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Introduction: The objective of this study is to develop and simulate a double
slotted morphed flap with the intention of reducing drag and enhancing lift,
thereby leading to a smaller flap size and reduced weight.

Methods: A flap was meticulously designed to accommodate conditions at Mach
0.2 and Reynolds numbers of 4.7×106. To conduct the simulation, ANSYS FLUENT
flow solver and POINTWISE grid generator were utilized. The morphing
technique employed involved adjusting both flap mean camber and flap slots,
ensuring minimal flow interferences. By discretizing the flap mean camber line,
various flap geometries were achieved.

Results and Discussions: The findings reveal a significant enhancement in the
airfoil’s aerodynamic efficiency attributed to the implementation of the new flap
design. The study shows that utilizing double-slottedmorphing in the NACA 4412
airfoil at a 30° flap deflection angle increased the lift coefficient by 82% compared
to the un-morphed state. A comparison of lift coefficients between this research
and the NACA 4412 split flap at a 60° deflection angle indicates that the double-
slotted morphing in the NACA 4412 airfoil at a smaller deflection angle of 30°

results in a 14% higher maximum lift coefficient.
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1 Introduction

In recent years, there has been a notable increase in the advancement of active flow
control actuators in the fields of fluid mechanics and aerodynamics. Plasma actuators
(Mirzaei et al., 2012; Taleghani et al., 2012; Salmasi et al., 2013; Mohammadi and Taleghani,
2014; Taleghani et al., 2018) have demonstrated their effectiveness in enhancing
aerodynamic performance by increasing lift, reducing drag, and controlling vortex
shedding. This is achieved by ionizing the air near the aerodynamic surfaces, generating
a micro-jet in close proximity to the surface, and utilizing a fast time response capability.

Surface acoustic waves have been utilized to manipulate water droplets on solid surfaces
(Sheikholeslam Noori et al., 2020a; Sheikholeslam Noori et al., 2020b; Noori et al., 2020;
Sheikholeslam Noori et al., 2021). They have been proposed as a potential technique to
prevent water droplet icing on aircraft wings in areas not covered by the anti-ice system
(Taeibi Rahni et al., 2022). Furthermore, fluidic actuators can inject momentum into low
momentum areas, providing significant benefits (Abdolahipour, 2023). Abdolhaipour et al.
have introduced a novel type of pulsed jet, known as a modulated pulse jet (Abdolahipour
et al., 2021; Abdolahipour et al., 2022a; Abdolahipour et al., 2022b), and experimentally
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applied it as a hybrid active control method on the flap of a high-lift
device with a supercritical airfoil section to improve the wing’s
aerodynamic performance.

In addition to the rapid progress in flow control actuators,
morphing wings have emerged as a promising flow control approach
due to their lightweight nature and adjustable stiffness (Xiao et al.,
2022). In the realm of aviation, morphing encompasses alterations in
wing span, sweep angle, twist angle, dihedral/anhedral angles,
camber line, and airfoil thickness. The aim of morphing is to
enhance the performance of vehicles at different flight conditions.
The aircraft exhibits varying aerodynamic characteristics in different
flight conditions, including the distinct aerodynamic conditions
experienced during ground effect (Shams Taleghani et al., 2020).
Generally, aircrafts are designed to meet specific flight requirements,
but when equipped with the ability to modify their geometry during
flight, they can adapt to varying conditions and achieve exceptional
performances.

To simplify the design of a morphed flap, a framework for
different cruise conditions has been introduced in reference
(Steenhuizen and van Tooren, 2012). Additionally, in order to
enhance lift, reference (Nemati and Jahangirian, 2020) proposed
a robust airfoil parameterization method for designing morphed
leading and trailing edges.

