though
the video speed is 24 times faster than that of the original
experiment. Note that even if the indenter moves with an
extremely low speed, local slips occur with speeds that are many
times higher. Therefore, to numerically simulate the process of fold
propagation, it is necessary to construct a dynamic model with
viscoelasticity and elastomer relaxation (Carbone et al., 2022;
Papangelo and Ciavarella, 2023; Khudoynazarov, 2024). The
processes under consideration are quite complex, so we limited
our initial efforts to a simplified 1 + 1-dimensional model that allows
us to trace the main features of fold propagation in the presence or
absence of air in the folds.

3 Numerical model

The model essentially exploits the same numerical technique as in
Lyashenko et al. (2023), where the elastic foundation was constructed
from a set of interacting movable automata powered by a combination
of short-range repulsion and long-range attraction. This allows the
automata to naturally form amedium that maintains an elastically fixed
distance between the neighbors. In the present work, we considered the
contact between a rigid sphere and a planar elastic substrate. This is a
standard tribological configuration characterized by adhesion, pressure,
tangential shift, and other standard parameters (Stojanovic and
Ivanović, 2014).

Formally one can treat the array of movable automata as a
system ofN interacting “particles,” each of which is characterized by
the vector radius ri, momentum pi, and interaction potentialU(|ri −
rj|) corresponding to the Hamiltonian (Landau and Lifshitz, 1976):

H ri, pi( ) � 1
2
∑N
i�1

p2
i

mi
+ 1
2
∑N
i,j�1

U ri − rj
∣∣∣∣ ∣∣∣∣( ).

In the majority of practically interesting cases, it is convenient to
represent the interaction by a pair of potentials:

U ri − rj
∣∣∣∣ ∣∣∣∣( ) � C exp − ri − rj

c
( )2{ } −D exp − ri − rj

d
( )2{ }

where C and D define the magnitude, while c and d are the radii of
attraction and repulsion, respectively. The natural equilibrium
condition normally demands that C≫D and c< d. One of the
surfaces in the experiment moves along the horizontal direction x.
Here, the “upper” surface is a rigid movable sphere of radius Rsphere.
Along the vertical axis, the system is limited by a substrate plate at
z � 0, which supports the system against normal load P via the
reflecting boundary Udown � C0 exp −z/c0{ }.

To simulate the elastic system, we define the initial positions of
the automata on an ordered grid, where node of the grid is connected
to its neighbors by an elastic force, tending to conserve the initial
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distances between the nodes in the original structure. This
interaction is caused by the potential

Uelastic ri − rj
∣∣∣∣ ∣∣∣∣( ) � Kij 1 − ri − rj

a
( )2[ ] × exp − ri − rj

R0
( )

2

{ }
which leads to linear elastic forces at small deviations and
automatically ensures that the nodes are connected to each other
at the equilibrium distance a. Here, R0 is the characteristic distance;
atR0 ≫ a, there are effective longitudinal and lateral stiffnesses of the
material that return it to the original form when the external force is
removed. As in our previous work (Lyashenko et al., 2023), we added
an interaction between the sphere and segments of the elastic
substrate. It is convenient to simulate these using sufficiently
sharp but continuous potentials. For definiteness, we used strong
exponential repulsion Urepuls � Urep

0 exp[−(r − Rsphere)/Rrepuls] and
short-range attraction Uadh � Uadh

0 exp[−(r − Rsphere)/Radh] in a
narrow spherical belt around the surface. Here, Urep

0 > 0 and
Uadh

0 < 0, while both characteristic distances are much smaller
than the radius of the sphere: Rrepuls ≪Rsphere, Radh ≪Rsphere.

The equations of motion can be written in standard form
(Landau and Lifshitz, 1976) as mi∂vi/∂t � −∂H(xi, pi)/∂pi � fri ,
where vi is the velocity of the ith particle. The interacting
automata exchange momentum pi, owing to which a dissipation
channel should exist to equilibrate the relative velocities of the
particles. This interaction works at the relatively short mutual
distance cv close to the equilibrium distance and needs to be
introduced. Accordingly, we add an additive dissipation force

fvi ∝∑N
j�1

(vi − vj) exp −[(ri − rj)/cv]2{ } acting on each particle from

the surroundings, with a corresponding dissipation constant η.
The equations of motion formally assume the following form:

mi
∂vi
∂t

� fri − ηfvi . (3)

An analogous numerical approach and similar equations were
recently used in Filippov et al. (2024a, 2024b). However, to simulate
the effect of adhesion realistically, it has to be completed using a
condition that specifies the circumstances where a segment of the
substrate follows the sphere and is practically glued to it by adhesion.
Thus, a given segment of the substrate is attached to the spherical
surface when the distance between them is small enough |R(x,y, z) −
Rsphere|≤ δRcrit and detached when the deviation from the surface
exceeds a threshold k(| �r − �r0|)>fcrit defined by a critical force fcrit at
a given elastic constant k. The corresponding numerical procedure
involves solving a set of dynamic equations for the particular segment if
these threshold conditions are not satisfied or shifts the elastic segment
together with the contacting sphere surface.

