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In addressing the steering stability issues of four-wheel-drive electric vehicles on
surfaces such as wet, slippery, frozen, and soft terrains, a novel control method
based on particle swarm optimization for neural networks is proposed in this
study. The approach integrates the advantages of Proportional-Integral-
Derivative control, particle swarm optimization, and neural networks. By
constructing a neural network model with input, hidden, and output layers,
the study introduces particle swarm optimization algorithm for weight and
structure optimization. Fuzzy logic and slip control theory are integrated into
the steering stability control. The results demonstrated that, under wet and
slippery road conditions, the model exhibited a system response time of
15 ms with a steering prediction accuracy of up to 92%. On frozen road
surfaces, the model showed a system response time of 18 ms, with a steering
prediction accuracy reaching 90%. Compared to other models, it significantly
demonstrated superior steering stability control. This suggests that the designed
model performs well in handling complex driving environments, indicating high
application potential in the field of electric vehicle steering stability control.
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1 Introduction

In the course of the modern automotive industry, due to the needs of environmental
protection and technological advancement, electric vehicles have become a crucial
component of cutting-edge technology. Simultaneously, for enhancing driving safety
and comfort, the four-wheel-drive electric vehicle system has garnered widespread
attention. This is because the four-wheel-drive system can provide better traction and
stability in various road conditions. However, the presence of challenging road surface
conditions necessitates the implementation of intelligent control for steering systems to
ensure the stability and maneuverability of vehicles (Guo et al., 2022; Najjari et al., 2022;
Venkitaraman and Kosuru, 2022). To meet these demands, intelligent control technology is
essential, and neural networks excel in handling nonlinear problems, serving as an effective
tool for complex system control. However, traditional neural networks may encounter
issues such as local optima and overfitting during design, limiting their application potential
in four-wheel-drive electric vehicle stability control systems (Powell et al., 2022; Qiu et al.,
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2022; Safayatullah et al., 2022). In recent years, the Particle Swarm
Optimization (PSO) algorithm has gained significant attention as a
global optimization strategy due to its simplicity, ease of
implementation, and rapid convergence to excellent solutions.
Combining the PSO with neural networks allows the
construction of an automatic controller that leverages the
nonlinear mapping capabilities of neural networks and achieves
globally optimal control effects (Cao et al., 2022; Shami et al., 2022;
Gheisari et al., 2023). Therefore, this study aims to design a PSO-
based neural network automatic controller specifically for the road
stability steering of four-wheel-drive electric vehicles. The research
is divided into four parts. The first part outlines the research
objectives. The second part designs the road stability steering
control model for four-wheel-drive electric vehicles. The third
part analyzes the experimental effects of the model. The fourth
part derives research conclusions.

2 Literature review

With the recent development of electric vehicles, research on the
stability aspects of electric vehicles has been steadily increasing. The
team led by Liu H applied a highly efficient algorithm based on the
Pontryagin’s minimum principle and multiple optimization
objectives to validate the practicality of the proposed algorithm.
Through hardware testing in circuits, it was determined that in
surfaces with reduced friction coefficients, this series of strategies
demonstrated significant advantages in improving vehicle handling
stability compared to the sole application of the Torque Vectoring
Control (TVC) solution, and it exhibited higher efficiency (Liu et al.,
2022). The approach introduced by the team led by Jeong Y
transformed the problem of path tracking into a controlled yaw
rate tracking problem. By employing an integrated control allocation
method and combining the results of vehicle simulation software
testing, the team empirically demonstrated the significant
performance of this strategy in enhancing path tracking efficiency
(Jeong and Yim, 2022). The team led by Jin X designed a nonlinear
robust controller method applicable to autonomous electric vehicles.
The proposed strategy aimed to address uncertainties in parameters,
inherent nonlinear issues in the system, and potential external
disturbances. The results showed that the novel controller
outperformed traditional linear quadratic regulation and robust
H-∞ state feedback control systems in terms of vehicle trajectory
tracking (Jin et al., 2023). The team led by Ti Y introduced an
innovative Internal Model Controller (IMC) with a fractional-order
filter. Completed by scholars such as Tan Yan and Zheng
Kangcheng, this study actively applied IMC theory and
fractional-order thinking. The researchers used a quantum
genetic algorithm to optimize time parameters and fractional-
order characteristics, thereby enhancing the vehicle’s path
tracking performance. Simulation experiment results indicated
that this new controller demonstrated significant robustness in
adjusting front and rear wheel steering angles to optimize path
tracking capability (Ti et al., 2022).

