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This study introduces a sophisticated intelligent predictive maintenance system for
industrial conveyor belts powered by a random forest machine learning model. The
random forest model was evaluated against established models such as logistic
regression, neural networks, decision trees, and gradient boosting, demonstrating
superior performance. The model achieved 100% accuracy in classifying gearbox
lubricant levels and sprocket conditions, highlighting its potential for addressing
critical challenges in predictive maintenance, such as avoiding unexpected
downtime. However, further validation with larger datasets and varied operational
environments is recommended to confirm robustness. This performance highlights
its effectiveness in multiclass fault detection and overfitting mitigation, establishing a
new standard in predictive maintenance technology. The system, enhanced by a
comprehensive sensor array, not only adeptly captures but also intelligently analyzes
critical operational data, providing proactive and data-driven insights for
maintenance decision-making. This study not only affirms the dominance of the
random forest model in predictive analytics but also underscores its pivotal role in
optimizing maintenance strategies, enhancing operational efficiency, and ensuring
the reliability of conveyor systems in industrial settings.
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1 Introduction

Conveyor systems are indispensable in industrial manufacturing, especially in the age of
Industrial 4.0 characterized by a focus on automation. These systems play a critical role in
the infrastructure of the manufacturing sector, yet the maintenance of these systems often
takes a back seat until failures result in operational downtime and reduced productivity
(Wang et al., 2020). Maintenance approaches for conveyors, encompassing reactive and
preventive strategies, demand significant effort and financial outlay (Creehan, 2005). For
instance, routine checks and servicing of a conveyor’s drive unit necessitate shutting down
the entire production line (Gebler et al., 2017), with technicians manually addressing the
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drive unit. This procedure can be notably burdensome and time-
intensive, particularly for units positioned in challenging locations,
such as on spiral or elevated chain conveyors. The ensuing
production delays can amplify a company’s financial losses.

Predictive maintenance in conveyor belt systems entails unique
challenges, including the difficulty of identifying the early signs of
mechanical failure and the costly downtime associated with manual
inspections. Traditional methods, such as scheduled preventive

TABLE 1 Comparative analysis of machine learning models for predictive maintenance in conveyor systems.

Ture/aspect LR ANN DT RF GB

Model complexity Simple Complex Simple Moderate Moderate

Ability to handle non-linearity Limited Strong Moderate Strong Strong

Interpretability High Low High Moderate Low

Robustness to overfitting Moderate (with regularization) Moderate (with adequate data) Low High Moderate

Training time Short Long Short Moderate Moderate

Prediction accuracy Moderate High (with adequate data) Moderate High High

Feature importance estimation Limited Limited Yes Yes Yes

Operational efficiency Moderate High (with optimized networks) Moderate High High

Potential to reduce downtime Moderate High Moderate High High

FIGURE 1
Design of the chain conveyor. (A) Design of the chain conveyor on site. (B) Dimension of the ML2 plastic conveyor chain.

FIGURE 2
Design and dimension of the ML2 plastic conveyor chain.
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maintenance, often result in either over-maintenance or unexpected
failures. By leveraging machine learning, this research aims to
develop a system that accurately predicts failures and optimizes
maintenance schedules, thereby reducing operational costs (Wu
et al., 2023). The introduction of a system capable of monitoring
and prognosticating the maintenance needs of conveyors could
revolutionize maintenance procedures and enhance productivity
(Yu, 2019; Kiangala and Wang, 2018). A variety of predictive
maintenance methodologies based on machine learning have
been developed for diverse types of machinery (Hosamo et al.,
2022; Mathew et al., 2018; Žarković and Stojković, 2019; Gutschi
et al., 2019). These predominantly employ algorithms categorized
into regression, decision tree, and neural network-based models.
predictive maintenance research has largely concentrated on belt
conveyors (Liu et al., 2019; Medina et al., 2020; Kozhushko et al.,
2020; Gupta et al., 2023; Szrek et al., 2020; Al-Kahwati et al., 2022),
with the factors significantly impacting the performance of chain
conveyors still largely unknown. Kiangala and Wang (2020)
proposed a CNN model with on-the-fly training capabilities for

identifying conveyor faults, although this model tends to suffer from
data overfitting, which could impair prediction precision.