Researchers have examined the aerodynamic characteristics of
morphed flaps, focusing on both trailing-edge and leading-edge
flaps. For example, reference (Taguchi et al., 2020) investigated the
aerodynamic characteristics of a passive morphed trailing edge in a
2D wing, revealing a higher lift coefficient for the morphed airfoil. In
reference (Magrini and Benini, 2017), a GA-(w)-1 airfoil with a 25%
morphed leading edge was studied, demonstrating a significant
reduction in drag with a slight increase in lift. Furthermore,
reference (Abdessemed et al., 2018) investigated the aerodynamic
performance of a NACA0012 airfoil with a time-dependent
morphed trailing edge, using computational fluid dynamics
(CFD), showing a 6.5% increase in aerodynamic efficiency. The
effects of morphed leading and trailing edge flaps were also analyzed
in reference (Aziz et al., 2019), using ANSYS FLUENT, highlighting
substantial improvements in aerodynamic characteristics.
Moreover, reference (Rivero et al., 2021) conducted a wind
tunnel test on a NACA23012 airfoil with three configurations:
base airfoil, hinged flap, and FishBAC morphed flap.

In the case of 3D wings, the aerodynamic performance of a
morphed trailing edge was investigated in reference (Lyu and
Martins, 2015) to explore the benefits of morphing technology.
The results demonstrated a 1% reduction in drag at design and 5%
reduction in off-design conditions (along with a 1% reduction in
cruise fuel consumption). Reference (Burdette and Martins, 2018)
illustrated that adjusting the frequency of motion of a dynamic
morphed surface could effectively mitigate separation zones.

Most recently, inspired from owl’s wings, reference (Harbi
Monfared et al., 2022) thoroughly investigated a morphed wing
from both aerodynamic and aeroacoustics points of view.
Furthermore, some efforts have been done to find the best airfoil
geometry for various flight conditions. In this field, an aerodynamic
shape optimization using CFD was performed in reference (Secanell
et al., 2006), wherein they found the best initial airfoil configuration.
Their results show that the optimum airfoil configuration has a
significant improvement in the performance of a UAV’s. In

addition, reference (Fincham and Friswell, 2015) studied
optimization of an airfoil camber line in two different configurations.

In addition, morphing technology has shown the ability of delaying
flow separation. In this way, reference (Chandrasekhara et al., 1998)
investigated amorphed airfoil, in which the radius of its leading edgewas
adjustable. On the other hand, reference (Jones et al., 2018) illustrated
that by adjusting the frequency of motion of a dynamically morphed
surface, it is possible to eliminate the separation zone.

Morphing technology has not only improved aircraft
performance, but also showcased potential for implementation in
wind turbines. According to reference (Ai et al., 2019), morphed
flaps provide excellent control over aerodynamic lift in turbine
blades. Similarly, reference (Daynes and Weaver, 2012) focused
on controlling the aerodynamic load of wind turbine blades, using
morphed trailing edge flaps. They designed a morphed flap structure
and conducted aeroelastic investigations, which revealed that their
morphed flap, with approximately 30% less deflection compared to a
conventional flap, could generate the same lift.

Furthermore, various intriguing studies have explored the vibration
effects of morphed trailing edges on airfoils. Reference (Simiriotis et al.,
2018) demonstrated through numerical and experimental analysis that
vibration frequency has the potential to enhance aerodynamic
performance and reduce noise. In a similar work focused on a
transonic regime, reference (Tô et al., 2019) investigated the effects
of upward motion and vibration of a trailing edge, resulting in reduced
buffet and a significant increase in lift-to-drag ratio.

In this study, we aim to design a trailing edge flap with
morphable camber. Additionally, we need to design two slots
that minimize flow interferences. One major challenge with
conventional flaps is the generation of considerable noise and
drag when deployed due to vortices produced in the cove
sections of their slots. Reference (Jawahar et al., 2019)
experimentally demonstrated the noise reduction effect of filling
the slat cove for a 30P30N airfoil. This problem also arises during
retraction due to the discontinuity of wing control surfaces.
Moreover, in deflected positions, conventional flaps exhibit sharp
changes in geometry, resulting in poor flow quality in those regions.

In order to achieve practical morphed flaps, we have designed a
mechanism capable of simultaneously changing flap camber and
generating two slots. Subsequently, aerodynamic shapes were
designed based on this mechanism. It is important to note that
this article solely focuses on investigating the aerodynamic
specifications of a morphed flap and thus the structural aspects
related to this mechanism are not addressed here.

2 Solution methodology

According to reference (Abbott and Von Doenhoff, 1956), the
well-documented NACA4412 airfoil was selected to be investigated
in this study.