The application areas of algorithms continue to expand. The
Gad A G’s team comprehensively assessed various applications of
the PSO algorithm, including algorithmic methods, application
domains, unresolved issues, and future perspectives. They

conducted a detailed analysis of the real-world applications of the
PSO algorithm (Gad, 2022). The Pawan Y V RN team proposed two
new PSO models based on deep learning, utilizing Convolutional
Neural Networks (CNNs) and Long Short-Term Memory (LSTM)
networks to predict the inertial weights of particles, aiming to
enhance optimization performance. The results indicated that the
newly proposed models outperformed existing inertia-weight-based
PSO models in terms of performance (Pawan et al., 2022). Allugunti
V R employed deep learning techniques for skin disease
classification, specifically focusing on the diagnosis of melanoma.
The research team introduced a novel model that utilized deep
learning and non-parametric machine learning methods, such as
CNNs, for the identification and classification of melanomas.
Experimental results demonstrated that this deep learning-based
diagnostic approach outperformed existing state-of-the-art
technologies in diagnostic accuracy (Allugunti, 2022). Shuraiji A
L’s team compared the application of fuzzy logic control and
Proportional-Integral-Derivative (PID) controllers in brushless
permanent magnet DC motors. The research findings revealed
that motors controlled by fuzzy logic exhibited significantly
better characteristic responses compared to traditional PID
controllers. The study particularly emphasized that for nonlinear
systems, the adoption of fuzzy logic control methods was more
recommended (Shuraiji and Shneen, 2022).

Additionally, the Wei H’s team proposed a Direct Yaw moment
Control (DYC) strategy based on Deep Reinforcement Learning
(DRL), which constructs the DYC problem as a Markov decision
process and establishes a state set based on observation signals and
external yawmoments. On this basis, the deep deterministic strategy
gradient algorithm was used to ensure the stability of the algorithm
learning process. This method effectively improved the stability of
vehicle lateral steering (Wei et al., 2022). The Fan J’s team adopted
the Trust Region Policy Optimization (TRPO) method to select the
optimal frontier for robot tracking path planning, and determined
the optimality and shorter path length of the path planner. The
proposed method was validated through simulation and compared
with classical and state-of-the-art methods. The results indicated
that compared to traditional Deep Q-networks (DQN), the
algorithm designed in this study had a faster training speed (Fan
et al., 2023). Fan J et al. proposed a cloud computing-based
optimization driving method for parallel hybrid electric vehicles
to optimize fuel consumption and driving speed. The driving
optimization problem was transformed into a spatial domain and
appropriately discretized. The performance of this method was
studied through real scene simulation, and the results showed
that it can achieve real-time energy management of hybrid
vehicles (Fan et al., 2019). Fan J and Ou Y et al. described the
Markov characteristics of driver power demand and designed an
optimized energy management strategy for plug-in hybrid electric
vehicles based on the Markov decision process. This strategy could
combine the driver’s power demand to switch the deterministic state
of the power system, and solve the optimization problem through
iterative strategies (Fan et al., 2020).

In summary, in the field of electric vehicle stability research, the
current trend is towards designing efficient optimization algorithms
and controllers to achieve better vehicle handling stability. The
strategies are primarily focused on optimizing issues related to path
tracking and control of active front-wheel steering systems. In this

Frontiers in Mechanical Engineering frontiersin.org02

Li 10.3389/fmech.2024.1378175

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1378175


study, the combination of PSO algorithm and neural networks is
proposed to address stability issues encountered by four-wheel-drive
electric vehicles during steering, with the expectation of improving
their stability performance.

3 PSO neural network steering stability
automatic control model design

This paper proposes a Particle Swarm Optimization Neural
Network-based Proportional-Integral-Derivative (PSO-N-PID)
control method for vehicle steering, combining the nonlinear
mapping capability of neural networks with the simplicity and
efficiency of PID control. The method introduces the PSO
algorithm for the optimization of weights and structure,

demonstrating fast convergence and adaptability to global
optimization problems.

3.1 PSO neural network steering control
model design

In the context of electric vehicle travel, a reliable and stable
steering system is essential. For four-wheel independently driven
electric vehicles, independent wheel drive enhances steering stability
(Indu and Aswatha Kumar, 2023; Guan et al., 2024). A neural
network PIDmethod is designed, integrating the nonlinear mapping
capability of neural networks with the efficiency and simplicity of
PID control. The study incorporates the PSO algorithm to optimize
the neural network’s weights and structure. The advantages of this
design include fast convergence, practicality, and applicability to
global optimization problems. The model construction begins with
establishing a neural network comprising input, hidden, and output
layers. The input layer receives external input signals, representing
the vehicle’s steering state. The hidden layer processes input signals,
potentially containing multiple hidden layers and neurons per layer.
The output layer reflects the network’s response, with the output
used to adjust PID controller parameters. The vehicle steering model
is illustrated in Figure 1.

The activation function for the hidden layer is defined by
Formula 1.

f x( ) � ex − e−x

ex + e−x
(1)

FIGURE 1
Vehicle steering model.

