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Introduction: Nowadays, five-phase permanent magnet synchronous motors
have been widely used in the industrial and transportation fields, and the existing
sliding mode control methods for speed control systems can no longer meet the
requirements such as fast response and good stability.

Methods: In light of the aforementioned considerations, the study initially
employs mathematical modeling to elucidate the five-phase permanent
magnet synchronous motor. Secondly, on the basis of proportional-integral-
derivative sliding mode control, radial basis function and Takagi-Sugeno-Kang
fuzzy model are introduced for parameter identification and optimization and
regulation. Finally, a new neural network regulation algorithm and speed control
strategy are proposed.

Results and Discussion: The experimental results demonstrated that the
expected parameter optimization rate of the regulation algorithm can reach
90%, and the overshooting amount under small inertia working condition is only
3%, and the adjustment time is 0.02 s. The new control algorithm can be used to
control the motor speed with the lowest speed fluctuation and the fastest
recovery time. In addition, when affected by the load torque, the motor speed
controlled by the new strategy fluctuated the least, with a speed drop of only 1%
and the fastest recovery time of 0.02 s. It exhibited the lowest control error of
3.7% and the lowest overshooting amount of 5.9%.

Conclusion: In summary, the suggested approach has the potential to
significantly enhance the speed control system’s control performance while
maintaining strong resilience and anti-interference capabilities. The method
has certain guiding significance for the practical application of five-phase
permanent magnet synchronous motor speed control system.
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1 Introduction

Five-phase Permanent Magnet Synchronous Motor (FPMSM)
has become an indispensable power source in industrial automation
and modern transportation systems due to its high efficiency and
excellent performance (Xu et al., 2020). With the advancement of
technology and the growth of industrial demands, the need for
precise control of motor speed control systems is increasing, and the
selection of appropriate control strategies becomes particularly
critical. Although conventional control methods, such as smooth-
mode control, have been widely used in these systems, they often
exhibit performance degradation in response to variations in system
parameters and external perturbations, which poses a significant
challenge in maintaining system responsiveness and stability (Hou
et al., 2020; Xu et al., 2021). To solve this problem, numerous
researchers have tried various control strategies, including empirical,
trial-control and optimization methods, to improve the parameter
settings of the sliding mode controller. Among the aforementioned
methods, the empirical and trial-control methods rely on
experimentation and debugging to obtain the initial values of the
controller parameters. However, these methods are not only
complicated to operate, but also have limited effects. Currently,
the optimization method mainly solves for the optimal controller
parameters under specific performance indexes through algorithms.
Nevertheless, its parameter tuning remains challenging in the face of
nonlinear and changing system environments (Liu et al., 2020).
Therefore, the study innovatively proposes an improved
Proportional-Integral-Derivative (PID) sliding mode control
method by introducing machine learning optimization
techniques, especially Radial basis function algorithm (RBF) and
Takagi-Sugeno-Kang (TSK) fuzzy model. Derivative, PID) sliding
mode control method. The method aims to significantly improve the
performance and adaptability of FPMSM speed control system. This
research is divided into four parts, the first part is the analysis and
summary of others’ research, the second part describes how the
FPMSM mathematical model and parametric fuzzy regularization
strategy are constructed, respectively, while the third part tests the
performance of this new method, and the last part concludes
the article.

2 Related works

With the benefits of high torque precision, high power density,
and high efficiency, FPMSM is a novel kind of high-performance
motor. Due to its nonlinear and coupling characteristics, the study of
SMC strategy for its SCS is of great significance. In order to explore a
novel SMC strategy for FPMSM speed regulation, Sun et al. (2022)
proposed a speed decoupling control strategy after combining dual-
frequency vector modulation. The experimental results showed that
the effectiveness of the strategy in the simulation test trial set was
high and the control accuracy was good (Sun et al., 2022). Li et al.
(2022) found that in field-oriented controlled FPMSM drives, the
current sensors may fail in harsh operating environments, which can
lead to data diagnostic crashes in the motor SCS. Therefore, the
research team proposed a novel SCS current sensor fault-tolerant
control strategy after combining the theory of third harmonic
control. Experimental results showed that the strategy has good

control robustness over the entire speed range (Li et al., 2022). To
explore a new FPMSM SMC PT strategy, Mossa et al. (2022)
proposed a novel vector controller for the drive after combining
sliding mode and adaptive system. The experimental results
demonstrated that this controller has better enhancement
performance and is able to reduce the deviation between
resistance and stator inductance compared to a single adaptive
system (Mossa et al., 2022). Junejo et al. (2020) suggested a new
adaptive terminal sliding mode convergence law to enhance the
speed control performance of FPMSM under internal and external
disturbances. The experimental results indicated that this new
convergence law significantly outperforms the conventional
convergence law on the Lyapunov function and is more feasible
(Junejo et al., 2020).

