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In the era of intelligence and automation, robots play a significant role in the field
of automated welding, enhancing efficiency and precision. However, challenges
persist in scenarios demanding complexity and higher precision, such as low
welding planning efficiency and inaccurate weld seam defect detection.
Therefore, based on digital twin technology and kernel correlation filtering
algorithm, a welding tracking model is proposed. Firstly, the kernel correlation
filtering algorithm is used to train the filter on the first frame of the collected
image, determine the position of image features in the region, extract histogram
features of image blocks, and then train the filter using ridge regression to achieve
welding trajectory tracking. Additionally, an intelligent weld seam detection
model is introduced, employing a backbone feature network for feature
extraction, feature fusion through a feature pyramid, and quality detection of
weld seams through head classification. During testing of the tracking model, the
maximum tracking error is −0.232 mm, with an average absolute tracking error of
0.08 mm, outperforming other models. Comparatively, in tracking accuracy, the
proposed model exhibits the fastest convergence with a precision rate of 0.845,
surpassing other models. In weld seam detection, the proposed model excels
with a detection accuracy of 97.35% and minimal performance loss at 0.023. In
weld seam quality and melt depth error detection, the proposed model achieves
errors within the range of −0.06mm, outperforming the other twomodels. These
results highlight the outstanding detection capabilities of the proposed model.
The research findings will serve as technical references for the development of
automated welding robots and welding quality inspection.
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1 Introduction

With the advent of the era of industrial intelligence, robots are playing an increasingly
vital role in the field of welding. Robot welding not only significantly enhances the efficiency
and precision of welding but also reduces the labor intensity and work risks for workers.
However, in complex and high-precision welding scenarios, traditional welding robots face
challenges such as low welding planning efficiency and an inability to adapt to complex and
high-precision welding environments (Lyons, 2022). Digital twin technology, which
precisely correlates and maps physical objects or processes with virtual models, offers a
solution. According to research, digital twins can serve multiple constituencies, but they face
difficulties in matching scope and scale in the application of digital twin technology. With
the development of Industry 4.0, twin technology has been widely applied in the field of
robot welding. How to solve the problems of insufficient planning of welding robots and
decreased welding quality is crucial (Li et al., 2022). To address the aforementioned
challenges, this research proposes a welding tracking model based on the Kernel
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Correlation Filter (KCF) algorithm, leveraging digital twin
technology. The first frame image features are collected using the
KCF model, and accurate tracking of welding trajectories is achieved
through filter training. Subsequently, a welding seam detection
model is proposed based on deep learning algorithms, enabling
effective detection of welding seam quality through target feature
extraction and assessment. The research innovation lies in the
introduction of a welding tracking model based on digital twin
technology, achieving efficient and accurate welding trajectory
tracking through filter training and feature extraction.
Additionally, in the realm of welding seam quality detection, an
intelligent welding seam quality detection model is presented,
employing deep learning and feature fusion methods to achieve
precise judgment of welding seam quality. The study contributes to
enhancing the controllability and stability of welding processes,
reducing the occurrence of welding defects, and promoting
further development and application of welding robot technology
in the field of automated manufacturing.

The research is divided into four parts. The first part involves
studying the forefront technologies and applications of digital twin
technology, as well as analyzing its latest applications in automated
welding. The second part analyzes the current challenges faced by
welding robots, constructing tracking and welding seam detection
models based on digital twin technology to improve the automation
capabilities of welding robots. The third part applies the mentioned
technologies to specific scenarios, validating the application
effectiveness of the proposed models in actual welding situations.
The fourth part concludes and analyzes the entire paper, outlining
directions for improving the research.