2.1 Airfoil and its flap geometry

In this study, the auxiliary spar is positioned at 63% of the airfoil
chord from the leading edge, as illustrated in Supplementary Figure
S1 To generate the morphed section (Supplementary Figure S2), the
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flap chord is divided into 12 vertical lines (ribs). Here, the
intersections of the ribs with the camber line are referred to as
discretized camber line points (DCLP). The camber line is then
approximated by straight lines connecting the DCLPs, with each
straight line, forming an angle with its adjacent line. Considering the
flap’s upper and lower surfaces and ribs as a four-bar mechanism,
altering the angle of the discretized camber lines results in different
flap geometries. Supplementary Figure S3 demonstrates the
variation of camber lines obtained using this mechanism, while
Supplementary Figure S4 represents the corresponding flap
geometries.

2.2 Flap nomenclature

The flap nomenclature in this study is based on the position of
maximum camber (x/c’) and its maximum value (t/c’) relative to the
flap chord (Supplementary Figure S5). As depicted in
Supplementary Figure S6, our flap is named TnCy, where Tn
represents t/c’ = n × 100, and Cy denotes the curve number
proportional to x/c’ with values ranging from 1 to 5.
Supplementary Table S1 provides the curve numbers and their
corresponding x/c’ values.

2.3 Channels

To create channels, the flap’s upper surface is cut at nodes
2 and 8, while the lower surface is cut at nodes w and 4
(Supplementary Figure S2). This division results in three
parts: the main airfoil body and flap parts 1 and 2. The
downward vertical movement of parts 1 and 2 generates inlets
and outlets of the slots (Figure 1). The slots function as channels
to transfer and accelerate air from the lower surface of the flap to
the upper, thereby preventing separation. The adaptability of the
inlet is presumed to play an important role in facilitating smooth
airflow transfer, while it is expected that the outlet area remains
parallel to the flap’s upper surface (to ensure airflow attachment).
Consequently, the angles of the channel walls are adjustable. As
depicted in Figure 1, designing the walls of the channels involves
obtaining the optimum curves between the nodes (AB and CD in
channel No. 1; EF and GH in channel No. 2). This aspect is of
considerable importance. The airfoil comprises three parts: the

airfoil body, flap parts 1 and 2, and the nearest channel to the
main airfoil in channel No. 1. Note, here the area covering the slot
which opens during deflection is called Kool (shoulder).

Supplementary Figure S7 illustrates three different flaps with the
same maximum camber, but with different maximum camber
positions. Note, when going from left to right in this figure, the
maximum camber position moves towards the trailing edge.

The parameters of the morphed flap are as follows:

1. Size of the maximum camber (t/c’),
2. Position of the maximum camber (x/c’),
3. Inlet geometry of channels with A, D, F, and H angles,
4. Outlet geometry of channels,
5. Profile of channels, and
6. Position of channels’ throat.

3 CFD setup

In this study, incompressible flow at Mach 0.2 and at
Reynolds number of 4.7×106 was assumed. The solution was
obtained using ANSYS FLUENT software. The pseudo-
compressibility method with Roe’s second-order flux splitting
method was employed. Additionally, the transition SST
turbulence model was used to accurately predict the transition
location and thus to improve the accuracy of the drag coefficient.
In addition, no-slip walls and pressure far-field boundary
conditions were applied.

3.1 Computational grid

Grid generation was performed using POINTWISE software.
An O-type domain with a radius of 25c was utilized. The airfoil cell
size at the leading edge was set to be 0.0001c to capture high-gradient
zones accurately. The cell size at the flaps’ leading and trailing edges
was set to be 1.047e-6c. The height of the first cell was chosen to
achieve a y + value of 0.8. The quality of the grid was assessed based
on mesh orthogonality, skewness, aspect ratio, etc. The number of
cells in the boundary layer, wake zone, and far field was optimized to
maintain a consistent lift coefficient (optimal number of cells was
210,000). Figures 2, 3 show the details of the grid and its
resolution study.