FIGURE 2
Weight adjustment process.
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The activation function for the output layer is defined by
Formula 2.

g x( ) � ex

ex + e−x
(2)

Gradient descent is employed to adjust the weights in the neural
network. This method involves computing the local gradient of the
given function and gradually optimizing the weights along this
gradient direction, aiming to minimize network error. The weight
adjustment formula is represented by Formula 3.

Δwmi n( ) � −η ∂e n( )
∂wmi n( ) (3)

In Formula 3, ∂e(n)∂w denotes the partial derivative of the error with
respect to the weights, and η represents the learning rate. The
iterative error signal is defined by Formula 4.

ej n( ) � dj n( ) + Yj n( ) (4)

Formula 4 represents the network’s expected output, where
dj(n) signifies the network’s anticipated output, and Yj(n)
represents the actual output. When the working signal propagates
forward, the weighted sum of the input to the hidden layer neurons
is given by Formula 5.

ui
I n( ) � ∑3

m�1
ωmi n( )vMm n( ) (5)

In Formula 5, I represents the hidden layer vector field, ωmi

denotes the weight values, M is the vector length of the input layer,
and vmM(n) represents the local gradient. Error backpropagation is
described by Formula 6.

Δωij n( ) � −η ∂e n( )
∂ωij n( ) (6)

Formula 6 introduces ωij for output layer weights and
∂e(n)
∂ωij(n) for

the gradient of the error with respect to the weights. The study
addresses the slow convergence of neural networks by improving
them, incorporating parameters to adjust the weights. The
algorithmic learning formula is presented in Formula 7.

Δw n( ) � −η 1 − β( ) ∂e n( )
∂wmi n( ) + βΔw n − 1( ) (7)

In Formula 7, βΔw(n − 1) is the parameter added, where β is the
momentum factor, and Δw(n − 1) represents the change in weights
from the previous step. The addition of correction parameters
enhances the step size of weight updates when the direction of
weight update is consistent, accelerating convergence. Conversely,
when the direction is inconsistent, indicating the presence of a local
minimum, the correction parameters reduce the step size,
preventing overshooting of the minimum. The process is detailed
in Formula 8.

FIGURE 3
Model linkage structure.

FIGURE 4
Model control architecture.

FIGURE 5
Stability control structure.
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η n + 1( ) �
1
a
η′ n( ), e n + 1( )< e n( )

aη n( ), e n + 1( )> e n( )

⎧⎪⎨⎪⎩ , 0.5< a< 1.0 (8)

Formula 8 introduces a as the learning rate reduction factor and
μ′ as the learning rate increase factor. The next weight update is
determined by Formula 9.

Δw n + 1( ) � −η′ n + 1( ) 1 − β( ) ∂e n( )
∂wmi n( ) + βΔw n( ) (9)

Formula 9 incorporates η′(n + 1), representing the adjusted
learning rate. However, this optimization method can sometimes

result in slow network learning or convergence to local minima. To
address this, the PSO algorithm is introduced to optimize weight
adjustments, enhancing the network’s global search capability for
faster convergence, as illustrated in Figure 2.

The iterative rules for particle individual velocities are given by
Formula 10.

vid � ωvid + c1 · rand1d · pBesti − xid( ) + c2 · rand2d · nBesti − xid( )
(10)

In Formula 10, ω represents the inertia weight. c1 and c2 are
acceleration factors. rand1d 1 and rand2d are constant weights.

TABLE 1 Fuzzy logic.

Changes in stimulus
volume

Error variation

Negatively
large

Negative
moderate

Negative
small

Zero Positive
small

Median
equality

Positive
large

Negatively large NB NB NB NM NM NM NS

Negative Moderate NB NB NM NM NM NS NS

Negative small NB NM NM NS Z PS PS

Zero NM NS NS Z PS PS PM

Positive small NS NS Z PS PS PS PM

Median equality PS PM PM PM PM PB PB

Positive large PS PM PM PM PB PB PB

TABLE 2 Experimental setup.

Parameter description Unit Parameter values

Test vehicle parameters Body mass kg 1752

Yaw moment of inertia kg·m2 2059

Distance from center of mass to front axle m 1.2

Distance from center of mass to rear axle m 1.5

Track width m 1.6

Centroid height m 0.55

Front wheel lateral stiffness kN/rad 37

Lateral stiffness of rear wheels kN/rad 27

Wheel moment of inertia kg·m2 0.65

Rolling radius m 0.32

Category Road surface type Simulate software and hardware

Experimental environment Turning to testing scenarios Sine angle and snake angle CarSim, MATLAB/Simulink

Special road conditions Wet, frozen, soft, rough CarSim, MATLAB/Simulink

Experimental configuration Assembly Describe

Computer hardware High performance computers with sufficient processor speed and memory to
support high load data processing