Parameter fuzzy tuning refers to the adjustment of the control
parameters of a system so that it can maintain stable operation or
meet predetermined performance requirements under uncertain
environmental conditions. Due to the complexity and variability
of FPMSM’s PT, the appropriate parameters need to be determined
based on the characteristics and control requirements of the specific
system. Hussain discovered that in vector controlled permanent
magnet synchronous motor drives, it is challenging to set the current
control parameters. Consequently, the researcher suggested a
generalized PT design approach. The method’s applicability and
robustness in terms of tracking, disturbance suppression, and noise
sensitivity were demonstrated by the experimental results (Hussain,
2020). Bi et al. (2022) concluded that optimizing control parameters
is important for the high-performance operation of FPMSM drives.
Therefore, they proposed a parameter self-correction method after
combining multi-objective optimization and online tracking. The
experimental results demonstrated that this method is more capable
of realizing the online tracking of control and observation
parameters compared to the traditional PT method (Bi et al.,
2022). Li et al. (2021) found that the dependence of differential
beat-free predictive current control on the accuracy of FPMSM
parameters is the main obstacle to its wide application. They
therefore suggested a novel control strategy in order to address
the issue. According to the experimental data, this strategy was
significantly more effective than other conventional methods under
complex parameter mismatch settings (Li et al., 2021). Xia J. et al.
(2020) concluded that there are abnormal perturbations in the
electrical and mechanical parameters of the FPMSM under
different operating conditions, which can greatly degrade the
control performance. Therefore, they proposed a robust control
strategy with parameter adaptation. Experimental results
demonstrated that this strategy can realize robust regulation of
stator current and rotor speed while accurately estimating the
machine parameters (Xia J. et al., 2020).

In conclusion, researchers both domestically and internationally
have investigated the SCS SMC of motors and the PT within
FPMSM to varying degrees in recent years, and they have
suggested several useful control schemes and PT techniques.
However, with the development of technology, the traditional PT
method of SMC can no longer meet the demand, therefore, the
research tries to innovate the fuzzy rectification of the parameters of
the SCS SMC of FPMSM, and innovatively improves the RBF and
the TSK jointly, which is used to optimize the parameter control of
the PID SMC.
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3 Fuzzy improved neural network-
based parameter tuning for smooth
mode control of motor speed control

To construct a reasonable PT method for SMC of motor speed
control, the study firstly performs mathematical modeling for
FPMSM under hypothetical state. Secondly, the traditional PID
SMC is optimized, and the RBF algorithm is introduced for
parameter identification. Finally, a TSK fuzzy neural network is
incorporated for PT calculation and a novel FPMSM motor speed
SMC strategy is proposed.

3.1 Mathematical modeling of FPMSM for
vector control

FPMSM is a synchronous motor that uses permanent magnet
material as an excitation source. It generates a rotating magnetic
field through five sets of coils on the stator, which interacts with the
magnetic field of the permanent magnets on the rotor to achieve
the rotation of the rotor (Long et al., 2020; Yang et al., 2021). Its
SCS is characterized by high order, nonlinearity and strong
coupling. The physical and topological structure of FPMSM is
shown in Figure 1.

FIGURE 1
The physical and topological structure of FPMSM. (A) FPMSM physical image (B) FPMSM profile topology.

FIGURE 2
Schematic diagram of spatial coordinate system for fundamental and third harmonic waves. (A) Fundamental wave space (B) Third harmonic space.
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Figure 1A shows the physical view of the FPMSM and Figure 1B
shows the sectional topology of the FPMSM. In Figure 1, the rotor
surface is covered with tile-like permanentmagnets, while the rotor itself
is not configured with windings (Choudhuri et al., 2023). In the stator
slot, the layout of the five-phase centralized windings expresses the
independence of the magnetic circuits between the phases through
mathematical modeling. Specifically, the coupling coefficients between
the inductances of each phase are minimized by a sophisticated physical
design, which effectively reduces mutual inductance and thus improves
the accuracy of the model (Zhao et al., 2021). In addition, the slotting
effect is usually ignored in the general model simplification because it