2 Related work

Digital twin technology is a method of digitizing physical entities
or processes in the real world. Its applications span various fields,
including manufacturing, energy, and healthcare, for optimizing
design, enhancing operations, and predictive maintenance (Jin et al.,
2022). Franciosa et al. research aimed to provide a digital twin
framework for flexible parts in assembly systems. The concept of
“process capability space” was introduced, simulating dimensions,
geometric shapes, and welding quality of parts and components to
identify the root causes of quality defects. The study achieved quality
improvement in the development process of assembly systems
through automated defect mitigation measures. Results showed
that the model significantly enhanced the application
effectiveness of digital welding processes in aluminum door
welding (Franciosa et al., 2020). Kliestik et al. conducted relevant
research on the construction of digital twin cities. Through
comprehensive analysis of extensive literature, the study
identified the need for data visualization tools, virtual modeling
techniques, and IoT-based decision support systems for digital twin
cities. However, there was a scarcity of literature data in the research
at that time. Future research was suggested to focus on the
application of twin technology in urban development to enhance
the effectiveness of urban digitalization (Kliestik et al., 2022). The
research conducted by Khan and his colleagues focused on the
applications of the Internet of Things (IoT) using sixth-generation
wireless systems. The study suggested that enabling IoT applications

on the new sixth-generation wireless systems required a novel
framework capable of managing, operating, and optimizing the
wireless system and its underlying IoT services. The research
proposed the use of a communication services framework based
on digital twins, leveraging virtual representations of physical
systems, associated algorithms, communication technologies, and
relevant communication security techniques. Applying these
technologies to specific scenarios, the results demonstrated that
the system exhibited reliable service performance and security,
surpassing related technologies (Khan et al., 2022).

Digital twin technology has important applications in the field of
welding machine automation, significantly improving the trajectory
tracking effect and welding quality of welding robots. Yang et al.
conducted research on visual weld seam tracking technology for
welding robots based on digital twin technology. The line of sight
weld seam tracking technology can better extract weld seam texture
features and improve the overall weld seam tracking effect of
welding robots. However, in traditional visual weld seam tracking
technology, image processing based tracking technology has poor
flexibility and robustness. Therefore, research has proposed a deep
convolutional neural network feature extraction model, which can
better extract laser patterns. At the same time, for the problem of
feature extraction detail loss, a variety of residual bidirectional block
models are introduced to better adapt to local feature extraction
problems. In addition, a weighted loss function was introduced for
model training to address class imbalance issues. This technology is
applied to specific scenarios, and the research technology has better
weld seam tracking and noise resistance (Yang et al., 2022). Zou and
Zhou proposed a weld seam tracking method based on proximal
strategy optimization under digital twin technology to improve the
insufficient accuracy of traditional welding robots in weld seam
tracking. This method first takes the reference image block and the
target image block as dual channel inputs to the network, predicts
the translation relationship between the two images, and corrects the
position of feature points in the weld seam image. Establish a
positioning accuracy estimation network to update the reference
image blocks during the welding process. Comparing this
technology with similar weld seam tracking techniques, the
studied technology has smaller weld seam tracking errors and
smoother molten material areas, which can effectively meet
industrial welding requirements (Zou and Zhou, 2022) Xia et al.
found that structured light visual tracking technology has long been
applied in the field of robot welding, but to ensure welding quality, it
is necessary to ensure the tracking effect of the weld seam. So a laser
texture feature extraction method for image processing was
proposed, using an improved depth convolution model for
texture feature extraction. At the same time, considering the
problem of image noise, a method based on attention dense
convolutional blocks is adopted to solve the problem of image
noise. Finally, the research model will be applied to specific robot
welding scenarios, and the technology studied can accurately extract
weld texture features, thereby ensuring the quality of welding robots
(Xia et al., 2022) Mikkelstrup et al. found that in some complex
welding robot work scenarios, traditional welding robots are difficult
to effectively ensure the quality of welding. On the basis of digital
twin technology, this study focuses on high-frequency mechanical
impact treatment. In order to ensure the welding quality of welding
robots, a three-dimensional technology is proposed for weld
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treatment and quality inspection, in order to determine the
curvature and gradient of the local weld surface and achieve
effective detection of weld quality. Determine the overall effect of
weld seam and quality through 3D scanning, and generate robot
weld seam tracking trajectory based on the weld toe position.
Adaptively adjust the robot welding position through trajectory
calculation to ensure the overall welding quality of the welding
robot. Comparing this technology with similar detection techniques,
the overall detection effect of the research technology is better, which
can ensure the welding quality of welding robots (Mikkelstrup et al.,
2022). The relevant work research is shown in Table 1.