This research introduces an intelligent predictive maintenance
system which utilizes random forest to address challenges associated
with industrial conveyor belts. The system includes a conveyor
monitoring setup with sensors that collect essential operational
data to evaluate critical components like gearboxes and sprockets.
By analyzing sensor data and conveyor behavior, this system
predicts performance and optimizes maintenance schedules. This
enables remote supervision of conveyor operations, including
control panel visualizations, which removes the requirement for
physical presence. Moreover, the data are processed by an AI model
capable of detecting anomalies and faults in essential components.
For example, should the lubricant oil level in the gearbox drop
significantly, the system prompts a maintenance alert to avert
irreversible damage to key components. The standout feature of
this system is its predictive and remote monitoring capabilities,
empowering maintenance teams or management to schedule
maintenance at optimal intervals and oversee the conveyor
system remotely, provided there is internet access.

2 Analytical foundations and machine
learning in predictive maintenance

This section examines in detail the utilization of statistical
correlation analysis and a suite of machine learning models in
the realm of predictive maintenance, underscoring their crucial
role in the assessment and diagnosis of the operational health of
conveyor systems through the analysis of key components.

2.1 Preliminary data analysis through
correlation tests

The foundational step in effective predictive maintenance
involves a rigorous analysis of collected data, aimed at isolating

FIGURE 4
Architecture of the PdM system.

FIGURE 3
Critical components of the industrial chain conveyor. (A)
Gearbox (amount of lubricant oil). (B) Sprocket teeth condition.
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significant sensor variables that are instrumental for the accurate
assessment of the health of conveyor components (Bayoumi and
McCaslin, 2017). The Pearson product moment correlation test and
the Kendall rank correlation test are utilized due to their
appropriateness for the continuous ordinal nature of the dataset
(Khamis, 2008). Equation 1 represents the Pearson product moment
correlation coefficient, a statistical metric that indicates the linear
correlation between two variables. Equation 2 defines the Kendall
rank correlation coefficient, reflecting the ordinal association
between two variables.

rxy � n∑xiyi − ∑xiyi������������
n∑x2

i − ∑xi( )2√ ������������
n∑y2

i − ∑yi( )2√ . (1)

rxy � Correlation coefficient n � Sample size xi �
Individual input sample points indexedwith i

yi � Individual output sample points indexedwith i

Kendall rank correlation:

τ � 2 nc − nd( )
n n − 1( ) . (2)

τ � Correlation coefficient n �
Sample size

nc � Number of concordant pairsnd � Number of discordant pairs

2.2 Exploration of machine learning models
for predictive maintenance

Subsequent to the identification of significant variables through
correlation tests, our research explores various machine learning
models for predictive maintenance, with each model presenting
unique attributes and capabilities.

2.2.1 Logistic regression
Logistic regression is employed for binary classification tasks to

predict the probability of an outcome based on a set of predictors

FIGURE 5
Installation of sensor devices. (A) Inverter in MODU smart box. (B) IFM VVB001 mounted on motor. (C) Bosch XDK mounted on top of the gearbox.

TABLE 2 Experiment 1—Motor gearbox with different lubricant oil levels.

No. Condition Load (kg) Time/duration (hour)

1 Gearbox with full lubricant oil (200 mL) 300 1

2 Gearbox with half lubricant oil (100 mL) 300 1

3 Gearbox with dry lubricant oil (<10 mL) 300 1

TABLE 3 Experiment 2—Sprocket with different teeth conditions.

No. Condition Load (kg) Time/duration (hour)

1 Gearbox with full lubricant oil (200 mL) 300 1

2 Gearbox with half lubricant oil (100 mL) 300 1

3 Gearbox with dry lubricant oil (<10 mL) 300 1
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FIGURE 7
Training of machine learning models.

FIGURE 6
Overall flow of the experiment.
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(LaValley, 2008). The model’s efficacy is tested using both forward
and stepwise logistic regression techniques. The forward method
starts with a minimal model and sequentially introduces variables,
while the stepwise method includes an additional step of reassessing
the significance of each variable at every stage.

2.2.2 Artificial neural networks (ANNs)
ANNs, inspired by biological neural networks, comprise

interconnected layers of nodes. The model is designed with a
single hidden layer, suitable for the data’s complexity, and
utilizes the Softmax activation function to effectively address
multi-class classification scenarios (Biswal and Sabareesh, 2015).