introduces additional harmonics which increase electromagnetic noise
and vibration and reduce the smoothness of the motor operation. On
the contrary,magnetic circuit saturation is taken into account, which has
a significant effect on the electromagnetic characteristics of the motor. A
nonlinear magnetic circuit model is used in motor design to
approximate the magnetic circuit saturation, taking into account its
effect on efficiency and output torque. This nonlinear analysis helps to
improve the prediction accuracy of the model under high load
conditions. Therefore, the study, in order to simplify the analysis,
adopts a hypothetical treatment, i.e., it assumes that the motor of the
FPMSM is star connected and symmetrical, while ignoring the effects
brought about by the conductivity of the permanent magnets, core
saturation, and hysteresis and eddy currents. At this stage, the FPMSM is
equivalently represented in terms of Pike’s matrix and Clark’s matrix for
the stationary coordinate system (CS) and the natural CS, respectively.
Where the voltage equation in the natural CS is shown in Eq. 1.

Usi � Rsisi + dλsi
dt

(1)

In Eq. 1, Usi denotes the voltage of item i, Rs denotes the stator
resistance. isi denotes the current of item i, and λsi denotes the
magnetic chain of item i. d denotes the differential operation symbol
and t denotes the time. The equation of the magnetic chain is
calculated as shown in Eq. 2.

λsi � Lsisi + λpmi (2)

In Eq. 2, Ls denotes the stator self-inductance and λpmi denotes
the magnetic chain generated by the permanent magnets. The
electromagnetic torque (EMT) equation is shown in Eq. 3.

FIGURE 3
The network structure diagram of RBF.

FIGURE 4
The structural topology of TSK fuzzy neural network.
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Te � P

2
∑5

i�1 isi × λpmi( ) (3)

In Eq. 3, Te denotes the EMT and P denotes the pole logarithm.
The equation of mechanical motion is shown in Eq. 4.

J
dω

dt
� Te − Tl − Bω (4)

In Eq. 4, J denotes the rotational inertia and ω denotes the
rotational speed. Tl is the load torque and B denotes the friction

coefficient. It is evident from the preceding equations that there is
mutual interaction between the intersecting and straight axes in the
mathematical model of the FPMSM’s natural CS. This coupling
nature makes it challenging to precisely control the speed and EMT
of the motor. The process involves the dynamic response of the
motor, including starting, braking and sudden load changes. And
the dynamic equations take into account the rotational inertia and
friction of the rotor and how quickly it responds to control
commands and load changes. Therefore, decoupling the five-

FIGURE 5
The self-learning process of TSK fuzzy network.

FIGURE 6
Comparison results of motor speed under different algorithm models. (A) Training set (B) Test set.
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phase PMSM model for order reduction is necessary to simplify the
analysis process. The study is carried out to transform in the manner
of Clark’s and Pike’s matrices to obtain the physical mapping
relations in the two-phase CS with constant amplitude. Where
Figure 2 displays the spatial CS of the fundamental and
third harmonic.

In Figure 2, A − B − C −D − E is a five-term stationary CS with
two neighboring systems separated by 72°. α1 − β1 and d1 − q1 denote
the stationary and rotational CSs in the fundamental wave space, and
α3 − β3 and d3 − q3 denote the stationary and rotational CSs in the third
harmonic space, respectively. This study applies the principle of
invariance of the magnetic momentum to obtain the Clark’s and

Pike’s matrices for the transformation of the five natural CSs to the
stationary CS, based on the relationship of each physical quantity in the
fundamental wave space and the third harmonic space. The matrix
equations are displayed in Eq. 5.

T � k

1 cos α cos 2α cos 3α cos 4α

0 sin α sin 2α sin 3α sin 4α

1 cos 3α cos 6α cos 9α cos 12α

0 sin 3α sin 6α sin 9α sin 12α

1
2

1
2

1
2

1
2

1
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

FIGURE 7
Comparison results of expected optimization of motor parameters using two algorithms. (A) RBF (B) TSK-RBF.

TABLE 1 Test results of indicators for different algorithm controllers.

Working condition Controller Overshoot/% Adjustment time/s

Small inertia BP 30 0.14

ELM 22 0.09

RBF 12 0.05

Literature 18 5 0.04

TSK-RBF 3 0.02

Large inertia BP 65 0.27

ELM 47 0.16

RBF 29 0.09

Literature 18 12 0.07

TSK-RBF 8 0.04
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In Eq. 5, k denotes the constraint coefficient. Considering that
this study takes the positively rotating wound motor as a reference,
the effect of the third harmonic component on the motor
performance can be neglected. At this time, the Pike transform
matrix is shown in Eq. 6.