In summary, the aforementioned studies have demonstrated the
potential applications of digital twin technology in various fields.
Simultaneously, the application effectiveness of digital twin
technology in the field of automated welding machines has been
analyzed. Digital twin technology has the capability to enhance the
stability and welding effectiveness of machine welding. However,
there is limited research on the application of digital twin technology
in the field of robotic welding. Therefore, conducting research on
digital twin technology in the domain of robotic welding is crucial to
drive the development of industrial automation technology.

3 Robot automatic control technology
based on digital twin

This section focuses on addressing the challenges faced by
welding robots. Two models, namely, the welding tracking model

and the weld seam detection model, are proposed based on digital
twin technology to solve traditional welding robot issues.

3.1 Construction of welding robot automatic
tracking model based on improved KCF

In recent years, welding robots have played a crucial role in
industrial production, resolving significant issues related to
manpower and costs for enterprises. However, traditional
welding robots still face challenges in complex and high-
precision scenarios, such as inaccurate welding planning and
poor welding stability (Zhou et al., 2021). Therefore,
constructing a robotic welding tracking model based on digital
twin technology is proposed to address traditional welding robot
planning issues through the digital modeling of the welding
process. The framework of a welding robot system based on
digital twin technology is illustrated in Figure 1.

In the process of robot welding, due to the recognition problem
of the system itself, it is often difficult for welding robots to
effectively track the target. Especially in some scenarios where
there are obstacles masking, similar feature interference, and light
interference, similar feature interference can directly affect the
welding quality of the system. In response to the issue of light
interference, the laser wavelength is selected within the characteristic
wavelength range in research, and combined with corresponding
filters, it can effectively reduce the interference of arc light on laser
imaging. For obstacle masking and similar feature interference

TABLE 1 Research objectives and results of related work.

References
number

Research objective Research results

Franciosa et al. (2020) Franciosa et al.’s research aims to provide a digital twin framework for
flexible components in assembly systems

The research results show that the model can significantly improve the
application effect of digital welding technology in the welding process of

aluminum doors

Kliestik et al. (2022) Kliestik et al. conducted relevant research on the construction of digital
twin cities. Through comprehensive analysis of a large number of

literature, it was found that digital twin cities require data visualization
tools, virtual modeling technology, and decision support systems based

on the Internet of Things

Research on twin technology is beneficial for enhancing the effectiveness
of urban digital development

Khan et al. (2022) Khan et al.’s research focuses on Internet of Things applications using
sixth generation wireless systems. Under this framework, wireless

systems and their underlying Internet of Things services can be managed,
operated, and optimized

This system has reliable service performance and security, which is
superior to related technologies

Yang et al. (2022) Yang et al. conducted research on visual seam tracking technology for
welding robots based on digital twin technology to improve the overall

seam tracking effect of welding robots

Research technology has superior weld seam tracking and noise
resistance capabilities

Zou and Zhou (2022) Zou and Zhou proposed a welding seam tracking method based on
proximal strategy optimization under digital twin technology to improve

the insufficient accuracy of traditional welding robots

The technology studied has smaller seam tracking errors and smoother
molten material areas, which can effectively meet industrial welding

requirements

Xia et al. (2022) Xia et al. found that structured light visual tracking technology has long
been applied in the field of robot welding, but to ensure welding quality, it
is necessary to ensure the tracking effect of the weld seam. So a laser
texture feature extraction method for image processing was proposed,

using an improved deep convolutional model for texture feature
extraction to improve the welding quality of welding robots

The technology studied can accurately extract texture features of weld
seams, thereby ensuring the quality of welding robots

Mikkelstrup et al. (2022) Mikkelstrup et al. found that in some complex welding robot work
scenarios, traditional welding robots are difficult to effectively ensure the
quality of welding. Therefore, a quality control technique is proposed

The overall detection effect of research technology is better, which can
ensure the welding quality of welding robots
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problems, KCF is used for feature extraction. In order to improve
the feature extraction effect, partial Histogram of Oriented
Gradient (HOG) features are collected to reduce the
computational complexity of the tracking model (Zheng et al.,
2021). Initially, the first-frame data collected undergoes filter
training. Image blocks are gathered from the specified target
region, and HOG features are then extracted from these image
blocks. The KCF model uses ridge regression for filter training,
aiming to find a training function that minimizes the variance of
the regression target, as shown in Eq. 1.