3.2 Code validation

For code validation, numerical simulations were performed
for the NLR7301 airfoil, which has been previously studied
experimentally in reference (Vandenberg and Oskam, 1980).
Figure 4A shows a comparison of the pressure coefficient (Cp)
between the numerical solution of this work and the experimental
data. The present lift and drag coefficients differ from the
corresponding experimental data by less than about 5 percent.
Figure 4B displays the velocity field around the NLR7301 airfoil.
The velocity contour depicted in this figure exhibits identical
characteristics to the numerical simulation conducted in
reference (Narsipur et al., 2012).

FIGURE 1
Morphed flap parts, including its channels.
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4 Aerodynamic design

In this section, channel parameters are defined and then, while
maintaining the optimal channel geometry, various flap cambers at
three different angles of attack and two distinct flap deflection angles
are investigated.

4.1 Channels’ aerodynamic performance

Figure 5 compares the velocity contour of the morphed flap in two
different configurations (with and without channels) at a 5° angle of
attack. In the configuration without channels, a large separation zone is
observed (even at low angles of attack). By deploying channels, a jet flow
is formed, and the separation region disappears, resulting in a
significant increase in lift. However, drag nearly remains the same in
both configurations. Note, in the configuration without channels, drag
is mainly caused by high pressure resulting from separation. With
channels, separation is minimized, and thus the pressure drag is

considerably reduced (but the channels themselves become the main
sources of drag). These two sources of drag appear to have significant
interactions, resulting in a relatively consistent total drag. Table 1
presents the aerodynamic characteristics of the two configurations.
The pitching moment coefficient is calculated about the quarter-
chord point.

4.2 Channel shape investigation

The following tests were conducted to design the channels’ shapes
at three different angles of attack: 0°, 5°, and 10°, to analyze the intake of
channels. Notation “;A” represents the angle of the channel wall with
respect to the horizon at point “A” (e.g., the angle of point “H” in
Figure 1). The following cases were studied:

case 1. intake angle suitable for AOA = 0°:
;B = ;D = ;F = ;H = 0°, case 2. Intake angle suitable for

AOA = 5°:
;B = ;D = ;F = ;H = 5°, case 3. Intake angle suitable for

AOA = 10°:
;B = ;D = ;F = ;H = 10°, case 4. angle of the lower wall is

10° and the upper wall is tangent to the airfoil surface:
;D = ;H = 10°.
;B = ;F = tangent to the airfoil surface, and

case 5. angle of the lower wall is 10° and angle of the upper wall is 5°:
;D = ;H = 10°.
;B = ;F = 5°.
Figure 6 displays the aerodynamic characteristics of these cases,

in which case 3 demonstrates the best performance. (Figures 7A, C)
depict the velocity field of case 1, where even at zero angle of attack, a
separation region is present in the leading edge of flaps 1 and 2,
resulting in reduced aerodynamic performance. As the inlet angle

FIGURE 2
Grid details around: (A) the whole airfoil (B) the leading edge of flap number 1 (C) the morphed flap (D) the leading edge of flap number 2.

FIGURE 3
Grid resolution study.
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increases (cases 2 and 3), this separation region becomes smaller,
leading to a reduction in drag. (Figures 7, D) present case 3 at 10°

and 0° angles of attack, respectively. Increasing the inlet angle causes
the channel throat to move towards the outlet, resulting in an
increase in lift. Case 4 exhibits the worst performance due to the
channel profile moving the throat towards the inlet. Apart from the
aerodynamic advantages of the fixed inlet shape in case 3, it also

reduces the related mechanism’s complexity, production cost, and
the overall weight of the airfoil.

The channels’ profiles were studied considering the
following cases:

1. Normal case, with d1 being 3 and d2 being 2 percent of the
airfoil’s chord,

FIGURE 4
(A) Cp comparison between numerical solotion of the peresent work and the expemental data of reference (Vandenberg and Oskam, 1980) and (B)
present velocity field around NLR7301 airfoil (at 13.1° angle of attack).