Cris �

cos θ sin θ 0 0 0
− sin θ cos θ 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(6)

Eqs 5, 6 describe the vector control strategy for the five-phase
motor in detail, including its mathematical derivation and
implementation details. The control algorithm then utilizes the
Pike and Clark matrices for coordinate transformation to
accurately control the amplitude and phase of the current to
achieve precise regulation of the electromagnetic torque. The
equations for the stationary CS voltage and EMT at this point
after transformation are shown in Eq. 7.

uα � Rsiα + dλα
dt

uβ � Rsiβ + dλβ
dt

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ;Te′ � 3
2
P λαiβ − λβiα( ) (7)

The stationary CS voltages at this point after transformation and
in Eq. 7, uα and uβ denote the voltages on the α and β axes,
respectively, in the stationary CS. iα and iβ denote the currents
on the α and β axes, respectively, in the stationary CS. λα and λβ
denote the magnetic chains on the α and β axes, respectively. The
EMT equation is shown in Eq. 7.

3.2 Parameter tuning for fuzzy improved
RBF-based sliding mode PID control

Sliding mode PID control is an advanced control strategy that
combines the robustness of SMC with the simplicity of PID control,
and this control method is particularly effective in dealing with
uncertainty and nonlinear systems (Xia X. et al., 2020; He et al.,
2020). Nevertheless, at specific instances, the fixed and unchanging
control parameters are unable to fulfill the demands of working
conditions with high requirements. Consequently, the study selects
the more classical RBF algorithm for nonlinear data fitting
approximation, with the objective of compensating for the
shortcomings of Sliding Mode PID control. In Figure 3, the RBF
network structure is displayed (Zheng et al., 2022).

The approach in Figure 3 transfers the input space to a high-
dimensional feature space, which allows for the linear divisibility of a
linearly indivisible issue (He et al., 2022). In PID for SMC, the RBF
infinitely approximates the optimal sliding mode PID control
scheme by continuously correcting its own output weights,
centroid positions and expansion constants. Where the correction
equation of RBF in gradient descent method for each node
parameter is shown in Eq. 8.

Vwj � −η ϑE

ϑwj

Vci′j � −η ϑE

ϑwci′j

Vσj � −η ϑE

ϑσj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(8)

FIGURE 8
Comparative testing of different control methods under two operating conditions. (A) Working condition 1 (B) Working condition 2.
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In Eq. 8, E denotes the error function, usually the root mean
square error. η denotes the learning rate, ci′j denotes the i′ th
dimension centroid of the j th RBF neuron. σj denotes the width
constant of the j th neuron, and wj denotes the weight of the j th
output neuron. A single RBF neural network is not fast enough for
parameter selection by cross-validation alone. The study further
introduces the TSK model, which differs from the traditional fuzzy
neural model in that it employs a linear function in the conclusion
part of each rule, rather than a fuzzy set. This design is more efficient
and accurate in realizing fuzzy control and approximating nonlinear
functions. Figure 4 displays the TSK fuzzy neural network’s
structural architecture (Abbassi et al., 2022).

In Figure 4, the whole TSK fuzzy neural network can be divided
into a front-end with fuzzy rule storage and a back-end composed of
constructing fuzzy rules. It has an input layer, a fuzzification layer, a
rule layer, a defuzzification layer, and an output layer. It also
incorporates neural network and TSK fuzzy model features
(Abbassi et al., 2023). Data is fed into the input layer, which
then fuzzifies it into fuzzy values, applies fuzzy logic rules,
defuzzifies the rule output, packages it, and outputs findings that
are easy to understand. This structure makes the network suitable
for dealing with complex nonlinear problems with good
interpretability. Where the fuzzification layer is calculated as
shown in Eq. 9.

FIGURE 9
Current variation curves under different control methods. (A) PID (B) RBF (C) TSK-RBF (D) TSK-RBF-PID.
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μab x′( ) � exp − x′ − cab( )2
2σab*

( ) (9)

In Eq. 9, x′ denotes the input value and μab (x′) denotes the degree
of affiliation of x′ belonging to the b th fuzzy set. cab and σab* denote the
center and width of the a th input corresponding to the b th fuzzy set,
respectively. The formula for the rule layer is shown in Eq. 10.

