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Graph neural networks (GNNs) have gained significant attention in diverse
domains, ranging from urban planning to pandemic management. Ensuring
both accuracy and robustness in GNNs remains a challenge due to insufficient
quality data that contains sufficient features. With sufficient training data where all
spatiotemporal patterns are well-represented, existing GNN models can make
reasonably accurate predictions. However, existing methods fail when the
training data are drawn from different circumstances (e.g., traffic patterns on
regular days) than test data (e.g., traffic patterns after a natural disaster). Such
challenges are usually classified under domain generalization. In this work, we
show that one way to address this challenge in the context of spatiotemporal
prediction is by incorporating domain differential equations into graph
convolutional networks (GCNs). We theoretically derive conditions where
GCNs incorporating such domain differential equations are robust to
mismatched training and testing data compared to baseline domain agnostic
models. To support our theory, we propose two domain-differential-equation-
informed networks: Reaction-Diffusion Graph Convolutional Network (RDGCN),
which incorporates differential equations for traffic speed evolution, and the
Susceptible-Infectious-Recovered Graph Convolutional Network (SIRGCN),
which incorporates a disease propagation model. Both RDGCN and SIRGCN
are based on reliable and interpretable domain differential equations that allow
the models to generalize to unseen patterns. We experimentally show that
RDGCN and SIRGCN are more robust with mismatched testing data than
state-of-the-art deep learning methods.
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1 Introduction

Spatiotemporal prediction is a key task in many scientific and engineering domains,
ranging from structural health monitoring (Morid et al., 2023), evolution of microstructures
(Montes de Oca Zapiain et al., 2021), traffic management (Bui et al., 2022), weather
forecasting (Longa et al., 2023), and disease control (Jayatilaka et al., 2020). With explosive
growth in data collection technologies and sufficient training data, deep learning
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approaches (Yu et al., 2018; Wu et al., 2020) have come to dominate
the field of data-driven prediction of complex systems. Among best-
performingmodels, graph neural networks (GNNs) dominate due to
their ability to incorporate spatiotemporal information (Han et al.,
2021; Shang et al., 2021; Ji et al., 2022) so that dependent
information at different locations and times can be captured and
exploited to make more accurate predictions. However, as these
models growmore complex, thus requiring substantial training data,
their performance when test conditions are different from training
conditions has been shown to be weak. The collection of data from
all representative conditions is almost impossible in many domains,
and so there is a need to develop methods for data-driven prediction
that can handle this generalization.

Such challenges are usually classified under “domain
generalization” (Figure 1), where a model is trained on a source

domain but evaluated on a target domain with different
characteristics (mismatches). Consider traffic speed prediction as
a motivating example. It is well known that prediction algorithms
perform poorly when traffic patterns are unexpectedly disrupted, for
instance, due to extreme weather, natural disasters, or even special
events. In our evaluation section, we will demonstrate this
phenomenon more concretely, where state-of-the-art deep
learning methods do not generalize well when dataset patterns
are split between training (weekday) and test patterns (weekend).
The challenge mentioned above can be formulated as learning with
mismatched training data (Varshney, 2020), a problem that is often
encountered in practice.

This leads to the main hypothesis of our paper: when scientific
equations or physical models are available to capture the local
spatiotemporal dynamics of vertices in a network, such that these

FIGURE 1
Training and test sets consist of a source domain S characterized by a labeling function ls, and a target domain τ distinguished by a different labeling
function lτ ≠ ls. Data collection in the source domain is convenient, whereas acquiring data in the target domain is challenging and often only feasible at
test time.Without integrating a domainODE, amodel, despite having numerous parameters, may experience diminished accuracy when testedwith such
mismatched patterns. Conversely, employing an architecture that integrates a domain ODE enables the model to capture local patterns and attain
high accuracy even with previously unseen patterns, while requiring fewer parameters.

FIGURE 2
Reaction-Diffusion Graph Convolutional Network architecture for graph with |V| � 3 and |E| � 2. ❶ derives the diffusion and reaction adjacency
matrices Ad and Ar; ❷ defines model weights ρ and σ for the reaction and diffusion networks and maps them to Wd and Wr with weights ρ and σ; ❸
characterizes the Laplacian graph Ld and Lr; ❹ defines the network prediction function.
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dynamics remain consistent between training and test conditions,
then machine learning models that incorporate these scientific
equations can lower the generalization discrepancy of the learned
model. In particular, we consider systems where local dynamics are
available in the form of ordinary differential equations, which we
use to construct a novel graph-convolution network structure for
spatiotemporal prediction. We will use a known probably
approximately correct (PAC) learning approach to quantify
generalization discrepancy between predictions under different
source and target labeling functions, proving mathematically
that under certain learnability and symmetry assumptions on
the labeling functions, incorporating the local dynamics can
lower the discrepancy. We operationalize our approach by
constructing two different dynamics-informed GCNs for
application in traffic-speed prediction and influenza-like-illness
(ILI) prediction using domain ordinary differential equations
(ODEs). Our novel domain-ODE-informed neural networks
called “Reaction-Diffusion Graph Convolutional Network”
(RDGCN), and “Susceptible-Infectious-Recovered Graph
Convolutional Network” (SIRGCN) augment GCNs with
domain ODEs studied in transportation research (Bellocchi and
Geroliminis, 2020) and disease epidemics (Stolerman et al., 2015).
Through experimental evaluation on real datasets, we demonstrate
that our novel-dynamics-informed GCNs are more robust
in situations with data mismatches than baseline models in
traffic speed prediction and influenza-like illness prediction.
Furthermore, the prior knowledge encoded by the dynamics-
informed architecture reduces the number of model parameters,
thus requiring less training data. The model computations are

better grounded in domain knowledge and are thus more
accessible and interpretable for domain experts.

We highlight our contributions as follows:

• We study the challenge of graph-time-series prediction with
mismatched data where the patterns in the training set are not
representative of those in the test set.

• We theoretically prove the robustness of domain-ODE-
informed GCNs to a particular form of domain
generalization when the labeling function differs between
the source and target domains. Specifically, we show that
the generalization discrepancy is lower for the domain-
ODE-informed learning model under certain conditions
than a domain-independent learning model.

• We develop two novel domain-ODE-informed neural
networks called “Reaction-Diffusion Graph Convolutional
Network” (RDGCN), and “Susceptible-Infectious-Recovered
Graph Convolutional Network”(SIRGCN) that augment
GCNs with domain ODEs studied in transportation
research (Bellocchi and Geroliminis, 2020) and disease
epidemics (Stolerman et al., 2015).

• By conducting experimental assessments on authentic
datasets, we illustrate that our innovative dynamics-
informed GCNs exhibit greater robustness in scenarios
featuring data mismatches than baseline models in both
traffic speed prediction and influenza-like illness prediction.

• By integrating domain difference equations, the dynamics-
informed GCNs can substantially decrease the quantity of
model parameters, resulting in reduced training data
requirements and accelerated training and
inference processes.