To proceed with this model, we applied an external load Fz under
which the sphere slowly moved to the surface while acquiring an
equilibrium indentation. The vertical motion of its center Zc can be
treated as overdamped and described by ∂Zc/∂t �
γ(−Fz +∑jf

z
sphere(rj)), where ∑jf

z
sphere(rj) is the sum of the

vertical components of the forces from the elastic substrate. When a
desirable indentation depth with ∂Zc/∂t � 0 is established at a given
load Fz, we fix the indenter and start pulling. In the simulations, we
move the elastic foundation at a constant velocity Vx � const in the
horizontal direction. Owing to the stress and adhesion, the foundation
bends and folds. In some places, the elastic material is closer to the
indenter than in other places in front of the motion and apparently

“jumps” into adhesive contact. As the motion continues, new folds are
formed. The material containing indentations can also get close enough
to the sphere and form new regions of adhesive contact. However, some
empty pores remain between the contact regions; in these places, the
elastic segments are still far enough from the hard sphere and are not
glued adhesively to its surface. A general sketch of the configuration
with such pores is shown in Figure 2A, where the sphere is shown in
gray color. The configuration of the elastic surface is shown by the blue
curve. The direction of horizontal motion of the substrate with velocity
Vx � const is depicted by the black arrow. The segments of the pore in
Figure 2A are marked as connected colored (pink) points. This
numerical experiment was purely that of a theoretical system with
empty pores (say, in “vacuum”).

It is useful to apply this model to clarify the role of air in the real
experiments, where air always exists (Koudine et al., 1997; Rand and
Crosby, 2006). Air enters the pores and remainswithin them if the pores
close after being formed. The trapped air produces a pressure that varies
depending on the pore-size variations; this pressure grows inversely
with the pore’s volume, such that the pressure decreases and slows the
rate of expansion when it expands. When the pore shrinks, the air
pressure increases and prevents collapse; hence, it is expected that the
presence of air should stabilize the pores.

To incorporate air into the model, we added it as follows. In x, z{ }
space, the boundary of each pore is a set of discrete segments between
two limiting sequential points, where the distance δrs � |r − Rs|
between the indenter and elastic foundation becomes zero. One can
mark continuous groups of these segments (for example, by pink color
as in Figure 2A), find their geometric center(s), and calculate the pore
volume(s) in the 2d-plane x, z{ }. Using this information, we can define
the air pressure Pair. When the pore expands, the air inside behaves as
an ideal gas, and its absolute pressure decreases inversely with the
volume V. Thus, we have Pair � Pair

* V*/V, where Pair
* and V* are the

pressure and volume at pore formation, respectively, at least in the limit
when the volume is sufficiently large V≫V*. Conversely, when the
pore shrinks to an extremely small volume, the compressed air behaves
as a non-ideal gas; however, its pressure cannot grow infinitely and
tends to a maximum possible value, at which point the air will
obligatory leak out of the pore. Thus, in the model frame, we
regularize the relation Pair � Pair

* V*/V to the following form:
Pair ≈ Pair

* V*/(V + Vmin). This restricts the pressure to an allowed
maximum value of Pair → Pair

* V*/Vmin when pore’s volume is much
smaller than the original volumeV≪V*. The internal pressure Pair is a
vector force acting on the elastic segments surrounding each pore in the
radial direction (r − rc) from the center rc to the periphery. Now, we
can formally redefine the equation of motion in the presence of air as
follows (cf. Eq. (3)):

mi
∂vi
∂t

� fri − ηfvi + Pi air.

Below, we present all the results as comparisons between the
cases with and without air while maintaining all the other conditions
constant. As a rule, Pi air leads to stabilization of the pores and
supports coexistence of many pores simultaneously. To demonstrate
this, Figure 2B and Figure 2D show the presence of air in different
pores through different colors.

Slow vertical lifting of the indenter at the final stage of the routine is
shown by the red arrow Vz ≪Vx in Figure 2C and Figure 2D. Both of
these are recorded at the same moment in time, close to complete
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detachment of the sphere. In the case with air, the pores still remain
under the sphere almost to the end of the process.