Qb � ∏aμab x′a( )
fb x′( ) � pb +∑aqabx′a

{ (10)

In Eq. 10, both pb and qab denote the rule parameters and Qb

denotes the activation of the b th rule. fb(x′) denotes the output
function of the b rule. Furthermore, the TSK fuzzy neural network
has a fixed structure, therefore when dealing with a real-time
changing motor SCS, the issue of uncertainty regarding the
amount of neurons in the hidden layer leading to the RBF may
still persist (Bensalem et al., 2022). Therefore, the study tries to self-
learn the TSK network, and the self-learning process is shown
in Figure 5.

In Figure 5, the initial data is first input to the front end of the TSK
for fuzzification operation, while the center value calculation, width
calculation and weight calculation of the first data are performed by the
node parameter correction and approximation equations of the RBF
neural network. At this point, these parameters are compared in the
form of threshold judgment, if it is greater than the threshold then
structure learning is performed, otherwise parameter learning is
performed. After structure learning a new node is generated and the
new node repeats the fuzzification operation and RBF parameter
approximation calculation again. If the new parameters at this time
are similar to the initial parameters, the new node is removed, unless the

parameters are significantly different, then it is chosen to be retained
and parameter learning is performed along with the previous
parameters. Finally, if these learned parameters are able to make the
motor SCS stabilized then the parameters are output, otherwise the first
step of the computation is repeated. The study proposes a novel
parametric controller for sliding mode control of FPMSM speed
control system, i.e., TSK-RBF-PID speed sliding mode controller.
The control system is divided into three main parts, i.e., RBF
parameter optimization module, TSK fuzzy neural network
parameter tuning module, and PID speed controller. The flow of the
model starts with five current signals output from the motor, which are
first converted into digital signals by an analog-to-digital converter,
i.e., ADC. The digital signal is processed by the Clark transform to
obtain two orthogonal current components iα and iβ for the α and β

axes. These two components are subsequently further converted into
d-axis and q-axis current components, i.e., id and iq, by means of Pike
transformations such as, i.e., Eq. 6. Two error controllers are added to
this process to ensure that the current regulator accurately tracks and
controls the target current in closed-loop control. In the control section,
id and iq are processed by two separate PI controllers to generate two
control signals uq and ud, respectively. The reference voltages uq and ud
are generated by the inverse Park transform to generate the voltage
components in the α and β axes, which are then regulated by the current
controller to finally generate iq. The voltage components in the α and β
axes are then regulated by the current controller. These control signals
are then subjected to another Pike transformation and integrated into
the final control signals uα, uβ and Tk. These signals are further
processed by the space vector pulse modulation technique and are
used to control the speed and torque of the motor. In this case, the
α-axis current component is converted to the α-axis current component
iα byClarke transform, and then combinedwith themotor rotor angle θ

TABLE 2 Indicator test results of rolling bearings under different control methods.

Condition Bearing test
serial

number

PID (Control error/
%/Overshoot/%)

RBF (Control error/
%/Overshoot/%)

TSK-RBF (Control
error/

%/Overshoot/%)

TSK-RBF-PID
(Control error/
%/Overshoot/%)

Working
condition 1

1 27.4/51.3 22.8/.39.8 11.7/17.6 3.9/5.9

2 25.1/45.8 20.7/37.4 18.5/22.4 4.2/6.8

3 22.3/43.1 18.9/34.5 15.7/27.5 3.7/9.8

4 19.2/37.8 16.8/22.4 16.2/17.6 4.1/6.3

5 19.8/38.9 18.1/29.4 13.4/29.8 3.9/6.1

Working
condition 2

1 27.6/47.3 25.4/38.6 16.7/23.7 5.1/9.7

2 19.8/48.7 17.5/37.6 17.4/23.5 5.3/8.4

3 18.4/41.2 16.7/29.6 15.3/19.7 6.2/6.7

4 19.4/34.3 18.5/24.5 13.2/19.4 4.2/6.7

5 20.1/38.7 17.4/29.7 14.6/21.4 3.9/5.9

Working
condition 3

1 24.3/47.6 18.7/35.1 15.4/24.1 7.2/9.8

2 22.1/43.1 15.4/21.4 13.7/25.6 6.9/8.7

3 20.4/38.6 16.5/28.1 11.3/27.9 6.5/7.8

4 21.6/35.8 17.8/29.7 13.2/28.4 6.2/6.7

5 20.1/34.5 15.3/24.7 11.4/25.6 5.9/6.6
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by Park transform, and finally converted to the d-axis current
component id. e denotes the weights, eω denotes the corrected
weights, and ω denotes the angular velocity at which the motor is
running.When the value of themotor running angular velocity is input,
the value output using the weights calculation is different from the
desired value, and its error is utilized to make a reverse correction, thus
reducing the error. The control quantity in this control process is the
correction weights. At the same time, the angular velocity ω is used as
the input data, and the correction weights eω are used as the control
quantities, so that the proportional, differential, and integral values
input into the PID controller can be calculated.