Data acquisition system High precision sensors and recording equipment for real-time collection of
vehicle operation data

Experimental process Initialize Settings Run Simulation Data Analysis Iterative Optimization
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nBest is the particle’s best position. pBesti B is the individual’s best
position. xid represents the particle’s position. The position update
rule is detailed in Formula 11.

xid � xid + vid (11)
For the engineering implementation of the control system, the

system initially collects various data information about the current
car state, such as changes in slip angle and slip ratio. Subsequently,
the system utilizes this data for dynamic prediction of vehicle
behavior, generating a series of control signals. These signals,
through the specific actions of the vehicle’s internal execution
devices, adjust the vehicle’s yaw rate and wheel speed to achieve
precise control of vehicle stability. The study comprehensively
evaluates the performance of this control model by contrasting it
with the expected vehicle behavior. The interconnected structure of
the model is depicted in Figure 3.

In the development process, continuous calibration and
optimization of the automated control module are crucial.
Considering the inherent dynamic properties of vehicles and
the variability of driving scenarios, developers should
incorporate a wide range of unforeseen factors to enhance the
stability and reliability of the system. In addition, rapid
responsiveness of the system is indispensable to ensure prompt
adjustments in response to environmental changes and provide
appropriate operational signals. The control model architecture is
illustrated in Figure 4.

The neural network PID control scheme optimized based on the
PSO algorithm involves the following steps in the tuning process:

Neural Network Deployment (selecting a reasonable number of
neurons and a hierarchical structure to ensure sufficient complexity
for simulating control behavior); Particle Swarm Setup (defining the
total number of particles, initial positions and velocities, and
determining key parameters such as weights and acceleration
constants); Data Collection (gathering real vehicle or simulated
driving data, covering dynamic indicators such as angular
velocity, slip ratio, etc.); Network Training (training the neural
network based on collected data, implementing forward
prediction and backward error correction, and comprehensively
optimizing weights and network architecture using the particle
swarm strategy); Continuous Optimization Cycle (repeating the
training steps until the system output is stable and accurate or
reaches a maximum number of iterations); Dynamic Real-time
Calibration (implementing the well-trained network into the
vehicle control unit and dynamically fine-tuning PID parameters
based on real-time data, completing the closed-loop
control process).

In the selection of model domain parameters, the neural
network includes an input layer, a hidden layer, and an output
layer. The input vehicle state includes state data such as side slip
angle change rate, sliding ratio, yaw rate, longitudinal speed, and
front wheel angle. The hidden layer adopts a structure of three
hidden layers, each containing 20 neurons. The output layer is
mainly used to generate signals for adjusting the parameters of the
PID controller.

In this study, the number of super-particles is determined to be
40, and the inertia value is usually between 0.4 and 0.9, with an

FIGURE 6
Sine angle working condition effect.
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empirical value of 0.7. The acceleration factor is set to two according
to the usual situation.

The standard for selecting PID control parameters is to adjust
the proportional coefficient (Kp), integral coefficient (Ki), and
differential coefficient (Kd) through experiments, in order to
find the optimal balance point between stability and
response speed.

3.2 Fuzzy control stabilization
controller design

The steering stability controller contributes to ensuring vehicle
stability during external disturbances. The key to designing the
steering stability controller is to control the longitudinal yaw rate
and lateral sliding phenomenon when the lateral angle of the car is
small (Bartfai et al., 2024). To meet this requirement, a
combination of artificial neural networks and particle swarm
evolution is employed, incorporating fuzzy control methods.
The neural network-based PID control is suitable for
controlling the lateral rotational torque, while fuzzy control
rules can manage slip ratio. The stability control structure is
depicted in Figure 5.

Assuming the car is regarded as a two-degree-of-freedom
dynamic system model, this model can simplify the dynamic
behavior of a real car while maintaining accuracy in analysis. The
simplified state equation is represented by Formula 12.

_β
_γ

[ ] � A
β
γ

[ ] + Bδf (12)

In Formula 12, β represents the lateral deviation angle of the
center of mass, and γ represents the yaw angular velocity. The ideal
yaw angular velocity is then given by Formula 13.

γdes �
vx
R

� vx
L + k

δf (13)

In Formula 13, vx represents the longitudinal velocity, δf
represents the front wheel steering angle, L represents the
wheelbase, and k represents a constant coefficient. The goal of the
model is to find an ideal longitudinal yaw angular velocity.
Subsequently, corresponding control rules are set to ensure that the
real yaw angle quickly catches up with this ideal value. During the
actual design process, it is necessary to calculate the ideal yaw angular
velocity while considering the influence of real road conditions on the
car’s yaw angular velocity. Especially in situations with insufficient
road grip, forcibly tracking the ideal throttle yaw angular velocity may
lead to vehicle side slip. Therefore, dynamic correction of the ideal
longitudinal yaw angular velocity is required based on the road grip
conditions. The relationship between the ideal yaw angular velocity,
vehicle speed, and front wheel is described by Formula 14.