FIGURE 5
Velocity field of the morphed flap: (A) without channel and (B) with channel.
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2. Case 6, similar to the normal case, but with a 25 percent
decrease in both d1 and d2,

3. Case 7, similar to the normal case, but with a 25 percent
increase in both d1 and d2, and

4. Case 8, where the throat of the channel is moved towards
the outlet.

Figure 8 demonstrates that increasing the width of the channel
leads to an increase in lift and a decrease in drag until an optimum
point is reached. Further increasing the channel width reverses these
effects. Additionally, increasing the channel width results in an
increase in the moment coefficient, which does not reverse. Moving
the throat towards the outlet increases lift, drag, and pitching
moment, but reduces aerodynamic efficiency. The normal case
exhibits the highest aerodynamic efficiency (lift-to-drag ratio),
while case 6 shows the lowest.

4.3 Morphed flap at 15 degrees deflection

(Figures 9A–C) illustrate the lift coefficient versus maximum
camber position for three different maximum camber values and

three different angles of attack (0°, 5°, and 10°). When the maximum
camber position is moved towards the trailing edge, the lift
coefficient initially increases and then decreases, with the best
position being at 50 percent of the flap chord. Increasing the
maximum camber at a fixed maximum camber position also
results in an increase in Cl.

(Figures 9D–F) represent changes in drag coefficient with
maximum camber position for three different maximum camber
values and three different angles of attack (0°, 5°, and 10°). Moving
the maximum camber position towards the trailing edge leads to an
increase in Cd. At a fixed maximum camber position, increasing
maximum camber causes Cd to increase (independent of the angle
of attack). Themaximum camber position at 16.67 percent exhibits a
cove that creates a dead air area, resulting in a large Cd value.
Increasing maximum camber further increases both the dead air
area and Cd. The maximum camber position at 33.33 percent with a
camber of 4 percent shows the minimum Cd, regardless of the angle
of attack.

For x/c’ = 66.67 percent, both Cl and Cd are lower than those for
x/c’ = 83.33 percent due to an effect called hook-like (Supplementary
Figure S8). This effect occurs when the camber position moves to
83.33 percent of the flap chord, resulting in an aerodynamic
behavior similar to a gurney flap of references (Papadakis et al.,
1996; Papadakis et al., 1997), leading to higher Cl and Cd.

(Figures 10A–C) depict aerodynamic efficiency versus
maximum camber position for three different maximum cambers
and for three different angles of attack. The optimal lift-to-drag ratio
is found to be independent of maximum camber position and angle
of attack always occurring at 33.33 percent of the flap chord (curve
No. 2; C2). Generally, increasing maximum camber reduces l/d and
the difference in l/d for various camber values decreases at higher
angles of attack.

TABLE 1 Aerodynamic characteristics of the morphed flap in two different
configurations of “with” and “without” channels.

Aerodynamic
characteristics

Without
channel

With
channel

Cl 1.664 2.21

Cd 0.028 0.027

Cm −0.21 −0.32

FIGURE 6
Aerodynamic characteristics of the channels’ intake versus angle of attack. (A) Cl, (B) Cd, (C) l/d, and (D) Cm.
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(Figures 10D–F) demonstrates the pitching moment coefficient
versus maximum camber position for three different maximum
cambers and for three different angles of attack. Cm behaves
similarly to Cl, showing a hook-like effect as well. Lower
maximum camber values result in lower Cm. Moving the camber

position towards the flap’s leading edge leads to a smaller Cm. The
minimum Cm is associated with the maximum camber position
closest to the flap’s leading edge.

Supplementary Tables S2, S3 provide the best and worst camber
positions and camber values for various aerodynamic

FIGURE 7
Channels’ intake velocity fields at different intake angles and at: (A) and (B) AOA = 10°; (C) and (D) AOA = 0°.

FIGURE 8
Aerodynamic characteristics versus AOA of channels’ profile: (A) Cl, (B) Cd, (C) l/d, and (D) Cm.
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characteristics, respectively. The desired flap geometry for each
aerodynamic specification is also listed.

Figure 11 presents a comparative analysis of four distinct
desired flaps, demonstrating a reduction of approximately
5 percent in the l/d difference at higher angles of attack. It is
important to note that the selection of flaps may vary depending
on the aircraft and its flight type. For example, during take-off
and landing configurations, quantities related to higher angles
of attack hold significant importance. In such scenarios,
emphasis is placed more on Cl rather than Cd, Cm, and l/d.
Consequently, the T8C3 flap is considered suitable for
shorter runways.