In addition, themodel includes a feedback link where the difference
between the actual speed of the motor and the set speed is calculated by
the error detector and processed by the PID controller. Meanwhile, RBF
parameter optimization and TSK fuzzy neural network are used to
optimize the performance of the PID controller to ensure fast and
accurate system response (Bensalem et al., 2021). The feedback control
of the speed is done by a PID controller which optimizes the system
response based on the speed error and its differentials. The RBF passes
the optimized parameter information to the TSK fuzzy neural network
for computation and finally feeds back to the PID controller for
parameter updating and real-time control of FPMSM is
implemented. Where the formula for the speed error is shown
in Eq. 11.

ew′ � w′ref − w′actual (11)

In Eq. 11, w′ref denotes the desired speed of FPMSM and
w′actual denotes the actual speed of FPMSM. Eq. 12 displays the TSK
fuzzy neural network’s output at this stage.

kp k( ) � kp k − 1( ) + Vkp
ki k( ) � ki k − 1( ) + Vki
kd k( ) � kd k − 1( ) + Vkd

⎧⎪⎨⎪⎩ (12)

The proportional gain, integral gain, and differential gain at the
current time k are represented, respectively, by the letters kp(k),
ki(k), and kd(k) in Eq. 12. The previous moment’s proportional
gain, integral gain, and differential gain are shown by the symbols
kp(k − 1), ki(k − 1), and kd(k − 1), respectively. The change
amounts for proportional gain, integral gain, and differential gain
are indicated by the letters Vkp, Vki, and Vkd, respectively. The
output of the PID controller at this time is shown in Eq. 13.

u k( ) � u k − 1( ) + ∑
m�p,i,d

kmx
∧
m( ) (13)

In Eq. 13, u(k) denotes the output of the controller at moment k
and km denotes the corresponding PID control gain at moment m.
x
∧(m) denotes the control error and related variables at the m
moment. The PID controller can adapt dynamically to changes
in the system thanks to this correction formula, preserving the
system’s performance and stability.

4 Experimental test

The experimental platforms for performance test and simulation
test are built respectively, and firstly, the performance test is carried
out for the software algorithm part in the TSK-RBF-PID Speed SMC

to compare with the same type of algorithmic model. Secondly,
simulation tests are conducted on the TSK-RBF-PID controller to
detect the parameter changes under different operating conditions.

4.1 TSK-RBF-PID speed slidingmode control
performance test

The study starts with testing the TSK-RBF algorithm in TSK-
RBF-PID Speed SMC. The operating system is set to Windows, the
CPU is set to Intel Core i7, the GPU is NVIDIA RTX 1660s, and the
memory is 16GB. The simulation modeling is implemented in
MATLAB software, the momentum factor is set to 0.1, and the
learning rate is 0.01. As the source of the test data, the PMSM
dataset, a publicly available dataset used for motor troubleshooting,
is selected. The public dataset contains the values of parameters such
as rotational speed, torque, current, voltage, etc. Of the motor in
normal state and fault state. It is divided into training and test sets
according to the ratio of 8:2, while PT neural network algorithms
that are more popular at this stage of FPMSM, such as Back
Propagation (BP) neural network, RBF neural network, and
Extreme Learning Machine (ELM), continue to be introduced.
The algorithms are selected for their exemplary performance and
adaptability in motor control. Among them, the BP network is well-
suited for complex nonlinear mapping, the RBF network for rapid
learning in real-time control, and the ELM is particularly suitable for
rapid deployment. Additionally, the study optimizes the network
parameters, such as the learning rate and the number of nodes,
through cross-validation to ensure adaptation to the specific system
dynamics, which yields the optimal performance of each algorithm.
The parameter values of the PID speed controller are fixed, the target
speed is set to 1,600 r/min, and 0–0.3 s is specified as the no-load
start-up phase, and after 0.3 s as the stable output phase. Observe the
change value of the motor speed curve under different algorithm
models, and the specific test results are shown in Figure 6.