The dynamic processes for the cases with and without air are
demonstrated in Supplementary Video S2. Moreover, to enable
direct visualization of the process in the form close to that in
Figure 2, Supplementary Video S2 simultaneously shows data
accumulation for the history of the processes, which are used to
further depict them in static form as time–space maps
in Figure 3.

In particular, these maps reproduce the histories recorded for
the inverse distance 1/|r − Rs| and relative horizontal velocity
(vx − Vx) of the elastic foundation vx and sphere Vx without and
with air; they are shown in the subplots (A), (B) and (C), (D) of
Figure 3, respectively. From Supplementary Video S2, the static
pictures show the entrance and movement of the pores under the
sphere, which are visualized as deep blue valleys in Figure 3A.
The pattern of the moving pores is accompanied by peculiarities
of the relative velocity (vx − Vx) because the entrance of the pores
causes movable elastic waves, which propagate faster than the
sphere velocity. These are depicted with different slopes of
the blue valleys in the velocity map, which are associated with
the sphere and two families of collective excitations propagating
in both directions; the corresponding motions are shown in
Figure 3B by bold magenta as well as thin blue and red lines.
Smaller inclination of the line with the vertical axis corresponds
to faster propagation of the waves. The model allows us to

estimate this velocity as 10 times higher than the speed of
the indenter.

We also note the fine structures of the time-dependent distance
between the sphere and elastic surface as well as mutual velocities in
Figure 3C and Figure 3D, respectively. These complex structures of
the depicted values are caused by the simultaneous presence of
numerous pores. To elucidate the propagation of the chain of pores
inside the system, we show a magnified fragment in Figure 3C
marked by the rectangle. Integral information regarding the time-
dependent volumes of the pores with and without air is shown in
Figure 4A and Figure 4B, respectively. The different colors in the
plots correspond exactly to the sequence of different pores shown in
the instants in Figure 2. The numerical simulation supports the
original idea that the pores exist (and coexist) longer upon being
stabilized by the air pressure and that their individual curves overlap
in time thereof (in other words, some of the pores exist
simultaneously).

Moreover, if the vertical velocity is not too high, some of the
pores survive through the support of the air inside when the
sphere starts to move out of the surface. They exist for a while
inside the adhesive “bridge,” which connects the elastic
foundation to the gradually receding sphere. To demonstrate
this, we specially removed the sphere slowly at the rate ofVz ≪Vx

and recorded the pores without and with air in Supplementary
Video S2 and in the static pictures shown in Figure 2C and
Figure 2D for comparison. In the experiment, pore formation

FIGURE 2
General sketch of the problem (A) without and (B) with air. (C) and (D) depict the same curves as in (A) and (B) at the final stage when the ball is
gradually lifted from the substrate.
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FIGURE 3
Time–spacemaps reproducing the recorded histories of inverse distance 1/|r − Rs| and relative horizontal velocity (vx − Vx) of the elastic foundation
vx and sphere Vx without and with air, as shown in subplots (A), (B) and (C), (D), respectively. The propagation of the pores is accompanied by elastic
waves, which are faster than themotion of the sphere. Different slopes of the blue valleys in the velocitymaps that are associated with the sphere and two
families of collective excitations propagating in both directions are marked in the (B) in bold magenta as well as thin blue and red lines. Smaller
inclinations of these lines correspond to faster propagation of the waves. The magnified inset in (C) illustrates the propagation of the chain of pores
marked by the rectangle in the system.

FIGURE 4
Time dependencies of the volumes of the pores V in the systems (A) without and (B) with air inside the pores. Different colors correspond to the
different pores.
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ceases over time owing to the reduction in the adhesive properties
(see Figure 1). We did not incorporate this feature into the model;
however, the decrease in adhesive strength can be easily
accounted for, so it is sufficient to consider the temporal
reduction in the critical force fcrit at which sliding occurs (see
the explanation after Eq. (3)).

4 Conclusion

This work presents an experiment on elastic wave propagation in
adhesive contacts. Initially, the adhesive strength was increased via
surface chemical treatment of the indenter. However, contamination
reduced the adhesive strength over time, altering the friction mode
visibly. Wrinkles formed during the initial sliding but ceased over time
due to the diminished influence of adhesion. This highlights the absence
of a universal adhesive friction mode, necessitating unique theoretical
models for specific cases. The present study proposes a model detailing
wrinkle formation and propagation under shear stress. We provide
valuable insights to researchers on adhesive friction by showing the lack
of a universal behavior in adhesive contacts despite existing studies
aimed at establishing such behaviors.
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