f xr( ) � ωT′xr (1)

In Eq. 1, xr represents the detection sample, ω is the regression
coefficient, and T′ is the significance test number. To minimize the
squared error of the regression target yi, the loss function is given by
Eq. 2.

min ω ∑ f xr( ) − yr( )2 + λ ω‖ ‖2 (2)

In Eq. 2, yr represents the regression target, and λ denotes the
overfitting regularization parameter, expressed in matrix form as
shown in Eq. 3.

min ω ∑ Xω − yl( )2 + λ ω‖ ‖2 (3)

In Eq. 3, yl represents the label vector composed of the
regression target yr, and X denotes the cyclic matrix. When the
loss function L equals 0, the regression coefficients are expressed as
shown in Eq. 4.

ω � XHX + λI( )−1XHyl (4)

In Eq. 4, XH represents the transpose of the cyclic matrix, and I
is the identity matrix. In the collection of samples for welding robot
targets, the sample collection involves two types: random sampling
and dense sampling, whose comparison is illustrated in Figure 2
(Hongfei et al., 2021).

Random sampling yields relatively fewer data samples, leading
to a decrease in target computational accuracy. Hence, KCF adopts
dense sampling for sample acquisition. However, considering that
dense sampling increases the computational load of the tracking
model, the exhaustive form of collection is abandoned. Instead, a
cyclic displacement method is employed to obtain the sample set.
This method allows for better formation of the cyclic matrix,
reducing computational load through the diagonalization
properties in the frequency domain (Wang, 2020). Defining the
collected samples of the welding robot as a one-dimensional dataset,
the dataset is represented as in Eq. 5.

x � x1, x2 . . .xn[ ] (5)
In Eq. 5, x1, x2 . . . xn represents the initial target sample image.

Using the transpose matrix p for sample offsets, the processed
samples are obtained as shown in Eq. 6.

Px � xn−r+1, . . . , x1, x2, . . . , xn−r[ ] (6)

In Eq. 6, xn−r denotes the initial sample shifted r positions to the
right. Performingmultiple cyclic shift operations on the initial image
allows the data image to be transferred to a two-dimensional image.
Further cyclic shifts in the vertical and horizontal directions on the
initial sample yield positive and negative training samples. When
using the cyclic displacement form to collect the sample set, it is
necessary to consider that the ridge regression used is a linear level

FIGURE 1
Technical framework of welding robot system based on digital twin technology.
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problem analysis, while welding tracking belongs to nonlinear
problems (Dong et al., 2021). Thus, converting the nonlinear
problem in the KCF model into a linear problem involves a
strategy where the nonlinear transformation φ(x) maps the input
features into a high-dimensional feature space. However, adopting
nonlinear transformations increases computational load. To address
this, inner product operations are used to solve the problem, as
shown in Eq. 7.

k x, yl( ) � 〈φ x( ),φ yl( )〉 (7)

In Eq. 7, X represents the cyclic matrix in a low-rank space, k
stands for the kernel function in a high-dimensional space, φ

denotes the nonlinear transformation function, and 〈 · 〉 signifies
the inner product operation. The nonlinear expression of the
regression coefficients is then shown in Eq. 8.

ω � ∑ αφ xr( ) (8)

Transforming the solving of ω into the solving of α is
represented as in Eq. 9.

αi � φ X( )φT X( ) + λI( )−1yl (9)

In Eq. 9, α represents the adopted number of filters, serving as
the final solution for the neighboring regression problem. The
inner product of the cyclic matrix obtained through filter training
with the filter parameters α yields response values at each
position. The maximum output is the current frame’s target
position (Ashtari Talkhestani and Weyrich, 2020). The update
of the KCF-based target tracking model involves two parts: the
update of the filter and the update of the target appearance. The
update technique employs linear interpolation, as shown in
Eq. 10.

x̂t � 1 − η( )x̂t−1 + ηx̂
α̂t � 1 − η( )α̂t−1 + ηα̂

{ (10)

In Eq. 10, x̂t represents the updated target model, α̂t represents
the updated filter parameters, η represents the learning rate, and t
represents the video sequence frames. The entire welding robot
target tracking process is shown in Figure 3.