The structure of this paper unfolds as follows. In Section 2, we
provide a comprehensive background on graph neural networks
(GNNs) for time-series prediction, elucidating the challenges
encountered in achieving domain generalization within GNNs.
Section 3 formalizes the problem by defining the generalization
discrepancy between the source and target domains. Building upon
this, Section 4 details our proposed methodology, introducing a
novel approach that integrates domain differential equations into
GCNs. Here, we outline the architecture of dynamics-informed
graph convolutional networks (DGCNs), specifically tailored for
spatiotemporal prediction tasks. The theoretical underpinnings of

FIGURE 3
Susceptible-infected-recovered-GCN architecture for graph with |V| � 3 and |E| � 2. ❶ derives the susceptible and recovered numbers; ❷ defines
travel matrices using the transportation data; ❸ characterizes the transformation matrix K using Eq. 9; ❹ defines the network prediction function using
Eq. 10.

TABLE 1 Dataset description.

Dataset |V| |E| Resolution Period

Metr-la Jagadish et al. (2014) 207 233 5 min 122 days

Pems-bay Li et al. (2018) 281 315 5 min 151 days

Seattle-loop Cui et al. (2020) 323 660 5 min 365 days

Japan-Prefectures Deng et al. (2020) 47 133 weekly 347
weeks

US-States Deng et al. (2020) 49 152 weekly 834
weeks
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our approach are rigorously examined in Section 5, where we
explore the generalization properties of DGCNs. Additionally,
theoretical bounds on the discrepancy between source and target

domains are derived. Section 6 showcases the practical application of
DGCNs on real-world datasets, focusing on two case studies:
RDGCN for predicting traffic speed evolution and SIRGCN for

FIGURE 4
(A) The results of RDGCN are very close regardless of the period of the training set. (B) Even though all the models are trained using all available
weekdays, the results of RDGCN are still closer, regardless of the period, than baseline models.
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modeling disease propagation. Through these applications, we
evaluate the effectiveness of DGCNs in mitigating the
generalization gap. To further bolster our claims, Section 7 and 8
detail the experimental setup, results obtained, and an ablation
study. These sections offer additional insights into the
performance of RDGCN and SIRGCN, further validating our
proposed methodology. In Section 9, we assess the model
complexity of RDGCN and SIRGCN. Finally, in Section 10, we
draw conclusions by summarizing the key findings and implications
of our research. Additionally, we propose potential avenues for
future research aimed at enhancing the generalization capabilities of
DGCNs in the realm of time-series predictions.

2 Related work

2.1 Graph neural networks on time series
predictions

GNNs have been widely utilized to enable great progress in dealing
with graph-structured data (Kipf and Welling, 2017; Yu et al., 2018; Li
et al., 2018; Cui et al., 2020) build spatiotemporal blocks to encode
spatiotemporal features (Wu et al., 2020; Shang et al., 2021; Han et al.,
2021; Veličković et al., 2018; Guo et al., 2019) and generate dependency
graphs which only focus on “data-based” dependency where features at a
vertex can be influenced by a vertex but not in its physical vicinity. None of
these approaches exploit domain ODEs for better generalization and
robustness.

2.2 Domain generalization

Domain generalization has gained increasing attention
recently (Wang et al., 2022; Zhou et al., 2022; Robey et al.,
2021; Zhou et al., 2021), and robustness to domain data with
mismatched patterns is important in designing trustworthy
models (Varshney, 2020). The goal is that a model learns to
generalize to unseen domains. Many studies (Robey et al., 2021)
assume that there is an underlying transformation between the
source and target domain and use an extra model to learn the
transformations (Xian et al., 2022); therefore, the training data
must be sampled under at least two individual distributions.
However, our approach addresses this challenge by incorporating
a domain-specific ODE instead of using extra training processes
that learn from the data from two individual domains or
employing additional assumptions on transformations, thus
working for arbitrary domain scenarios.T
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TABLE 3 Evaluation of models under mismatched data.

Dataset ColaGNN EpiGNN SIRGCN

MAE Japan-Prefectures 356 ± 21 466 ± 24 342 ± 22

US-States 46 ± 3 66 ± 6 41 ± 4

RMSE Japan-Prefectures 901 ± 53 922 ± 69 863 ± 44

US-States 130 ± 12 178 ± 16 121 ± 10

The best performance method is indicated in bold.
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2.3 Domain dynamics, differential equations
and neural ODEs

Time series are modeled using differential equations in many
areas, such as chemistry (Scholz and Scholz, 2015) and
transportation (van Wageningen-Kessels et al., 2015; Loder et al.,
2019; Kessels and Kessels, 2019). These approaches focus on
equations that reflect the most essential relationships. To
incorporate differential equations into machine learning, many
deep learning models based on neural ODEs (Chen et al., 2018;
Jia and Benson, 2019; Asikis et al., 2022) have been proposed.
Advancements extend to graph ODE networks (Ji et al., 2022;
Choi et al., 2022; Jin et al., 2022) which use black-box differential
equations to simulate continuous traffic-pattern evolution.
However, the potential of domain knowledge to fortify

algorithmic robustness against domain generalization has yet to
be explored.

2.4 Integrating domain knowledge into
deep learning

Incorporating domain knowledge in deep learning has been
garnering growing interest (Van Der Voort et al., 1996; Chen et al.,
2011; Kumar and Vanajakshi, 2015; Thodi et al., 2022). For example,
Physics-Informed Neural Network (PINN) approaches (Raissi et al.,
2019; Karniadakis et al., 2021) incorporate physics equations to
augment deep learning. PINN has been extended to incorporate a
macroscopic traffic model (Huang and Agarwal, 2020) to enhance
learning in traffic state prediction. However, the integration of traffic

FIGURE 5
The predictions of the reaction–diffusionmodel, employing bothMAE and RMSE loss, exhibit lower prediction error, whereas the predictions of only
the reaction models or only the diffusion models demonstrate weaker performance in at least one time period. (A)MAE of speed predictions on models
incorporating reaction equation, diffusion equation, and reaction-diffusion equation. (B) RMSE of speed predictions on models incorporating reaction
equation, diffusion equation, and reaction-diffusion equation.
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models with the graphical structure of the transportation network
has not been explored, particularly in the context of
mismatched data.

2.5 Limited and mismatched data

Meta-learning (Finn et al., 2017) is often used to augment
machine learning with limited data, through additional training
processes. Mismatches between the training and test sets are

frequently present in practical applications. Robustness to
mismatched data is important in designing trustworthy
models (Varshney, 2020). The optimization of supervised
learning when the instance/label pairs have been permuted in
a manner is proposed in Xian et al. (2022). Our approach, which
incorporates domain ODEs, provides robustness under
arbitrarily mismatch and limited data scenarios.

2.6 Model explainability

Intrinsically transparent ML models (Lakkaraju et al., 2016; Lou
et al., 2012) based on simple rules or linear models are useful, in that
their computation processes can be revealed to domain experts to
increase model confidence. In contrast, we incorporate non-linear
physical laws into graphical models to promote intrinsic
explainability. In graph-based ML, understanding how neighbors
lead to prediction on a mode is essential. Prior methods, such as
Ying et al. (2019), use a surrogate model to approximate a graphical
model and thus do not reveal the computational process of
prediction models.

FIGURE 6
Feeding more training data does not lead to a significant change in the MAE of RDGCN’s prediction.

FIGURE 7
SIRGCN can make accurate predictions in the decreasing phase, while EpiGNN makes bad predictions in the corresponding phase.

TABLE 4 Evaluation of models under mismatched data.