To provide a practical example, let’s consider an aircraft that
prioritizes drag reduction. Despite the higher Cl value of the
T8C3 flap, an aircraft with specifications M = 300tons, SW =
511 m2, AR = 7, and e = 0.8 lead to a take-off speed that is
3.28 km/h higher compared to the T6C3 flap. However, the
T8C3 flap results in 3 percent higher drag force. On the other
hand, the T4C2 flap exhibits a take-off speed that is 5.4 km/h higher,
but a drag force that is 4.5 percent lower than that of the
T8C3 flap. Additionally, the T4C2 flap’s smaller Cm leads to a
reduced size of the horizontal tail, resulting in less drag and a
negative lift force.

Figure 12 showcases the Cp distribution of the T8C3 flap, where
fluctuations in Cp are observed on the upper surface of the flaps.
These fluctuations are likely a result of interactions between the
separation zone and the jet flow formed by the channels, leading to a
mixing layer flow.

Figure 13 provide insight into the velocity field of the
T8C3 flap. The geometry exhibits a separation zone at the
trailing edge of flap No. 2. As the angle of attack increases, the
separation zone remains constant due to the presence of the jet flow
formed by channel No. 2, which inhibits separation. This behavior
persists until the angle of attack reaches a limit where flow
separation occurs at the Kool area.

4.4 Morphed flap at 30 degrees deflection

At 30° flap deflection, Figures 14A–C depict the relationship
between maximum camber position and Cl for two different
maximum cambers and three different angles of attack. At this
deflection angle, the camber position that yields maximum Cl shifts
towards the trailing edge, precisely at half the flap chord (x/c’ =
50%). It should be noted that a maximum camber of 6 percent,
compared to 8 percent at zero angle of attack, demonstrates superior
performance. However, as the angle of attack increases, a reversing
phenomenon occurs. The reason behind this is that the lower
maximum camber (6 percent) causes the Kool area to have larger
angles relative to the flow, resulting in enhanced flow separation.
Moreover, a flap with 6 percent maximum camber at 7° angle of
attack experiences a deep stall.

(Figures 14D–F) showcase Cd versusmaximum camber position
for two different maximum cambers and three different angles of
attack. Similar to Cl, the reversing phenomenon is observable here as
well. While maximum camber position movement has a minimal

FIGURE 9
Cl and Cd versusmaximum camber position for three differentmaximumcambers and three different angles of attack. (A) AOA=0°, (B) AOA= 5°, (C)
AOA = 10°, (D) AOA = 0°, (E) AOA = 5°, (F) AOA = 10°.
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FIGURE 10
l/d and Cm versus camber position for three different camber values and for three distinct angles of attack. (A) AOA = 0°, (B) AOA = 5°, (C) AOA = 10°,
(D) AOA = 0°, (E) AOA = 5°, (F) AOA = 10°.

FIGURE 11
Comparison of aerodynamic performance for four desired morphed flaps. (A) Cl, (B) Cd, (C) l/d ratio, and (D) Cm.
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impact on drag value, it generally leads to an increase in Cd as it
approaches the trailing edge. For angles of attack below stall, the
optimal maximum camber position is at the flap mid chord.

Figure 15, presented in panels a) to c), illustrates the relationship
between l/d and maximum camber position for two different
maximum cambers at three distinct angles of attack. Similar to

Cl and Cd, smaller maximum camber values exhibit better
performance at lower angles of attack. Although the movement
of the maximum camber position has a slight impact on l/d,
generally, when it shifts towards the trailing edge, l/d decreases.
In comparison to the 15° deflection, the position of maximum l/d has
shifted from 33.33 to 50 percent of the flap chord.

FIGURE 12
Cp distribution of the flap T8C3 for three different angles of attack.

FIGURE 13
T8C3 flap velocity field at AOA of 0, 5° and 10°. (A) AOA of zero, (B) AOA of 5°, (C) AOA of 10°
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FIGURE 14
Cl and Cd versus camber position for three different cambers at three different angles of attack (at 30° Deflection). (A) AOA = 0°, (B) AOA = 5°, (C)
AOA = 7°, (D) AOA = 0°, (E) AOA = 5°, (F) AOA = 7°.