γd �
γdes, γdes

∣∣∣∣ ∣∣∣∣≤ 0.85 μg
vx

0.85
μg

vx
sgn γdes( ), γdes > 0.85

μg

vx

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (14)

FIGURE 7
Effect of snake shaped corner working condition.
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In the development of a neural network controller, the use of
PSO is explored to enhance the weight setting in the neural
network. This aims to accelerate the learning speed of the
network and avoid obtaining only locally optimal results. The
initial steps involve setting the neural network weights and
determining the total amount of weight and, acceleration
coefficient, inertia constraint, and the maximum number of
weight adjustment cycles. Subsequently, the calculation of
weight efficiency is performed, wherein the input error signal
is treated as the optimization goal, specifically the deviation of the
vehicle’s yaw velocity. Subsequently, the particle swarm
characteristics are updated, adjusting the rate of weight
changes and positions to find the optimal strategy. The
termination conditions are then checked. If the change in the
optimization value of the weights is minimal, it is considered that
the best solution has been obtained. Subsequently, the ideal
parameters for the PID controller are derived using the
determined optimal weights and a specific formula, involving
proportional, integral, and derivative control elements to
determine the optimal distribution of lateral dynamics. The
fitness of neural network weight adaptation uses the yaw
angular velocity error as the target function, and the total
error is represented by Formula 15.

gvi �
1
2
∑3
j�1
e2j n( ) (15)

In Formula 15, ej represents the yaw angular velocity error
corresponding to the input. To prevent the car from slipping, precise
control of slip ratio is essential. The application of fuzzy logic control
to regulate slip ratio is studied, as this technique demonstrates
excellent control effectiveness when dealing with nonlinear
systems. In designing the fuzzy logic control device, the initial
step involves obtaining the difference between the slip ratio
target and the actual value. This difference and its rate of change
become factors for the controller input, and the output becomes the
adjustment torque for the four-wheel slip ratio. By describing these
factors using fuzzy sets such as narrow, medium, wide, positive, and
negative, the continuous composite control task is simplified into a
discrete and intuitive task. The slip ratio adjustment torque derived
from the fuzzy control unit must fall within the torque output range
of the motor. To achieve this, seven fuzzy sets are defined. Based on
knowledge of the variation in the car’s slip ratio, a series of control
rules are established to adapt the relationship between input and
output more appropriately. The fuzzy logic is detailed in Table 1.

In addition to integrating neural networks and fuzzy logic
controllers, the management of vehicle roll torque has also begun
to emphasize the use of sliding mode control strategies. In the design
process of sliding mode controller, the sliding surface is the
expression of the actual and expected difference in roll angle
speed. The focus of controller design is to make the sliding
surface approach infinitesimal, with the goal of continuously
fine-tuning and improving parameters.

FIGURE 8
Change in slip rate.
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4 Evaluation of the performance of
PSO-N-PID stable steering automatic
control model

In the study of testing the effectiveness of the PSO-N-PID stable
steering automatic control model, various specialized scenarios were
tested, including sinusoidal and serpentine steering angles.
Subsequently, the effects under different external environmental
disturbances were analyzed.

4.1 Analysis of effects under different
steering scenarios

In this entire vehicle simulation experiment, the study
involved configuring the parameters of the entire vehicle body
to establish a foundation for the overall vehicle performance,
ensuring the accuracy of the experimental results. The specific
experimental settings for the entire vehicle parameters are
presented in Table 2.

Table 2 illustrates that the adopted entire vehicle model had a
mass of 1752 kg. The yaw moment of inertia of the vehicle model
was adjusted to 2059 kgm2, facilitating the simulation of the
dynamic response of actual vehicles. The distances of the
vehicle’s center of gravity relative to the front and rear axles

were 1.2 m and 1.5 m, respectively, with a track width set at
1.6 m. The effects under sinusoidal steering conditions are shown
in Figure 6.

As shown in Figure 6, the yaw rate obtained by Sliding mode
automatic control and PSO-N-PID control is consistent with the
Ideal yaw angle, but PSO-N-PID control has better and smoother
performance, and the vehicle speed is always maintained within the
range of 99.8-100 km per hour. In Figure 6A, the variation in the
positive maximum yaw angle for slidingmode control was extremely
abrupt, with data values ranging from 0.059 to 0.06° per second. In
Figure 6B, the PSO-N-PID model prevented system oscillations and
addressed the issue of traditional PID algorithms easily falling into
local optimal solutions. The maximum yaw angle values were
between 0.042–0.043° per second, representing favorable data. In
Figure 6C, the lateral displacement amplitude of the PSO-N-PID
model decreased by 0.032°, increasing the vehicle’s controllability by
47.2%. The effects under serpentine steering conditions are
illustrated in Figure 7.