MAE RMSE

SIRGCN-
1

SIRGCN-
n

SIRGCN-
1

SIRGCN-
n

Japan-
Prefectures

344 ± 22 342 ± 22 871 ± 43 863 ± 44

US-States 42 ± 4 41 ± 4 123 ± 10 121 ± 10
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3 Problem definition

3.1 Notations

Given an unweighted graphG � (V, E)with |V| � n vertices and |E|
edges, each vertex i ∈ V corresponds to a physical location, and each
edge (i, j) ∈ E represents the neighboring connectivity between two
vertices. Let N i denote the set of neighbors of vertex i, and A ∈ Rn×n

denote the adjacency matrix of the graph G. The value of the feature at
vertices i at time t is denoted xi(t), and the vector of features at all vertices
at time t is denoted X(t). Let Xt1: t2 ∈ Rn×(t2−t1) be the sequence of
features X (t1), X (t1 + 1), . . ., X (t2) at all vertices in the interval [t1, t2].
Assume that the training and test data are sampled from the source X s

and target domains X τ , respectively. Data from different domains
exhibit different patterns, which we explicitly capture through
labeling functions in each domain. Formally

X s � Xt−T: t, Xt+1( ): Xt+1 � ls Xt−T: t( ), Xt−T: t ~ D{ },
where ls is the labeling function in the source domain and D is the
distribution of inputs. The target domainX τ can be defined similarly but
with a different labeling function lτ ≠ ls. Note that T is the length of the
time sequence that defines the “ground truth” labeling function, which
we assume to be partially known at best.We assume thatT is identical in
the source and target domains.

3.2 Problem definition

We aim to solve the problem of single domain generalization (Qiao
et al., 2020; Wang et al., 2021; Fan et al., 2021). Given the past feature
observations denoted as (Xs

t−T: t,X
s
t+1) ∈ X s on the graphG on only one

source domain s, we aim to train a predictive hypothesis h that can predict
the feature at time t+ 1 for all vertices (denoted as X̂(t + 1) ∈ Rn) on the
unseen target domain τwithout extra training. We use L to denote a loss
function to evaluate the distance between the prediction and ground
truth. Let h denote a hypothesis, and let l denote the labeling function in
the corresponding domain. The expectation of the loss is
L(D,l)(h) � EXt−T: t~D(L(h(Xt−T: t), l(Xt−T: t))). The hypothesis
returned by the learning algorithm is

h* � argmin
h∈H

L D,ls( ) h( ),

where H is any hypotheses set. Let H* denote the set of hypotheses
returned by the algorithm—H* � {h*: L(D,ls)(h*)< ϵ}—and define
the discrepancy measure that quantifies the divergence between the
source and target domain as (Kuznetsov and Mohri, 2016):

disc H*( ) � sup
h∈H*

|L D,ls( ) h( ) − L D,lτ( ) h( )|. (1)

Our objective is to develop a class of learning architectures to
train a hypothesis that has low generalization discrepancy as
measured above. Our approach, as delineated in the next section,
will focus on the use of graph convolutional network architectures
that incorporate the local spatiotemporal dynamics available in the
form of ODEs.

4 Methodology

Let xi(t) denote a feature at vertex i at time t andHi
t,T denote the

length T history of data prior to time t, and set N i of 1-hop
neighbors of vertex i. The ODE that models the feature dynamics
at vertex i is given by

dxi t( )
dt

� fi xi t( ), xj t( )|j ∈ N i{ }( ) + gi H
i
t,T( ), (2)

where fi(xi(t), {xj(t)|j ∈ N i}) models the evolution of the
feature (Asikis et al., 2022; Xhonneux et al., 2020) at vertex i as a
dynamic system using a differential equation, related only to the
feature at vertex i and the neighboring vertices at the current time.
Among other things, f encapsulates the invariant physical
properties of the system within each neighborhood. For
example, in transportation networks, demand patterns might
change but traffic dynamics would not. In disease transmission,
travel patterns might change but the dynamics of infection
transmission would not. In systems involving chemical
reactions, ODEs can describe how reactants transform into
products over time and space. Although external conditions
change, these equations account for the kinetics of the
reactions and the transport of species through materials. In
this work, we consider equations of the form in Eq. 2, where
the local dynamics that are available through domain knowledge
are not wholly sufficient for the prediction, but the extraneous

TABLE 5 Computation time on Metr-la dataset.

# Parameters Training (s/epoch) Inference (s)

Metr-la STGCN 458,865 0.5649 0.0232

MTGNN 405,452 0.5621 0.0607

GTS 38,377,299 1.0632 0.1641

STGNCDE 374,904 1.7114 0.3729

MTGODE 138,636 1.6158 0.3491

RDGCN 872 0.0308 0.0037

Japan-prefectures ColaGNN 4,272 0.0297 0.0065

EpiGNN 16,875 0.0311 0.0073

SIRGCN 181 0.0289 0.0063
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influences are captured through some unknown function gi which
takes both the feature history over a T − length window as well as
the influence from vertices that are outside the immediate
neighborhood of a given vertex. As is common in many
domains (Maier et al., 2019), we consider systems where the
immediate dynamics given by the function fi is assumed
known1, while the pattern-specific function gi is used to
capture some impact of the past data and the impact from
distant vertices2. We are particularly interested in the
spatiotemporal prediction problem when these extraneous
conditions and influences modeled by gi change from source to
target domains. More specifically, let gs,i and gτ,i denote the
pattern-specific function at vertex i in the source and target
domain, respectively. The difference between the labeling
function in the respective domain (i.e., ls ≠ lτ in Section 3) is
caused by

gs,i H
i
t,T( ) ≠ gτ,i H

i
t,T( ). (3)

Constructing dynamics-informed GCNs involves three steps:

• Define the domain-specific graph. The unweighted graph G
defined earlier should correspond to the real-world network.
Each vertex is associated with a time sequence of data, and
edges connect vertices to their neighboring vertices such that
the domain equations define the evolution of data at a vertex
as a function of the data at 1-hop neighbors.

• Construct the feature-encoding function using the dynamic
equation. We then generalize the local domain Eq. 2 to a
graph-level representation:

dX t( )
dt

� F O X t( ),A( );Θ1( ) + G O X t( ), I −A( ), Xt−T: t−1;Θ2( ),

where I is the all-one matrix F (resp. G) with parameters Θ1

(resp. Θ2) as a collection of {f1, . . . fn} (resp. {g1, . . . , gn}) of the
encoded domain-specific features.