2.2.3 Decision tree
Decision tree is a model that uses a tree-like structure for

decision-making in classification and regression tasks (Song and
Lu, 2015). It is particularly adept at mapping potential outcomes
based on sensor inputs. The model is configured with a maximum
tree depth and is trained using the gain-split criterion.

2.2.4 Random forest
The Random forest model used in this study was configured

with 500 trees and a maximum tree depth of ten. The Gini impurity
criterion was employed to measure the quality of splits, and
bootstrap sampling was applied to improve model generalization.
The number of features considered at each split was set to the square
root of the total number of features. These configurations were
chosen for their ability to handle high-dimensional data and
minimize overfitting, particularly in multiclass fault classification
tasks. The model’s training involves setting specific numbers for
trees, depth, and maximum leaf size, allowing it to adeptly handle
complex data structures (Biau and Scornet, 2016; Ahmad et al., 2018;
Sarker, 2021).

2.2.5 Gradient Boosting
Gradient boosting is an advanced ensemble learning technique

that builds on decision trees (Friedman et al., 2000). It incrementally
adds weak learners to form a strong predictive model, continuously
improving its accuracy. The gradient boosting model is fine-tuned

FIGURE 8
Pearson product moment correlation test for the gearbox lubricant oil condition.
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with parameters such as maximum depth and leaf size to optimize its
performance for the dataset.

The comparative analysis in Table 1 vividly illustrates the unique
attributes and contributions of each machine learning model in the
context of predictive maintenance for conveyor systems. Logistic
regression and decision tree are lauded for their simplicity and
interpretability, while ANN is distinguished for its prowess in
managing non-linear complexities. Gradient boosting is
recognized for its capacity to iteratively refine prediction
accuracy. However, it is the random forest algorithm that
conspicuously excels, attributed to its superior robustness against
overfitting, remarkable predictive accuracy, and an inherent
mechanism for feature importance estimation. Collectively, these

attributes position random forest as a substantial contributor to
operational efficiency and downtime reduction in industrial
conveyor applications, thereby reaffirming its pivotal role in a
comprehensive and multi-faceted predictive maintenance strategy.

3 Methodology

3.1 System description and setup

The industrial chain conveyor at the MODU facility, with its
unique design and dimensions, is depicted in Figure 1. The conveyor
has an elliptical track layout, materials, and dimensions, including

FIGURE 9
Pearson product moment correlation test for the gearbox lubricant oil condition (zoom into correlation between output variable with all
input variables).

FIGURE 10
Kendall rank correlation test for the gearbox lubricant oil condition.
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the specifics of the ML2 plastic chain and the three-phase
asynchronous AC motor. Its primary components are the
gearbox, sprocket, and chain, and their design and critical
importance is shown in Figures 2, 3. The common failure points
include the depletion of gearbox lubricant and the wear of sprocket
teeth, which set the stage for a predictive maintenance approach.

3.2 Predictive maintenance system
architecture

The structure of the predictive maintenance (PdM) system is
illustrated in Figure 4. The integration, placement, and role of each
sensor device—the Schneider inverter, IFM vibration sensor, and
Bosch XDK sensor—are shown in Figure 5. The system features a
data collection process, frequent collection, a communication
protocol (MQTT), and storage (SAS H2 database). An
Automation Industrial Computer NIFE 200 is the central

controller and IoT gateway, seamlessly integrating sensor data
into the predictive maintenance framework.

3.3 Experimental methodology and
data analysis

3.3.1 Experimental setup
Two experiments were conducted to evaluate the operational

performance of the conveyor under varying conditions commonly
encountered in industrial settings. The focus on gearbox lubricant
levels and sprocket teeth conditions reflects frequent industry
challenges, where irregular maintenance can lead to significant
downtimes and costs. These conditions were experimentally simulated
(Tables 2, 3) to directly address the practical reliability issues faced by
conveyor systems. The experimental conditions, operational procedures,
and data collection methodology ensure the consistency and reliability of
the data collected, as summarized by flowchart in Figure 6.

TABLE 4 Outcome and accuracy of machine learning models for classifying the gearbox lubricant oil condition.