As shown in Figure 7, the yaw rate controlled by Sliding mode
automatic control and PSO-N-PID is consistent with the Ideal yaw
angle. Overall, the fluctuation of the line in Sliding mode automatic
control is greater than that in PSO-N-PID, indicating a stronger
control capability of PSO-N-PID. Figure 7A shows a relatively
stable speed curve. Figure 7B exhibits pronounced oscillations
on the response curve for the sliding mode control method, with

TABLE 3 Effect under wet and frozen road conditions.

Serial
number

Model
type

Road
conditions

System
response
time (ms)

Maximum
overshoot

(%)

Stable
time (s)

Average
steering
error

(degrees)

Steering
prediction

accuracy (%)

General
comment

1 ANFIS Wet and slippery 21.000 (0.032) 3.100 (0.047) 1.000
(0.021)

0.600 (0.017) 86.000 (0.009) Good

2 Freeze 24.000 (0.015) 3.300 (0.035) 1.200
(0.036)

0.700 (0.026) 84.000 (0.016) Good

3 MPC Wet and slippery 22.000 (0.003) 3.500 (0.005) 1.100
(0.024)

0.700 (0.037) 86.000 (0.053) Good

4 Freeze 26.000 (0.042) 3.800 (0.041) 1.300
(0.027)

0.900 (0.047) 82.000 (0.035) Commonly

5 GSC Wet and slippery 23.000 (0.037) 3.600 (0.003) 1.200
(0.017)

0.700 (0.021) 85.000 (0.022) Good

6 Freeze 25.000 (0.024) 3.900 (0.041) 1.400
(0.031)

0.800 (0.020) 83.000 (0.015) Commonly

7 DRLC Wet and slippery 24.000 (0.006) 3.800 (0.031) 1.300
(0.017)

0.800 (0.046) 84.000 (0.010) Commonly

8 Freeze 27.000 (0.009) 4.100 (0.022) 1.500
(0.018)

0.900 (0.022) 81.000 (0.006) Commonly

9 HPC Wet and slippery 20.000 (0.052) 3.300 (0.027) 1.100
(0.026)

0.600 (0.024) 87.000 (0.018) Good

10 Freeze 23.000 (0.041) 3.600 (0.031) 1.300
(0.025)

0.700 (0.029) 85.000 (0.042) Good

11 PSO-
N-PID

Wet and slippery 15.000 (0.054) 2.000 (0.031) 0.800
(0.047)

0.400 (0.010) 92.000 (0.006) Excellent

12 Freeze 18.000 (\) 2.400 (\) 0.900 (\) 0.500 (\) 90.000 (\) Excellent

Note: The content in () is the significance test data of PSO-N-PID, compared to the model.
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the maximum yaw rate measurement ranging from 0.19 to 0.21.
Figure 7C demonstrates that the optimized BP-PID algorithm
avoids such oscillation issues and significantly reduces the
likelihood of being trapped in local optimal solutions. This
optimization allows the vehicle to almost eliminate oscillations,
improve synchronicity, and successfully control the error values
within a lower range of 0.09–0.1 radians per second. In Figure 7D,
the PSO-N-PID model’s lateral deviation angle of the vehicle’s
center of gravity also exhibits a smaller amplitude. The variation in
slip ratio is depicted in Figure 8.

L1, L2, R1, and R2 respectively represent the left front wheel, left
rear wheel, right front wheel, and right rear wheel. As shown in
Figure 8, in the sinusoidal cornering environment, the slip ratios
of both control strategies remained below 0.05, demonstrating a
high level of lateral stability. However, it is noteworthy that under
sliding mode control, the slip ratio of the vehicle’s tires exhibited
significant fluctuations. Under the PSO-N-PID model control,
this risk decreased by approximately 3.8%. Moreover, in
comparison with sliding mode control, the new optimization
strategy reduced the vehicle’s yaw rate by about 27.1%. On the
other hand, in the serpentine cornering environment, the slip
ratios of the four tires were also analyzed under these control
strategies. The slip ratios under both control strategies remained
below 0.083, indicating good lateral stability during steering.

However, under sliding mode control, the slip ratio reached
0.085 with severe oscillations, confirming the advantages of
the new optimization solution. It controlled the slip ratio at
0.054, with a reduction of nearly 36.4% compared to sliding mode
control. Additionally, the maximum yaw rate under this
algorithmic control also decreased by 42.8%, which is crucial
for stability in serpentine conditions.