• Define the network prediction function. To mitigate the
effects of such pattern mismatches in Eq. 3, we propose
the GCN incorporating domain ODEs, which is a family of
GCNs that incorporate the domain equations fi to learn only
the immediate dynamics to be robust to the domain
generalization. We use a feature extraction function, O, to
encode inputs by selecting the relevant input by utilizing a
domain graph:

O X t( ),A( ) � A ⊗ X t( ),
where ⊗ is the Kronecker product and A is the adjacency matrix of
graph G. The domain-ODE-informed GCNs only learn F. Thus, a
network-level prediction using the finite difference method is:

X̂ t + 1( ) � X t( ) + ∫t+1

t
F O X t( ),A( );Θ1( )dt

≈ X t( ) + F O X t( ),A( );Θ1( ).
(4)

5 Proof of robustness to domain
generalization

We will discuss the application-specific GCNs in the
subsequent section. In this section, we will prove that when the
underlying local spatiotemporal dynamics (as defined by the fi
function in Eq. 1) connect the features at consecutive time points,
the approach that incorporates the dynamics is more robust to the
domain generalization problem defined by the discrepancy
equation in Eq. 2. Similar to the approach in Redko et al.
(2020), we assume that the training set is sampled from the
source domain and the test data are sampled from the target
domain. In this study, we formulate the mismatch problem as a
difference between labeling functions in the source and target
domains where the immediate time and nearest neighbor
dynamics (function F) are unchanging across domains. In
contrast, the impact of long-term and distant neighbor patterns
(function G) varies between source and target domains. We
observe that although both Gs (resp. Gτ) and F utilize X(t) as
part of their input, they consistently select features from distinct
vertices. There is thus no overlap between inputs of Gs

(resp. Gτ) and F.
Under such a mismatch scenario, we prove the methods that use

data to learn the complete labeling function in the source domain
using long-term patterns and data from vertices outside the
neighborhood. We use H1 to denote the hypothesis set
mentioned earlier that predicts the data at time t + 1 based on a
T-length history (from t − T to t, where T > 1) and H2 denotes the
hypothesis set that uses the data only at time t to predict the speed at
t + 1. Thus, baseline algorithms that use several time points and data
from vertices outside the 1-hop neighborhood would fall intoH1. In
contrast, algorithms such as ours, which use domain ODEs to
incorporate the known functional form F, which requires only
immediate and nearest neighbor data, would belong to H2. We
make the following two assumptions.

Assumption 1: (Learnability) There exists h1* ∈ H1 s.t.
L(D,F+Gs)(h1*) � 0. There exists h2* ∈ H2 s.t. L(D,F)(h2*) � 0.

Assumption 2: (Symmetry) Let U � Gs(O(X(t), I −A),
Xt−T: t−1;Θ2) be a random variable where Xt−T: t ~ D and PU(G)
be the probability distribution function (PDF) of U. The PDF PU(G)
is symmetric at about 0.

Assumption 1 ensures the learnability of the hypotheses.
Assumption 2 ensures that the statistical impact of the long-
term pattern is unbiased and symmetric3. The above assumptions
lead to the following Lemmas about optimal hypotheses learned
by domain-agnostic methods, such as the baselines, and those
learned by dynamics-informed methods, such as ours.

Lemma 1: h1*(Xt−T: t) � F(O(X(t),A);Θ1) + Gs(O(X(t), I−
A), Xt−T: t−1;Θ2).

Proof. Follows Assumption 1 when L(D,ls)(h1*) � 0.

1 E.g., congestion is caused by the increasing traffic demand.

2 E.g., temporary change of travel demand.

3 In the Supplementary Appendix, we show that the datasets used satisfy

these assumptions.
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Lemma 2: If (1) h2 is trained with data sampled from X s such that
assumption 2 is true, (2) the loss function L is the L1-norm or MSE,
then h2* � F.

Proof. We prove this by contradiction. If h2* ≠ F, there must
exist ĥ2*(Xt) ≠ 0 such that h2*(Xt) � F(O(X(t),A);Θ1) + ĥ2*(Xt)
and ĥ2* minimizes the expectation of the loss in the source domain.
The detail is shown in the Supplementary Appendix.

When sufficient training data are provided, Lemma 1 guarantees
that baseline models can accurately capture the ground truth labeling
function, including the local spatio-temporal dynamics, long-term
patterns, and those from vertices beyond the neighborhood in the
training dataset. Additionally, Lemma 2 ensures that domain-ODE-
informed models can accurately learn the ground truth differential
equation representing the local spatiotemporal dynamics.

To theoretically establish the enhanced robustness of our
approach, we assume the PAC learnability of H1 and H2. In detail,
with sufficient data, for every ϵ1, ϵ2, δ ∈ (0, 1), if Assumption 1 holds
with respect to H1,H2, then when running the learning algorithm
using data generated by distributionD and labeled by F + Gs, with the
probability of at least 1 − δ, the hypothesis h1* is in the set

H1* � h1*: L D,F+Gs( ) h1*( )< ϵ1{ }, (5)
and h2* is in the set

H2* � h2*: L D,F( ) h2*( )< ϵ2{ }. (6)
We will now demonstrate that H2* is more robust to the domain
generalization than H1* using the discrepancy measure defined in
Eq. 1. For the following result, we consider loss functions L (h, l) that
satisfy triangle inequality:

|L h, h′( ) − L h′, l( )|≤ L h, l( )≤L h, h′( ) + L h′, l( ),
where h′ is any other hypothesis. The following theoremproves our result.

Theorem 1: If (1) the training data are sampled from the source
domain where Assumption 2 is true, (2) the loss function L(h, l)
obeys the triangular inequality, then the discrepancy should satisfy

disc H2*( )≤disc H1*( ).
Proof. By the definition of discrepancy in Eq. 1, we know

disc H1*( ) � sup
h1∈H1*

|L D,F+Gs( ) h1( ) − L D,F+Gτ( ) h1( )|

� sup
h1∈H1*

|EXt−T: t~D L h1 Xt−T: t( ), F X t( )( )([
+Gs O X t( ), I −A( ), Xt−T: t−1;Θ2( ))
−L h1 Xt−T: t( ), F X t( )( )(
+Gτ O X t( ), I −A( ), Xt−T: t−1;Θ2( ))]|

≤
a( )

sup
h1∈H1*

EXt−T: t~D |L h1 Xt−T: t( ), F X t( )( )([
+Gs O X t( ), I −A( ), Xt−T: t−1;Θ2( ))
−L h1 Xt−T: t( ), F X t( )( )(
+Gτ O X t( ), I −A( ), Xt−T: t−1;Θ2( ))|]

≤
b( )
EXt−T: t~D L Gs O X t( ), I −A( ),(([
Xt−T: t−1;Θ2), Gτ O X t( ), I −A( ),(
×Xt−T: t−1;Θ2))],

where (a) follows from Jensen’s equality (|·| is convex) and (b)
follows from the triangle inequality (which implies |L (x, y)|≥|L (x, z) −

L (y, z)|, for any x,y, z ∈ R). By Assumption 1 in Section 5, we can set
h1* � F + Gs where L(D,F+Gs)(h1*) � 0. Then, the discrepancy ofH1 is

disc H1*( )≥c( )
EXt−T: t~D L F X t( )( )([ +Gτ O X t( ), I −A( ), Xt−T: t−1;Θ2( ),
F X t( )( ) + Gs O X t( ), I −A( ), Xt−T: t−1;Θ2( ))]

� EXt−T: t~D L Gs O X t( ), I −A( ), Xt−T: t−1;Θ2( ),([
Gτ O X t( ), I −A( ), Xt−T: t−1;Θ2( ))],

where (c) follows from the definition of the supremum (the least
element that is greater than or equal to each element in the set).
Thus, from Eq. 12 and Eq. 13 together

disc H1*( ) � EXt−T: t~D L Gs O X t( ), I −A( ), Xt−T: t−1;Θ2( ),([
Gτ O X t( ), I −A( ), Xt−T: t−1;Θ2( ))].

For H2, by the triangle inequality,

disc H2*( ) � sup
h2∈H2*

|L D,F+Gs( ) h2( ) − L D,F+Gτ( ) h2( )|

≤EXt−T: t~D L Gs O X t( ), I −A( ), Xt−T: t−1;Θ2( ),([
Gτ O X t( ), I −A( ), Xt−T: t−1;Θ2( ))].