Figure 6A shows the variation curves of motor speed controlled
by four different algorithms in the training set, and Figure 6B shows
the variation curves of motor speed controlled by four different
algorithms in the test set. From Figure 6, in the speed increase stage
of the test set, the speed increase slope of TSK-RBF is the largest, and
its fastest time to reach the target speed is 0.25 s. Although the slope
of the training set is slightly lower than that of the separate RBF
algorithm, the speed performance of TSK-RBF has been stable in the
stabilized output stage, whereas the RBF leads to some fluctuations
in the motor operation in the later stage due to the increase in the
amount of overshooting. The rationale for this is that the TSK-RBF
algorithm considers a greater number of system characteristics and
dynamic changes during training, which enables more precise
control of the motor speed and avoids unnecessary fluctuations
during the testing phase. The study tested the expected parameter
optimization with the better performing RBF and TSK-RBF, and the
comparative results of the parameter optimization of the two
algorithms are shown in Figure 7.

The expected and actual parameters of the RBF algorithm are
compared in Figure 7A, and the outcomes of the TSK-RBF
algorithm’s comparison are compared in Figure 7B. In Figure 7,
relatively speaking, among the 20 parameter optimization objective
values, the RBF algorithm only exhibits a parameter optimization
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rate of 50%, which is manifested by the low overlap between the
expected and real parameters. On the contrary, the TSK-RBF
algorithm proposed in the study has a parameter optimization
rate of up to 90%. As the sample size increases, the degree of
overlap between the expected and true parameters of the sample also
increases significantly. This is due to the fact that the TSK-RBF
technique is typically capable of modifying the TSK model’s
parameters and the RBF neural network’s weights in real time,
thereby improving the performance of adaptive speed regulation. In
order to quantify the index performance effect under different
algorithms, the study is conducted to compare the small and
large inertia, i.e., the rotational inertia of the SCS is 2 × 10-5kg-
m2 and 5 × 10-5kg-m2 as the established conditions, respectively,
and the overshooting amount and the regulation time are taken as
the indexes. To provide a comprehensive comparison, the most
cutting-edge technology currently available in the field, namely,
literature 18, is also included in the test. The results of this
comparison are presented in Table 1.

As illustrated in Table 1, the Literature 18 proposed method
exhibits superior performance in terms of both overshooting and
adjustment time data when compared to BP and ELM. However,
collectively, TSK-RBF demonstrates the most advantageous
performance. Under small inertia conditions, the TSK-RBF
controller overshoots by only 3% with a tuning time of 0.02 s,
indicating that it provides the fastest system stability and the
smallest overshoot under small inertia conditions. Under large
inertia conditions, the TSK-RBF controller again performs best,
with a significant drop in overshoot to 8%. The tuning time is 0.04 s.
The rationale for this is that TSK-RBF enables the controller to
predict and adjust to the optimal control parameters with greater
precision. In this instance, the TSK model provides fine fuzzy logic
control that automatically adjusts the control rules in accordance
with the system dynamics. Furthermore, the RBF network optimizes
the control parameters through its learning ability, particularly when
the system load or dynamics change significantly, in order to
facilitate rapid adaptation and the reduction of overshooting. The
preceding data demonstrate that the TSK-RBF controller exhibits
robust performance under diverse operational scenarios,
particularly in the context of systems with substantial inertia. The
lower overshoot means more precise control, and the shorter
adjustment time indicates that the system is more responsive and
can reach a steady state more quickly.

4.2 TSK-RBF-PID speed slidingmode control
simulation test

The study used Matlab platform to build the controller of TSK-
RBF-PID, in which the TSK fuzzy neural network is realized by
sigmiod function. The network’s learning rate is fixed at 0.05, its
integral coefficient is 0.813, and its proportional coefficient in the PI
coefficients is 2.615. The model of the motor used for the test is
6SZW40-90-15, the rated torque is 10T/(N-m), the rated rotational
speed is set to 2700n/(r/min), the rotational moment of inertia is
0.0184J/(kg-m2), and the stator resistance is 2.15L/mH. Two
different working conditions are set for the study, working
condition 1 is set with a rated speed of 1,600 r/min and a load of
10N-m pair is applied abruptly at 0.5 s. Condition 2 sets the rated

speed to 1,600 r/min and changes the speed to 1,900 r/min at 0.5 s.
Comparative tests of simple PID control, RBF neural network
control, TSK-RBF fuzzy neural network control and TSK-RBF-
PID control are carried out through the two conditions, and the
results of the tests are shown in Figure 8.