4.2 Effect analysis under external
interference

By comparing the performance of six different advanced fusion
controller models under typical road conditions, namely, wet and icy
surfaces, the compared models are the Adaptive Neuro-Fuzzy
Inference System (ANFIS), Model Predictive Controller (MPC),
Generalized Sliding Mode Controller (GSC), Deep Reinforcement
Learning Controller (DRLC), and Hybrid Power Controller (HPC).
The performance under wet and icy road conditions is summarized
in Table 3.

Table 3 presents the performance under wet and slippery road
conditions. The PSO-N-PID model exhibited the fastest system
response time at 15 milliseconds and the highest steering
prediction accuracy at 92%. It also maintained lower

TABLE 4 Effect under soft and rough road conditions.

Serial
number

Model
type

Road
conditions

System
response
time (ms)

Maximum
overshoot

(%)

Stable
time (s)

Average
steering
error

(degrees)

Steering
prediction

accuracy (%)

General
comment

1 ANFIS Soft 24.000 (0.027) 3.500 (0.006) 1.200
(0.017)

0.800 (0.003) 85.000 (0.024) Good

2 Rough 24.000 (0.035) 3.300 (0.006) 1.200
(0.031)

0.700 (0.019) 84.000 (0.011) Good

3 MPC Soft 25.000 (0.010) 3.700 (0.005) 1.300
(0.024)

0.800 (0.027) 84.000 (0.026) Commonly

4 Rough 26.000 (0.031) 3.800 (0.007) 1.300
(0.042)

0.900 (0.027) 82.000 (0.016) Commonly

5 GSC Soft 20.000 (0.007) 3.400 (0.014) 1.100
(0.021)

0.700 (0.030) 86.000 (0.005) Good

6 Rough 23.000 (0.037) 3.700 (0.026) 1.300
(0.032)

0.700 (0.040) 82.000 (0.006) Commonly

7 DRLC Soft 23.000 (0.027) 3.800 (0.034) 1.300
(0.015)

0.800 (0.024) 85.000 (0.013) Good

8 Rough 26.000 (0.016) 4.000 (0.012) 1.400
(0.010)

0.800 (0.007) 81.000 (0.008) Commonly

9 HPC Soft 18.000 (0.030) 3.100 (0.042) 1.000
(0.034)

0.600 (0.025) 88.000 (0.020) Excellent

10 Rough 20.000 (0.025) 3.500 (0.027) 1.200
(0.031)

0.800 (0.006) 86.000 (0.011) Good

11 PSO-
N-PID

Soft 15.000 (0.022) 2.300 (0.014) 0.900
(0.010)

0.500 (0.007) 91.000 (0.006) Excellent

12 Rough 17.000 (0.033) 2.600 (0.026) 0.900
(0.005)

0.600 (0.004) 90.000 (0.017) Excellent

Note: The content in () is the significance test data of PSO-N-PID, compared to the model.
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maximum overshoot (2%) and average steering error (0.4°)
compared to other models. This indicates that the PSO-N-PID
model possesses rapid and accurate control capabilities, along
with excellent adaptability to environmental conditions,
providing outstanding stability for electric vehicles. Similarly,
under freezing road conditions, the PSO-N-PID model
demonstrated optimal performance with the lowest system
response time (18 milliseconds) and the highest steering
prediction accuracy (90%). Despite a slight increase in
maximum overshoot and average steering error, it remained
ahead of other models. In summary, the PSO-N-PID model
held a significant advantage in road steering stability for
electric vehicles due to its excellent overall performance.

The data advantages of the research models are significant. Overall,
firstly, the research model can effectively improve driving safety. Its
superior prediction accuracy and response time compared to other
models mean that the model can predict and analyze road conditions
more quickly, improving driving safety. Secondly, the low overshoot
and steering error of the model can ensure smoother driving of the
vehicle, providing users with higher comfort. Finally, this model can
help vehicles maintain stability in complex road conditions such as
slippery and icy conditions, reducing the incidence of accidents.

The results for soft and rough road conditions are shown
in Table 4.

In Table 4, under soft road conditions, the PSO-N-PID model
exhibited the fastest system response time among all controllers, at

TABLE 5 Robustness check.

Model
type

Interference
conditions

System
response
time (ms)

Maximum
overshoot

(%)

Stable
time (s)

Average
steering
error

(degrees)

Steering
prediction

accuracy (%)

Comprehensive
evaluation

ANFIS Wind disturbance 25 3.4 1.3 0.7 85 Good

Road obstacles 27 3.6 1.4 0.8 83 Commonly

Sudden braking 26 3.5 1.3 0.7 84 Good

MPC Wind disturbance 28 3.8 1.5 0.9 82 Commonly

Road obstacles 30 4 1.6 1 80 Commonly

Sudden braking 29 3.9 1.5 0.9 81 Commonly

GSC Wind disturbance 27 3.7 1.4 0.8 83 Commonly

Road obstacles 29 3.9 1.5 0.9 81 Commonly

Sudden braking 28 3.8 1.4 0.8 82 Commonly

DRLC Wind disturbance 29 4 1.6 1 80 Commonly

Road obstacles 31 4.2 1.7 1.1 78 Commonly

Sudden braking 30 4.1 1.6 1 79 Commonly

HPC Wind disturbance 23 3.2 1.2 0.6 86 Good

Road obstacles 25 3.4 1.3 0.7 84 Good

Sudden braking 24 3.3 1.2 0.6 85 Good

PSO-N-PID Wind disturbance 18 2.5 1 0.5 90 Excellent

Road obstacles 20 2.7 1.1 0.6 88 Excellent

Sudden braking 19 2.6 1 0.5 89 Excellent

TABLE 6 Model performance comparison.