Hence, we have shown that disc(H2*)≤ disc(H1*).
Theorem 1 illustrate that models trained using lengthy time

sequences and distant vertices are not reliable when there are
mismatches between the labeling functions in the source and target
domains. Loss functions that include mean absolute error (MAE)
satisfy the triangle inequality assumption. We note that the triangle
inequality assumption precludes using mean squared error (MSE) as a
loss function. Subsequent to Theorem 2, we prove a discrepancy result
that specifically holds true for MSE as a loss function. In the following,
we discuss the discrepancy when using MSE loss based on the
assumption that the pattern-specific dependence gi in the labeling
function exhibits 0 or negative correlation between source and target
domains. Under this assumption, we will show that the MSE-based
discrepancy is lower for the dynamics-informed learned hypothesis
compared to the class of hypotheses that learn the complete labeling
function in the source domain.

Assumption 3: (Non-positive Covariance) Let U′ �
Gs(O(X(t), I −A), Xt−T: t−1;Θ2)Gτ(O(X(t), I −A), Xt−T: t−1;Θ2)
be a random variable where Xt−T: t ~ D, EXt−T: t~D[U′]≤ 0.

Assumption 3 ensures a significant distinction between the source
and target domains. Specifically, a zero covariance implies that long-
term patterns and distant-vertex patterns in the source and target
domains are unrelated4 while negative covariance indicates that
patterns causing positive changes in the source domain may
induce negative changes in the target domain5. Based on this

4 E.g., consider the evolution of traffic speed: during morning rush hour,

training data reflect significant traffic demand influencing speed, whereas

test data from midnight reflect negligible traffic demand, and thus no

speed change.

5 E.g., during the morning rush hour, a two-hop neighbor facilitates positive

speed changes for the target. However, as the evening rush hour ensues,

the same two-hop neighbor can result in negative speed changes due to

shifts in population flow, with cars redirecting to different vertices at night.

Frontiers in Mechanical Engineering frontiersin.org10

Sun et al. 10.3389/fmech.2024.1397131

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1397131


assumption, the following theorem proves our result when
using MSE loss.

Theorem 2: If (1) the training data are sampled from the source
domain where Assumptions 2 and 3 are true, (2) the loss
function L(h, l) is mean squared error (MSE), (3) the error
bound of h1 and h2 in Eq. 5 and Eq. 6 satisfies ϵ1 ≥ϵ2, then the
discrepancy should satisfy

disc H2*( )≤disc H1*( ).
Proof. The main idea of the proof is to demonstrate that under

Assumption 3, there exists a hypothesis in the classH2* which has worse
discrepancy than the worst case hypothesis in the classH1*. In particular
even when the chosen hypothesis has an exact error margin with the
“ground-truth” function, we show that under the zero correlation
assumption, the performance in the target domain is provably lower
than hypotheses that learn only the function fi (subject to an identical
error margin). Details of the proof are in the Supplementary Appendix.

Theorem 2 demonstrates that models trained with MSE loss
using lengthy time sequences and distant vertices are unreliable
in the presence of mismatches between the labeling functions in
the source and target domains. Specifically for MSE loss, if the
training loss of domain-ODE-informed GCNs matches or
exceeds that of a deep neural network model, the latter
becomes unreliable for predictions in the target domain. We
notice a special case when hypotheses h2 could perfectly learn a
labeling function using the data—if L(D,F)(h2*) � 0—h2 is more
robust in the generalization, as shown in the
following corollary.

Corollary 1: If (1) the training data are sampled from the source
domain where Assumptions 2 and 3 are true, (2) the loss function
L(h, l) is MSE, (3) L(D,F)(h2*) � 0, then disc(H2*)≤disc(H1*).

Proof. The proof follows by settingL(D,F)(h2*) � ϵ2 � 0, which is
not greater than any ϵ1 for any ϵ1 ≥ 0.

6 Application of domain-ODE
informed GCNs

Without incorporating domain ODEs, most GNNs need
longer data streams to make accurate predictions. For
instance, black-box predictors in the traffic domain require
12 time points to predict traffic speeds, whereas the domain
informed GCN we develop requires only one as it explicitly
incorporates the immediate dynamics instead of learning
arbitrary functions (see Eq. 7). In the following part of this
section, we will use the reaction–diffusion equation and SIR-
network differential equation as examples to develop practical
dynamics-informed GCNs.

6.1 Reaction diffusion GCN for traffic speed
prediction

The authors in Bellocchi and Geroliminis (2020) proposed
the reaction–diffusion approach to reproduce traffic
measurements such as speed and congestion using few

observations. The domain differential equations included a
Diffusion term that tracks the influence in the direction of a
road segment, while the Reaction term captures the influence
opposite the road direction. Since each sensor is placed on one
side of a road segment and measures the speed along that specific
direction, A is asymmetric, and, in particular, only one of Ai,j

andAj,i can be non-zero. Consider sensor i, letN d
i denote the set

of sensor i’s neighbors in the road segment direction, and let N r
i

denote the set of the neighbors in the opposite direction of the
sensor i. If xi(t) denotes the speed observed at vertex i at time t,
the local reaction–diffusion equation at vertex i can be
formulated as

dxi t( )
dt

� ∑
j∈N d

ρ i,j( ) xj t( ) − xi t( )( ) + bdi

+ tanh ∑
j∈N r

σ i,j( ) xj t( ) − xi t( )( ) + bri⎛⎝ ⎞⎠, (7)

where ρ(i,j) and σ(i,j) are the diffusion and reaction parameters,
respectively; bdi and bri are biases to correct the average traffic
speed at vertex i in diffusion and reaction. As seen in Eq. 7, the
change in speed is a function of two terms. The diffusion term is a
monotone linear function of speed change in the direction of traffic,
and it relies on the empirical fact that in the event of congestion,
drivers prefer to bypass the congestion by following one of the
neighboring links. The reaction term is a non-linear monotone
function (tanh activation) of speed change that is opposite to the
direction of traffic, and it relies on the empirical fact that a road
surrounded by congested roads is highly likely to be
congested as well.

In the following, we incorporate this reaction–diffusion (RD)
equation using the steps outlined in the methodology section to
build a novel GCN model for the dynamics-informed prediction
of traffic speed. The architecture of RDGCN is shown
in Figure 2.

Step 1: Define reaction and diffusion parameters. We define a
diffusion graph Gd � (V, Ed) and a reaction graph Gr � (V, Er)
derived from the physical graph G (see ❶ in Figure 2). The
diffusion graph represents whether two vertices are direct
neighbors in the road direction—that is, Ed � E—and Ad � A;
the reaction graph represents whether two vertices are direct
neighbors in the opposite direction of a road segment—that is,
Er � {(i, j): (j, i) ∈ E}—and Ar � A⊤, where ⊤ denotes matrix
transpose. Define ρ � {ρ(i,j) ∈ R|(i, j) ∈ Ed},
σ � {σ(i,j) ∈ R|(i, j) ∈ Er}, bd ∈ Rn, br ∈ Rn (see ❷ in Figure 2).
Each parameter ρ(i,j) (resp. σ(i,j)) is a diffusion weight
(resp. reaction weight) for edge (i, j). Each parameter in ρ

and σ corresponds to a directed edge (i, j) in Ed and Er,
respectively. Wd ∈ Rn×n is a sparse weight matrix for the
diffusion graph Gd, where Wd

i,j � ρ(i,j),∀(i, j) ∈ Ed, otherwise
Wd

i,j � 0. Wr for reaction graph Gr is defined in similarly, but
the non-zero element at (i, j) ∈ Er is σ(i,j).