The test results of the four control techniques in Condition 1 are
displayed in Figure 8A, and the test results of the four control
methods in Condition 2 are displayed in Figure 8B. The TSK-RBF-
PID may initially and smoothly reach the normal goal speed in
Figure 8A in 0.22 s. The next is the TSK-RBF control method with
0.23 s, and the slowest is the PID control method with 0.235 s. In
addition, when the load is suddenly applied in the 0.5 s, the speed
fluctuates the most for the PID control method with the speed
decreasing by about 6%, and the recovery time is the longest at 0.08 s.
Comparatively speaking, the TSK-RBF-PID control method has the
smallest fluctuation, with a speed decrease of only 1% and the fastest
recovery time of 0.02 s. The preceding results demonstrate that the
combination of RBF and TSK optimizes the control strategy,
enabling the controller to react promptly to sudden load or
parameter changes and to rapidly restore the steady state.
Furthermore, the study plots the current change curves of the
four control techniques under the condition of working
condition 1 to more graphically demonstrate the performance
effect of various control methods, as illustrated in Figure 9.

Figures 9A, B, C, D depict the current variation curves under
PID, RBF, TSK, and TSK-RBF control methods, respectively. They
also depict the current variation curves under TSK-RBF-PID and
TSK-RBF-RBF control methods. Where stage A is the motor start-
up stage, stage B is the motor stable operation stage, and stage C is
the recovery stage after impact. In Figure 9 in stage A, the TSK-
RBF-PID control method shows a much smaller current variation,
stabilized in the range of –10A–10A, and its shortest time is 0.15 s.
In stage B, from all four control methods show a more stable
current. When the load is added at the beginning of 0.5 s, the
current of the TSK-RBF-PID control method still fluctuates in the
range of −10A–10A, and its current state recovery time is the
shortest of 0.2 s, which is nearly half of the data compared with the
0.4 s of the PID control method. The final study introduces
hardware rolling bearings as test artifacts, employing control
error and overshoot as reference indicators. Additionally, a new
working condition environment is introduced to enhance the
comprehensiveness of the test, designated as working Condition
3. The rated rotational speed is maintained at 1,600 r/min
throughout the entirety of the process in working Condition 3.
A total of five cycles of testing are conducted for each of the four
control methods under the three working conditions, and the test
results are presented in Table 2.

Table 2 illustrates that the TSK-RBF-PID control method
exhibits the lowest control error among the four methods under
working Condition 1, with a value of 3.7%. Additionally, its
overshoot is the lowest among the methods, at 5.9%. This
represents a notable decrease in overshoot compared to the other
methods. In Condition 2, the TSK-RBF-PID control method also
demonstrates superior performance, with the lowest control error of
3.9% and the lowest overshoot of 5.9%. In accordance with
Condition 3, the TSK-RBF-PID control method continues to
demonstrate optimal performance, with a control error of 5.9%
and an overshoot of 6.6% representing the lowest values observed. In
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conclusion, following numerous cycles of rolling bearing production
tests, it has been demonstrated that the TSK-RBF-PID control
method exhibits clear advantages in performance compared to
other methods under these two operating conditions.
Furthermore, it is more suitable for sliding mode control of
FPMSM speed control systems at this stage.

5 Conclusion

SMC is frequently utilized in the study of SCSs for FPMSM in
order to enhance the system’s control performance. However,
due to the nonlinearity and complexity of the SCS of FPMSM, the
conventional SMC method may suffer from performance
degradation in some cases. In light of the aforementioned
considerations, the study employs Clark and Pike
transformations to construct a mathematical model of
FPMSM. Furthermore, the parameter parameterization of PID
control is optimized through the integration of a RBF neural
network and TSK fuzzy neural network. The experimental results
demonstrated that the TSK-RBF control algorithm exhibits the
greatest slope of motor speed increase and the fastest time to
reach the target speed, with a rate of up to 90% for expected
parameter optimization. Furthermore, the overshooting amount
of the TSK-RBF controller in a small inertia working condition
was only 3%, with a tuning time of 0.02 s. The TSK-RBF-PID
control method exhibited minimal speed fluctuations in the
presence of load torque, with a maximum speed drop of only
1% and the fastest recovery time of 0.02 s. Comparing with the
same type of control methods, it was found that the TSK-RBF-
PID controller had the lowest control error of 3.7%, the lowest
overshooting amount of 5.9%. In conclusion, the TSK-RBF-PID
control method not only enhances the adaptive capability of the
control system, but also ensures high accuracy and fast response
in a variable industrial environment. In addition, there are still
some limitations in studying the proposed method, such as the
effect of the added parameter tuning in the TSK fuzzy neural
network on the real-time performance, which may affect the real-
time performance of the controller. Future research could focus
on optimizing the network structure and learning algorithm to

reduce the required parameter adjustments and improve the real-
time performance and robustness of the control algorithm.
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