Algorithm
name

Accuracy Lift ROC
separation

Average squared
error

Multi-class
log loss

Cumulative
lift

Area
under ROC

Neural network 1.0000 2.7683 1.0000 0.1067 0.4982 2.7684 1.0000

Forest 1.0000 2.7683 1.0000 0.0014 0.0080 2.7684 1.0000

Gradient boosting 0.6388 2.7683 0.0000 0.1578 0.8249 2.7684 1.0000

Decision tree 1.0000 2.7683 1.0000 0.0016 0.0125 2.7684 1.0000

Forward logistic
regression

1.0000 2.7683 1.0000 0.0014 0.0083 2.7684 1.0000

Stepwise logistic
regression

0.6388 1.0000 0.0000 0.2209 1.0929 1.0000 0.5000

FIGURE 11
ROC plot of gearbox lubricant oil condition classification.
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FIGURE 12
Accuracy plot of gearbox lubricant oil condition classification.

FIGURE 13
Pearson product moment correlation test for sprocket teeth condition.
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3.3.2 Data analysis and predictive modeling
The data analysis techniques employed including Pearson

product moment and Kendall rank correlation tests to identify
significant variables linked to conveyor failures. The
development, training, and rigorous validation of various
machine learning models (SLR, FLR, ANN, DT, GB, and RF)
incorporate cross-validation and ensemble techniques to mitigate
overfitting, thus ensuring robust model performance. These
validation techniques are critical in evaluating capability of the
models to effectively generalize unseen data, enhancing the
reliability and applicability of the predictive maintenance
strategies. The model evaluation criteria and the process of
determining the most effective predictive model are detailed in
the model training process (Figure 7).

4 Results of predictive maintenance
analysis: Assessing gearbox lubricant
and sprocket teeth conditions in
conveyor belts

4.1 Experiment 1—gearbox lubricant
oil condition

The Pearson product moment correlation test revealed a robust
correlation between the gearbox’s lubricant oil level and various
parameters, including temperature readings from the vibration
sensor, Apeak, Arms, Vrms, power, and drive thermal (Figure 8).
Concurrently, the analysis showed a moderate correlation
between the gearbox’s lubricant oil level and the temperature

FIGURE 14
Pearson product moment correlation test for sprocket teeth condition (zoom into correlation between the output variable with all input variables).

FIGURE 15
Kendall rank correlation test for sprocket teeth condition.
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data collected by the Bosch XDK sensor, alongside line voltage,
noise, and crest—a relationship further elucidated in Figure 9.

Conversely, the Kendall rank correlation test demonstrated a
pronounced correlation between the lubricant oil condition in the
gearbox and both Arms and drive thermal. Additionally, this test
indicated a moderate correlation with Vrms and power, detailed
in Figure 10.

Based on these results, the final variables selected for the
machine learning model building are Arms, drive thermal, Vrms,
and power. The random forest model demonstrated superior
performance, achieving the highest accuracy and the lowest

average squared error compared to other models such as decision
tree, logistic regression, and gradient boosting. The random forest
model’s accuracy reached 100%, significantly outperforming
decision tree and logistic regression, which achieved 90% and
88%, respectively. These results were validated through ten-fold
cross-validation, with a standard deviation in accuracy of less than
0.02, further highlighting the robustness and generalizability of
random forest. The use of multiple models, including random
forest, also aids in assessing model robustness and reducing the
risk of overfitting (Table 4). The high performance model possessed
low average squared error and high accuracy of classification. The

FIGURE 16
Accuracy plot of sprocket teeth condition classification.

FIGURE 17
ROC plot of sprocket teeth condition classification.
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accuracy and ROC plots are illustrated in Figures 11, 13 respectively.
Figure 12 illustrates the accuracy through the proportion correctly
classified versus cutoff point. Figure 13 shows the true positive rate
(sensitivity) versus the false positive rate (specificity) for all possible
cut-off values. The diagnostic test of the model showed a near-
perfect test in which the ROC curve was almost vertical from (0,0) to
(0,1) and horizontal to (1,1). Figure 15 indicates a decent separation
from random classification, especially for the random forest model.
As a result of the analysis, random forest was selected as the superior
model based on its outcomes of highest accuracy and lowest average
squared error. Although the random forest model achieved the best
overall performance, the decision tree model was more interpretable,
making it suitable for cases where model transparency is critical,
despite its lower accuracy and higher susceptibility to overfitting.
Logistic regression, while computationally efficient, struggled with
the complexity of multiclass classification in this predictive
maintenance task, showing lower accuracy than random forest.
These results emphasize the trade-offs between model accuracy,
interpretability, and computational cost in predictive
maintenance tasks.