Step 2: Construct an RD feature encoding function. Let Ld

(resp. Lr) be the corresponding Laplacian of the combination
of diffusion (resp. reaction) weight tensor Wd (resp. Wr)
and diffusion (resp. reaction) adjacency matrices Ad

(resp. Ar), then
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LdX t( )( )i � ∑
i,j( )∈Ed

Wd ⊙ Ad( )
i,j

Xj t( ) −Xi t( )( )
� Degree Wd ⊙ Ad( ) −Wd ⊙ Ad( )X t( )( )

i
,

where ⊙ denotes the Hadamard product, Degree (p) is to calculate
the degree matrix of an input adjacency matrix, and (LrXt)i
represents a similar reaction process, but the weight tensor is Wr

and adjacency matrix is Ar. Specifically, the reaction and diffusion
Laplacian Lr and Ld is the RD-informed feature encoding function O
extracting speed differences between neighboring vertices (see ❸

in Figure 2).
Step 3: Using Eq. 4, we can define a prediction:

X̂ t + 1( ) � X t( ) + LdX t( ) + bd( ) + tanh LrX t( ) + br( ),

where Ld and Lr are the reaction and diffusion functions
constructed earlier, corresponding to the function F = (LdXt + bd)
+ tanh (LrXt + br) predicting the traffic speed using the reaction
parameters ρ and the diffusion parameters σ (see ❹ in Figure 2).

6.2 Susceptible–infected–recovered (SIR)-
GCN for infectious disease prediction

The SIR model is a typical model describing the temporal
dynamics of an infectious disease by dividing the population into
three categories: susceptible to the disease, infectious, and recovered
with immunity. The SIRmodel is widely used in the study of diseases
such as influenza and COVID (Cooper et al., 2020). Our approach is
based on the SIR-Network Model proposed to model the spread of
dengue fever (Stolerman et al., 2015), which we describe as follows.
Let Si(t), Ii(t), and Ri(t) denote the number of susceptible, infectious,
and recovered at vertex i ∈ V at time t, respectively, and the total
population at vertex i is assumed to be a constant—Ni = Si(t) + Ii(t)
+ Ri(t).

The spread of infection between vertices is modeled using sparse
travel matrices Φ ∈ [0,1]n×n as ϕ(i,j),∀(i, j) ∈ Ed; otherwise ϕ(i,j) = 0,
where ϕ(i,j) ∈ [0, 1] is a parameter representing the fraction of
resident population traveling from i to j; therefore, we require the
fractions satisfy ∑n

j�1ϕ(i,j) � 1,∀i ∈ V . The SIR-network model at
vertex i is defined as

dSi t( )
dt

� −∑n
j�1

∑n
k�1

βjϕ i,j( )Si t( )
ϕ k,j( )Ik t( )

Np
j

,

dIi t( )
dt

� ∑n
j�1

∑n
k�1

βjϕ i,j( )Si t( )
ϕ k,j( )Ik t( )

Np
j

− γIi,

dRi t( )
dt

� γIi t( ),

where βi is the infection rate at vertex i, representing the probability
that a susceptible population is infected at vertex i, γ is the recovery
rate, representing the probability that an infected population is
recovered, and Np

i � ∑n
j�1ϕ(j,i)Nj is the total population traveling

from all vertices to vertex i. We assume the recovery rates at all
vertices are the same.

Step 1: Derive the susceptible and recovered numbers
and define the travel matrices. We first define parameter β ∈
[0,1]n (n is the number of vertices) representing the infection

rate, and parameter γ ∈ [0, 1] representing the recovered rate.
Since the total population at vertex i is assumed to be a
constant, the network level recovered and susceptible
number is

R t( ) � γ∫t

t0
I τ( )dτ � γ ∑t

τ�t0
I τ( )Δτ,

S t( ) � N − I t( ) − R t( ),

where dτ is the time interval for each sample, which we set to 1,
N is the total number of the population of each state/prefecture, and
t0 is the starting time of the current epidemic (see ❶ in Figure 3).
Next, the travel graph G is derived from the transportation
data—that is, if there are flights between states/prefectures i and
j—Φi,j = 1; otherwise ϕ(i,j) = 0 (see ❷ in Figure 3).

Step 2: Construct the SIR function. Define ϕ � {ϕ(i,j) ∈ R|Φi,j > 0}.
Each ϕ represents the fraction of population traveling from i to j, as
defined earlier.W ∈ Rn×n is a sparse weight matrix for the travel graph,
where Wi,j = ϕ(i,j), ∀Φi,j > 0; otherwise W = 0. Then, the differential
equation system (20) is equivalent to:

dI t( )
dt

� K − γ( )I t( ), (8)

where I(t) is the feature (X(t) mentioned earlier) representing the
number of infectious people. Then, the transformation matrix K
connecting I(t) and I (t + 1) at neighboring time is

Ki,j � ∑n
j�1

βjWi,jWk,j
Si
Np

j

, (9)

The dynamics-informed feature encoding function O is utilized
to approximate the counts of susceptible and recovered populations
and to estimate the infectious people likely to travel, approximated
by the transportation data (see ❸ in Figure 3).

Step 3: Using Eq. 4 and 8, 9, the prediction is defined as:

Î t + 1( ) � I t( ) + K − γ( )I t( ), (10)

(see ❹ in Figure 3).

7 Evaluation

In this section, we compare the performance of these domain-
ODE-informed GCNs with baselines when tested with mismatched
data and demonstrate that our approach is more robust to such
mismatched scenarios.

7.1 Experiment settings

7.1.1 Datasets
Our experiments are conducted on three real-world datasets

(Metra-la, Pems-bay, and Seattle-loop) for traffic prediction and on
two real-world datasets (in Japan andUS) for disease prediction. The
details are shown in Table 1.
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7.1.2 Evaluation metric
The loss function we use is the mean absolute error and the root

mean squared error: MAE(X(t), X̂(t)) � 1
n∑n

i�1|xi(t) − x̂i(t)|,
RMSE(X(t), X̂(t)) � (1n∑n

i�1(xi(t) − x̂i(t)))2)12. We also use MAE
and RMSE to evaluate models.

7.1.3 Baselines
For traffic prediction tasks, we compare RDGCN with STGCN (Yu

et al., 2018), MTGNN (Wu et al., 2020), GTS (Shang et al., 2021),
STGNCDE (Choi et al., 2022), andMTGODE (Jin et al., 2022). They are
influential and the best-performing deep learning models for predicting
traffic speed using historical speed alone. We also use Model-Agnostic
Meta-Learning (MAML) (Finn et al., 2017) to help baseline models, and
our approach adapts quickly to tasks using good initial weights generated
byMAML. For disease prediction, we compare SIRGCNwith two state-
of-the-art models for infection prediction: ColaGNN (Deng et al., 2020)
and EpiGNN (Xie et al., 2023).

7.1.4 Evaluation
We assume that all zeros in the datasets are missing values, and

we remove the predicted speed when the ground truth is 0, or when
the last speed recorded is 0.