FIGURE 15
l/d and Cm versus maximum camber position for three different maximum cambers at three angles of attack (at 30° deflection). (A) AOA = 0°, (B)
AOA = 5°, (C) AOA = 7°, (D) AOA = 0°, (E) AOA = 5°, (F) AOA = 7°.
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(Figures 15D–F) depict the behavior of Cm in relation to
maximum camber position. The behavior of Cm aligns with other
aerodynamic characteristics. For instance, there is a small
difference between the 6 percent and 8 percent maximum
camber values, and a reversing phenomenon is observed as well.

Figure 16 provide a comparison of the aerodynamic
performance of flaps with varying maximum camber position.
It is evident that the flap maximum camber position located in
the middle of the flap chord yields the best performance. Hence,
for the 30° morphed flap deflection, the desired configuration is
the T8C3 flap.

Figure 17 displays Cp distribution over the airfoil surface for
three different angles of attack, highlighting the fluctuations
resulting from the mixing layer flow on the upper surface
of the flap.

Figure 18 showcase the flow field, even at zero angle of attack,
indicating a separation zone at the trailing edge of flap “2”due to the
steep slope of the upper surface in that area. Additionally, a larger

dead region is observed at the leading edge of flap “1”caused by the
alteration in the channel path, where the separated flow needs to
travel a longer distance to reach the channel wall. In all angles of
attack, the presence of the jet flow generated by channel number
2 maintains the trailing edge separation unchanged. At 7° angle of
attack, corresponding to the stall angle of attack, separation initiates
at the flap Kool area.

4.5 Modified T4C3 flap at
30 degrees deflection

(Figure 19A) demonstrates that even at zero angle of attack, flow
separation occurs for the T4C3 flap. To delay separation in the Kool
zone, modifications were implemented. Reducing the angle of the
Kool zone increases the outlet width of channel “1,” and thus, a third
part was added to maintain the outlet width unchanged.
Furthermore, to reduce the length of the Kool zone, the outlet of

FIGURE 16
(A) Cl, (B) l/d versus angle of attack, (C) Cd, and (D) Cm versus AOA when t/c’×100 = 8 and x/c’ varies from 33.33 to 88.89 percent.

FIGURE 17
Cp for 30° deflection of the flap T8C3 at three different angles of attack.
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channel “1” was shifted from node number 2 to node number 1.
(Figure 19B) visually presents the related changes, and Table 2
provides the results of the geometry modifications.

Figure 20 compares the aerodynamic characteristics of the
T8C3 and modified T4C3 flaps. Although the T8C3 flap
outperforms the T4C3 flap in terms of aerodynamic
performance, it is worth considering that the T8C3 flap has an
8 percent maximum camber, resulting in a larger Cl. However, when
considering Cl, the T4C3 flap exhibits a better improvement
compared to the T8C3 flap, along with an increased stall angle
of attack.

Figure 21 showcase the velocity field of the modified T4C3 flap,
clearly illustrating the disappearance of separation. It is important to
note that the addition of an extra part to the morphed flap
introduces challenges related to increased weight, cost, and
production complexities.

FIGURE 18
Velocity Field of the T8C3 flap at 0, 5°, and 7°. (A) zero angle of attack, (B) 5° angle of attack, (C) 7° angle of attack.

FIGURE 19
(A) Separation in Kool area and (B)Modified flap geometry (purple
lines) and base line (dash-dotted lines).

TABLE 2 Modified flap aerodynamic specifications.

AOA (Deg.) Cl Cd l/d Cm

0 2.42 0.0436 55.5 −0.46

5 2.8223 0.057 49.51 −0.43

7 2.903 0.065 44.45 -
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FIGURE 20
Aerodynamic characteristics comparison of the modified and T8C3 flaps. (A) Cl, (B) Cd, (C) l/d, and (D) Cm.