Method Neural network-PID Traditional PSO

Convergence rate 0.002 0.006

Final error 0.004 0.008

Training time (seconds) 117 183

Memory usage (MB) 260 350

Convergence volatility (Standard deviation) 0.001 0.004

Frontiers in Mechanical Engineering frontiersin.org11

Li 10.3389/fmech.2024.1378175

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1378175


only 15 milliseconds, which is 3 milliseconds faster than the next
fastest HPC. Additionally, the maximum overshoot for PSO-N-PID
was 2.3%, significantly lower than other models, indicating smaller
fluctuations when adjusting to the target path and providing a
smoother driving experience. The average steering error was only
0.5°, showing high-precision steering control. Furthermore, its
steering prediction accuracy reached 91%, surpassing all other
models, reflecting the model’s high reliability on soft road
surfaces. For rough road conditions, the PSO-N-PID also
demonstrated optimal performance with a response time of
17 milliseconds, maintaining the fastest level. The maximum
overshoot was 2.6%, consistently kept at a lower level to ensure
smooth steering actions. The system settling time remained at 0.9 s,
indicating that PSO-N-PID could quickly achieve stability even on
harsh, rough road surfaces. The average steering error was 0.6°,
similar to soft road conditions, demonstrating consistent and precise
control. The steering prediction accuracy remained high at 90%,
showing excellent predictive and control capabilities in such
complex and slippery road conditions.

The designed model has significant performance data
advantages compared to other models. The designed model still
performs well under soft and rugged road conditions. It exhibits
faster response speed, lower overshoot, and can reach a stable state
in a shorter time, with lower steering error and higher steering
prediction accuracy. From this, under complex road conditions, the
research model can provide stable and accurate control for vehicles,
improving the user’s driving experience.

To verify the stability of the model, three scenarios were
introduced: wind interference, road obstacles, and sudden
braking. The robustness tests were conducted to verify the
robustness of the model in different unique scenarios.

Table 5 shows that the model still has performance advantages in
three situations: wind interference, road obstacles, and sudden
braking, indicating that the model has excellent robustness.

Through comparison, Table 6 shows that the designed model
has faster convergence speed, shorter training time, and occupies
less memory, resulting in better processing speed. From a stability
perspective, the final error of the model is smaller, and the
convergence fluctuation is also smaller, reflecting higher stability.

Firstly, the diversity of climate and geographical environment
necessitates that the system be capable of operating stably under a
variety of weather and road conditions, requiring a high degree of
robustness. Secondly, differences in infrastructure and road quality
can also have a significant impact on the system. Finally, electric
vehicle technology will be strongly influenced by policies and
regulations, and will also affect the product needs of users.
Targeted optimization without interruption is necessary to
effectively overcome these obstacles and improve the
performance of electric vehicles.

5 Conclusion

In the application of modern electric vehicles, enhancing the
stability and steering performance under various road conditions
and driving scenarios is a crucial issue. To address this concern, the
study designed a stable steering control strategy for electric vehicles
based on PSO-N-PID control. This approach integrated fuzzy

control theory and sliding mode control strategy for a
comprehensive stability control. The results indicated that, when
the vehicle speed was between 99.8 and 100 km/h, employing PSO-
N-PID for stable control maintained the maximum yaw rate of the
vehicle at 0.042–0.043° per second, showing a significant
improvement over traditional sliding mode control. Under wet
and slippery road conditions, the model’s system response time
was only 15 ms, achieving a steering prediction accuracy of 92%. The
overshoot was only 2%, and the average steering error was a low
value of 0.4°. In frozen road conditions, the model’s system response
time was 18 ms, and the steering prediction accuracy reached 90%.
Comparative testing with other control models such as ANFIS,
MPC, GSC, DRLC, and HPC revealed that the PSO-N-PID model
demonstrated outstanding performance in both system response
time and control accuracy, showing its practical application value.

Although the study yielded practical conclusions, the model is
designed for conventional situations. However, the accuracy of the
model may also be affected under extreme climate and road
conditions. Therefore, designing additional modules for extreme
weather and road conditions is the future research direction.
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