7.1.5 Hyperparameter settings
RDGCN and SIRGCN are optimized via Adam. The batch size is

set as 64. The learning rate is set as 0.001, and the early stopping
strategy is used with a patience of 30 epochs. These settings are the
same as those used in baseline models to set up a fair comparison. In
traffic speed prediction, the training and validation sets are split by a
ratio of 3:1 from the weekday subset, and the test data are sampled
from the weekend subset with different patterns. As for baselines, we
use identical hyperparameters as released in their works. In ILI
prediction, the training and validation set are split by a ratio of 5:
2 from the winter–summer subset, and the test data are sampled
from the spring–fall subset with different patterns. The susceptible
population at the beginning of each ILI period is 10% of the total
population in each prefecture or state. As for baselines, we also use
identical hyperparameters as released in their works. We
approximate the total number of populations by the average of
the annual sum of infectious cases multiplied by 10. In contrast to
black-box baseline models, our model is domain-ODE-informed,
and the architecture is determined by the physical network and the
domain differential equations.

7.1.6 MAML settings
Our experiment involved the following steps. 1) We

randomly selected sequences of 12 consecutive weekdays (the
same as in the limited and mismatched data experiment), and
sampled 4-h data as the training set. We evaluated the model
with hourly data on weekends. 2) We divided the training set
into two equal parts: the support set and the query set. 3) We
used the support set to compute adapted parameters. 4) We used
the adapted parameters to update the MAML parameters on the
query set. 5) We repeated this process 200 times to obtain initial
parameters for the baseline model. 6) We trained baselines using
the obtained initial parameters. The learning rate for the inner
loop was 0.00005, and for the outer loop was 0.0005, and MAML
was trained for 200 epochs.

7.2 Results and analysis

7.2.1 Mismatched data experiments for RDGCN
We first explore the performance of the models when they are

trained using mismatched data from certain conditions and
tested using alternate, mismatched conditions. Specifically, the
models were trained for 4-h data on weekdays (e.g., 8:00–12:00 on
weekdays) and selected and evaluated with hourly data on
weekends (e.g., 13:00–14:00 on weekends). In limited data and
mismatched conditions (Figure 4A), the training set consists of
data from five different sequences of 12 consecutive weekdays
selected randomly from the available data. This experiment aims
to replicate scenarios where data collection is challenging, and
traffic patterns undergo rapid changes. In mismatched conditions
without data limitations (Figure 4B), the training set consists of
data from all available weekdays. This captures instances where
data collection is comparatively less arduous, although the traffic
pattern retains the potential to shift swiftly. The results are shown
in Figure 4, where each curve denotes the average test prediction
MAE and RMSE of models. In Figure 4A, we compare the
performance of our approach with that of the STGCN,
MTGNN, GTS, MTGODE, STGNCDE, and RDGCN in the
mismatched data, when the training process is augmented
with MAML. Figure 4B plots the prediction MAE and RMSE
of baseline models and RDGCN over time, given all available
weekday data. Corresponding numerical results is shown
in Table 2.

In Figure 4, all RDGCN models have nearly identical
performance regardless of which time window of data is used
for training. The MAE of all the RDGCNmodels is uniformly low
(i.e., small y-axis values), and there is very low variance in
performance across RDGCN models trained with different
time windows (i.e., the curves of average MAE is close to the
curves of maximum MAE). However, the performance of
baseline models is significantly different depending on the
training set, and some can have a relatively high MAE (e.g.,
the curve of STGCN on the Pems-bay dataset has much higher
MAE values than that for RDGCN over time). From Figure 4B,
we can see that even when the model is trained using all available
weekday data, RDGCN outperforms the baseline models where
the variance is across time, and across models is very low. While
more data bring some gain to baseline models, its impact on
RDGCN is fairly limited, indicating that RDGCN performs well
in different testing domains without needing additional training
data. In Table 2, RDGCN has lower MAE and lower RMSE loss
with less variance, which further supports the observation in
Figure 4. We admit that MTGODE also works well in Pems-bay
when full data are used for training, but the superiority is not
significant.

These test results support our hypothesis that incorporating
traffic dynamics into the learning model makes it more robust to
this kind of domain generalization (data from mismatched
training and testing conditions). We speculate that this is a
consequence of our model capturing the relative changes in
speed through the dynamical equations, whereas existing
baseline models are black-box models that derive complex
functions of the absolute speed values across time. In effect,
when there is a mismatch, the underlying nature of traffic
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dynamics is less likely to be impacted, whereas the complex
patterns of absolute speed values might vary significantly
across domains. This is particularly true when dealing with
limited data that do not contain all possible patterns. At the
same time, RDGCN is designed to make predictions based on
neighboring vertices, so even if the speed patterns of a distant
sensor and a close sensor are similar (e.g., both are free flow), the
model uses close sensors to make predictions. We note that the
prediction of RDGCN is not uniformly better than that of
baselines (e.g., the prediction of MTGNN trained by Seattle
weekday data from 8:00 to 12:00 is better than the prediction
of RDGCN), and one possible reason is that speed pattern
mismatches between weekdays and weekends are not always
significant (e.g., when the training weekday is a holiday).
Furthermore, the predictions of MTGNN and MTGODE
exhibit a slight superiority over RDGCN in the Metr-la dataset
in certain windows. Our conjecture is that the mix-hop layers
enable these models to assign higher significance to learn short-
term patterns, which likely does not change much between the
training and test data. We acknowledge that RDGCN is not
always better than baselines under RMSE, as when STGCN is
trained with weekday data from 16:00–20:00 in Metr-la. One
possible reason is that the mismatches between the training and
test data are not significant during the corresponding time
period. The prediction results of RDGCN in terms of RMSE
may not always be stable. For instance, when considering the
models for the 4:00–8:00 time period in Metr-la, we observe
distinct prediction outcomes. This variation could be due to the
difference between the pattern of the morning rush hour during
selected weekdays and the pattern during weekends. When the
training set includes all available weekday data, the predictions of
RDGCN demonstrate stability. Although real-world data under
situations such as disasters are hard to obtain, our approach of
splitting the dataset emulates test scenarios that are sufficiently
different from the training dataset to demonstrate the robustness
of our approach.

7.2.2 Mismatched data experiments for SIRGCN
We explored the performance of SIRGCN under mismatched

situations. Since infection spread and travel patterns vary from
season to season, we trained our model and the baseline models
with ILI data recorded in summer and winter and tested the
predictions on data in spring and fall. The result is shown in
Table 3, where each element denotes the MAE and RMSE under
different seasons.

The results demonstrate that SIRGCN performs consistently
better under the mismatched data scenario with low MAE and
RMSE than the baseline models. Although SIRGCN does not
significantly outperform the deep-learning-based ColaGNN
model, we note that SIRGCN makes predictions using only
the latest observation at one time point augmented by
approximating the total susceptible and recovered populations,
as specified by the domain equations, whereas the baselines
which consider the disease propagation as a black-box model
require more than 7 years data to train and 20 weeks-worth of
data to make their predictions.

The two datasets are used for testing, but the theory can also
apply to other applications, such as air quality forecasting and

molecular simulation, where there are underlying graphical
models and the ODE domain is well developed. Overall, these
evaluations validate the main hypothesis of this paper wherein
integrating domain differential equations into GCN allows for
better robustness.