FIGURE 21
Modified flap velocity field. (A) 5° angle of attack, (B) 7° angle of attack
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5 Concluding remarks

Figure 22 examines the application of a morphed flap on the
NACA4412 airfoil, comparing it to a regular flap with a deflection
angle of 60°. The study investigates two different deflection angles:
15° and 30°. Remarkably, despite the morphed flap having a
maximum deflection angle of 30°, its performance surpasses that
of the regular flap. The morphed flap exhibits a significant reduction

in drag (approximately three times) and an increase in lift, resulting
in a considerable improvement in the l/d ratio (approximately five
times). In contrast, both the base airfoil and split flap demonstrate
lower Cm values compared to the morphed flap. Table 3 shows the
maximum and minimum values for these flaps. It should be noted
that the results of un-morphed airfoil of the current research are the
same as the results of the simple NACA4412 airfoil in reference
(Abbott and Von Doenhoff, 1956).

FIGURE 22
Comparison of morphed and conventional flaps: (A) Cl, (B) Cd, (C) l/d ratio, and (D) Cm.

TABLE 3 Comparison of morphed and conventional flaps.

Case Cl max Cd min Cm l/d (Max)

NACA4412 un-morphed airfoil 1.66 0.0068 −0.08 125

NACA4412 split flap at 60° flap deflection angle (Abbott and Von Doenhoff, 1956) 2.65 - −0.29 -

NACA4412 morphing flap at 30° flap deflection angle 3.03 0.0385 −0.0427 65

NACA 23012 double-slotted flap at 40° flap deflection angle (Wenzinger and Gauvain, 1938) 2.97 0.126 −0.475 19
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6 Conclusion

In this study, we designed a double-slotted morphed flap with
variable camber and slots, using CFD to examine its aerodynamic
performance. The characteristics of the channels (slots), including
width, throat position, and intake angle, were initially investigated.
Subsequently, five different x/c’ and three different t/c’ were examined.
The second step was repeated for two different flap deflections (15° and
30°) at three distinct angles of attack. The optimal flap geometry was
determined and a modification was applied to further enhance the flap’s
aerodynamic performance. The results demonstrate an increase in lift, a
reduction in drag, and a significant improvement in l/d. The maximum
lift coefficient at a 30° flap deflection is 3.03, whereas the maximum lift
coefficients for the un-morphed airfoil and split flap at a 60° deflection are
1.66 and 2.65, respectively. In other words, the morphed flap generates
more lift (about 14% in maximum lift), despite its considerably smaller
deflection angle (one of the reasons for its lower drag coefficient).
According to the findings, the double-slotted modified flap has
enhanced the maximum lift coefficient of the airfoil by 82.5%. While
there is no available data for the drag coefficient of the split flap applied to
the NACA4412 airfoil, to gain a better understanding of this coefficient,
the NACA23012 airfoil with a double-slotted flap has a minimum drag
coefficient of 0.126, whereas the present morphed flap exhibits a drag
coefficient of 0.068 (more than three times less). Note, compared to the
double-slotted flap, the morphed flap achieves a fivefold increase in l/d
ratio at zero angle of attack. This study also investigated the pitching
moment coefficient, which exhibits behavior similar to Cl, but with
different magnitudes. Although the magnitude of Cm for the present
morphed flap exceeds that of the split flap, it is lower than that of the
double-slotted flap used for the NACA23012 airfoil. It appears that the
magnitude of this coefficient is proportional to the lift coefficient,
meaning that greater lift results in a higher pitching moment.

7 Future outlook

To enhance the practicality of the research findings, further
investigation is necessary to determine the flap’s weight, production
cost, and manufacturing feasibility. Additionally, given the critical
role of the Kool section in the flap, deeper analysis of this area is
recommended. Lastly, additional investigation is suggested to
identify the optimal flap shape.
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Nomencalture

AR Aspect Ratio

c Airfoil Chord

Cd Airfoil Drag Coefficient

Cl Airfoil Lift Coefficient

Cm Airfoil Pitching Moment Coefficient

Cp Airfoil Pressure Coefficient

c’ Flap Chord

d Airfoil Drag

d1 Flap First Channel’s Entrance Length (Vertical)

d2 Flap Second Channel’s Entrance Length (Vertical)

e Oswald Efficiency Factor

l Airfoil Lift

l/d Airfoil Aerodynamic Efficiency

M Aircraft Mass

SW Wing Planform Area

t/c’ Ratio of Maximum Flap Camber to Flap Chord

x/c’ Ratio of Position of Maximum Flap Camber to Flap Cord
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