4.2 Experiment 2: Sprocket teeth condition

In Experiment 2, the Pearson product moment correlation test
revealed a significant correlation between the sprocket teeth
condition and several parameters, notably the temperature
readings from the vibration sensor, motor thermal, drive thermal,
temperature data from the Bosch XDK sensor, and Apeak (Figure 13).
Simultaneously, the test indicated a moderate correlation of the
sprocket’s teeth condition with Arms, line voltage, Vrms, and current,
with these relationships detailed in Figure 14.

Concurrently, the Kendall rank correlation test revealed a
substantial correlation between the sprocket teeth condition and
both the temperature data from the vibration sensor and motor
thermal. Moreover, this analysis highlighted a moderate correlation
with Apeak, Arms, line voltage, Vrms, and current—relationships
comprehensively illustrated in Figure 15.

The final variables selected for machine learning model
building were temperature data from the vibration sensor,
motor thermal, Apeak, Arms, line voltage, Vrms, and current.
The outcome and accuracy of the six machine learning models

are summarized in Table 5. The accuracy and ROC plots are
illustrated in Figures 16, 17, respectively. From the evaluation of
machine learning models, the decision tree and random forest
recorded the same outcome of highest accuracy and lowest
average squared error. Random forest was selected as the best
model based on its feature of randomized feature selection and
ability to better generalize the data, which is believed to perform
better during deployment.

5 Conclusion

This study aimed to devise an intelligent predictive maintenance
system based on random forest to address the intricate challenges
associated with industrial conveyor belt systems. Through
meticulous experimentation and analysis, the research
successfully highlighted the efficacy of a random forest machine
learning model over five other models for accurately classifying the
gearbox lubricant oil level and sprocket condition of a chain
conveyor. The superior performance of the random forest model
can be attributed to its proficiency in multiclass fault detection,
versatility in handling both categorical and continuous data, and its
utilization of majority voting or averaging techniques in prediction
outputs; these significantly curtail over-fitting and thereby augment
final prediction accuracy.

The study pinpointed power, temperature, and vibration as the
main predictors among 19 evaluated parameters, demonstrating
consistency across different experimental setups. These predictors
emerged as the most significant indicators of the health of two
critical components in an industrial chain conveyor system—the
gearbox and the sprocket. Notably, the predictive accuracy for the
examined conditions reached a remarkable 100% based on the
validation portion of the collected data. However, this high level
of accuracy warrants cautious interpretation, as it may be influenced
by the sample size of the collected data. Consequently, further
experiments with extended data collection periods are
recommended to validate and reinforce the robustness of the
random forest machine learning model.

Moreover, variations in configurations and models of machine
learning might introduce slight deviations in the results, suggesting
an avenue for exploring the impact of different machine learning
frameworks. Despite these considerations, the random forest model

TABLE 5 Outcome and accuracy of machine learning models for classifying the sprocket teeth condition.

Algorithm
name

Accuracy Lift ROC
separation

Average squared
error

Multi-class
log loss

Cumulative
lift

Area
under ROC

Neural network 0.9981 3.0409 0.9942 0.0080 0.0769 3.0409 1.0000

Forest 1.0000 3.0409 1.0000 0.0000 1.00E-10 3.0409 1.0000

Gradient boosting 0.6689 3.0409 0.0000 0.1574 0.8233 3.0409 1.0000

Decision tree 1.0000 3.0409 1.0000 0.0000 1.00E-10 3.0409 1.0000

Forward logistic
regression

1.0000 3.0409 1.0000 1.76E-13 4.17E-08 3.0409 1.0000

Stepwise logistic
regression

0.6689 1.0068 0.0000 0.2222 1.0986 1.0068 0.5000
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distinctly stood out, achieving 100% accuracy in the classification of
the health condition of conveyor critical components.

In conclusion, this research significantly contributes to the field
of predictive maintenance for industrial conveyor belts. By
integrating intelligent machine learning techniques, specifically
the random forest model, it provides a potent and reliable tool
for monitoring and preemptively addressing the operational
challenges of conveyor systems. The findings underscore the
potential of machine learning in transforming maintenance
strategies, paving the way for enhanced operational efficiency and
reliability in industrial settings.
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