8 Ablation study

8.1 Analysis of RDGCN in traffic speed
prediction

8.1.1 Are reaction and diffusion
processes essential?

In this section, we investigate the prediction models that
incorporate the reaction and the diffusion equations
independently under limited and mismatched data to understand
whether both the reaction and diffusion processes are essential. We
use the same training set (i.e., 12 consecutive working days selected
randomly) and test set (i.e., hourly weekend data) as Section 7.2. The
curves of MAE versus time using the model incorporating the
reaction equation, the diffusion equation, and the reaction-
diffusion equation are shown in Figure 5A, and the
corresponding curves of RMSE versus time are shown in Figure 5B.

Figure 5 indicates that the predictions of all models with the
reaction–diffusion equation provide low MAE/RMSE with low
variance (i.e., the difference between curves with the highest and
lowest MAE/RMSE is small) over time. However, the predictions of
the reaction models only and the diffusion models only have weaker
performance in at least one time period. We speculate that using
only the reaction equation or the diffusion equation is not sufficient
to completely capture the dynamics of the traffic speed change.
Furthermore, the prediction of the model incorporating the
reaction–diffusion equation is not uniformly better than the
prediction of the model incorporating only the reaction or
diffusion equation. One possible reason is that the reaction or
diffusion processes do not always exist in a specific period (e.g.,
if two neighboring road segments are in free-flow during the test
period, the traffic speeds at the two segments do not affect each
other. Thus, there is neither diffusion nor reaction between these
two road segments). These observations further strengthen that both
the reaction and diffusion processes are necessary for a reliable
prediction.

8.1.2 Impact of data volume
We further investigate the influence of training data volume on

the performance of baseline models and RDGCN under a
mismatched setting. We focus on assessing the adequacy of
training data for both morning (8:00–12:00) and evening rush
hour (16:00–20:00) scenarios using the Metr-la dataset. These
periods exhibit considerable patterns and exhibit relatively minor
mismatches between the training and test datasets. To this end, we
randomly select contiguous weekdays ranging from 20% to the
entire dataset for training the models. The MAE of speed prediction
across varying quantities of training data is shown in Figure 6.

Figure 6 showcases the performance characteristics of the RDGCN
and baseline models over the specified time intervals. Remarkably, the
performance of RDGCN remains consistent irrespective of the training
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dataset size. Conversely, the predictive capabilities of STGNCDE and
MTGODE are notably contingent upon the amount of training data
employed. The observed trend underscores increased training data
volume and directly correlates with enhanced prediction accuracy. In
the morning rush hour, MTGODE achieves optimal performance with
approximately 75% of training data (equivalent to 60 weekdays), while
STGNCDE demonstrates comparable performance when trained on the
entire weekday dataset. We note that the superiority of RDGCN over
baseline models is not universally consistent, as elucidated earlier.
Notably, integrating domain differential equations drastically reduces
the size of the hypothesis class, thereby filtering out erroneous
hypotheses often prevalent in conventional black-box graph learning
models. Consequently, domain-differential-equation-informed GCNs
exhibit remarkable robustness on relatively smaller training datasets.

8.2 Analysis of SIRGCN in ILI prediction

8.2.1 Do the infection rates vary among
different vertices?

In this section, we delve into the question of whether we require an
individual infection rate for each vertex in ILI prediction.We specifically
examine two approaches: one where we assign a unique infection rate,
denoted βi, to each vertex i, resulting in a SIRGCNwith n infection rates
(SIRGCN-n), and another approach where we assign a single infection
rate, denoted β, to all vertices (SIRGCN-1). We report the MAE and
RMSE of the prediction under mismatched data (trained using
winter–summer data and test using spring–fall data) in Table 4.

Table 4 shows that employing multiple infection rates leads to more
accurate predictions, particularly in the case of the US-state dataset. By
assigning individual infection rates to each vertex, we achieve a reduction
of 2.4% in MAE (and 1.6% in RMSE). However, the advantage of
utilizing multiple infection rates is less pronounced (< 1%) in the ILI
prediction of Japan. There could be two potential explanations for this.
First, the size of prefectures in Japan is not as substantial as that of the
states in the United States. Second, climates across Japan are relatively
homogeneous, whereas climates across different US states exhibit
significant variations, such as wet coastal and dry inland areas.

8.2.2 Predictions in different seasons
Learning patterns across different trends become challenging when

baseline models are not trained using the same trend. For example,
during winter the infectious number shows an increasing trend, whereas
during spring it exhibits a decreasing trend. Figure 7 shows the predicted
number of infectious cases alongside the ground truth data, revealing
that SIRGCN’s prediction aligns better with the ground truth.
Conversely, EpiGNN’s prediction performs poorly during the decline
phase and when the number of infections approaches 0.

In the case of US-state ILI prediction in May 2014, both
COLAGNN and EPIGNN fail to make accurate predictions around
the peak, while SIRGCN demonstrates its effectiveness during the
corresponding period with the help of the SIR-network model.

9 Model efficiency in computation time

The training and inference times (on two NVIDIA-2080ti graphic
cards) of STGCN, MTGNN, GTS, STGNCDE, STGODE, and RDGCN

on the Metr-la dataset are demonstrated in Table 5. It is observed that
RDGCN takes less time in both training and inference than the other
models. This efficiency can be attributed to RDGCN’s significantly fewer
parameters in contrast to the baseline models. While the spatial
convolutional layers exhibit similar complexities across all baseline
models, the baseline models use richer temporal layers containing
tens of thousands of parameters. In a traffic network where the
number of edges is only slightly greater than the number of vertices,
the parameter count of RDGCN (2|V| + 2|E|) closely resembles that of
two GCN layers in baseline models, thereby saving parameters from
complex temporal convolutional layers. Similarly, in the disease
propagation network, SIRGCN’s parameter count (|V| + |E| + 1) is
lower than that of baseline models. Thus, the proposed methods
require less training data, computation resources, and time, making
them easier to train than baseline models.

The training and inference time of ColaGNN, EpiGNN, and
SIRGCN are shown in Table 5. SIRGCN has significantly fewer
parameters than the baseline models. We acknowledge that the
computational time of SIRGCN is similar to that of the baseline
models, as the baselines are not as deep or dense as traffic prediction
models and do not require a large amount of data for training.

10 Conclusion

In this paper, we investigate the challenging problem of graph time-
series prediction when training and test data are drawn from different or
mismatched scenarios. To address this challenge, we propose a
methodological approach to integrate domain differential equations
in graph convolutional networks to capture the common data
behavior across data distributions. We theoretically justify the
robustness of this approach under certain conditions on the
underlying domain and data. By operationalizing our approach, we
propose two novel dynamics-informed GCNs: RDGCN and SIRGCN.
These architectures fuse traffic speed reaction-diffusion equations and
susceptible-infected-recovered infectious disease spread equations,
respectively. Through rigorous numerical evaluation, we demonstrate
the robustness of ourmodels inmismatched data scenarios. Bothmodels
can significantly reduce the number of parameters while maintaining
prediction accuracy and robustness, thus requiring less training data and
shorter training time. The findings showcased in this study underscore
the transformative potential of domain-ODE-informed models as a
burgeoning category within the domain of graph neural networks. This
framework can pave the way for future exploration addressing the
challenges of domain generalization in other contexts.
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