3.2 Construction of weld seam defect
detection model based on YOLOX-s

In some complex industrial manufacturing scenarios, such as
vehicle manufacturing and shipbuilding, high demands are placed
on the welding of welding robots, requiring the weld seam to meet
relevant quality requirements. However, in the actual production
process, traditional welding robots cannot accurately identify the
quality of weld seams. Therefore, a weld seam defect detectionmodel
based on the deep object learning algorithm You Only Look Once-s
(YOLOX-s) is proposed to enhance the quality of welding robot
work by marking weld seams with quality issues (Suresh et al., 2020).
YOLOX-s consists of three parts: the head (YOLO Head), the Cross
Stage Partial Darknet (CSPDarknet), and the Feature Pyramid
Networks (FPN). The structure of the entire YOLOX-s model is
shown in Figure 4.

In the weld seam defect detection model based on YOLOX-s, the
CSPDarknet network is responsible for detecting the target feature
map, extracting the main feature set from it as the model’s feature
layer. The feature layer will participate in the construction of the
FPN layer. As a YOLOX feature-enhanced extraction network, FPN
will take the three feature layers extracted by CSPDarknet and use
them as input (Suresh et al., 2020). The FPN layer will continue to

FIGURE 2
Comparison of sample data collection forms. (A) Random sampling form, (B) Dense sampling form.
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extract features from the obtained features, simultaneously
expanding and merging features through upsampling and
downsampling, resulting in enhanced effective features. Each
feature layer contains parameters for height, width, and depth,
which are used as input for YOLOHead. This part classifies and
recognizes feature points through a classifier and regressor,
determining the object type contained in the parameters and thus
effectively detecting weld seam defects.

CSPDarknet is the core part of the YOLOX-s model,
responsible for extracting target features. Based on the
Darknet architecture, CSPDarknet introduces residual
connections and cross-stage partial connections (CSP) to
improve model performance. Assuming the input image is I,
the feature map sequence obtained after processing through
CSPDarknet is denoted as F1, F2, . . . , Fn. For each feature map
Fi, let its corresponding convolution layer output be xi. The
mathematical model of the convolution layer can be expressed as
shown in Eq. 11.

xi � Conv I,Wi, bi( ) (11)

In Eq. 11, Wi and bi are the weight and bias of the convolution
layer, respectively, and Conv represents the convolution operation.
In CSPDarknet, each stage contains two feature maps, which are the
output of the previous stage and the input of the current stage. These
two feature maps are merged through addition connection to obtain
the output of the current stage, as shown in Eq. 12.

Fi � Fi−1 + xi (12)
The FPN is a crucial component in the YOLOX-s model,

responsible for merging feature maps of different scales to
enhance the model’s multi-scale detection capabilities. In FPN,
different scale feature maps are fused together through
upsampling and downsampling operations (Preethi and
Mamatha, 2023). Let the scale factor for the upsampling
operation be denoted as S; then the upsampled feature map can
be represented as shown in Eq. 13.

FIGURE 3
Target tracking process of welding robot.

FIGURE 4
YOLOX-s model structure framework.
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Ui � upsample Fi, s( ) (13)

The downsampling operation is depicted in Eq. 14.

Li � maxpooling Fi, ki( ) (14)

In Eq. 14, ki represents the core size of the max-pooling layer.
Next, the upsampled feature map Ui is element-wise added to the
downsampled feature map Li, resulting in the fused feature map
(FN) as illustrated in Eq. 15.

F′
i � Ui + Li (15)

Finally, the fused feature map F1
′, F2

′, . . . , F′
n serves as the input to

the YOLO Head. The head is the last part of the YOLOX-s model
and is responsible for classifying and regressing features. The
YOLOX-s model’s Head differs from traditional YOLO in that all
Heads in YOLOX-s are coupled together; both the classification and
normalization processes occur within the 1*1 convolution,
enhancing prediction efficiency (Mokayed et al., 2023). The
structure of the Head part of the YOLOX-s model is depicted in
Figure 5, a schematic diagram illustrating the coupling.

The classifier part maps features to class probabilities through a
series of fully connected layers and activation functions. The
regressor part predicts the coordinates (xh, l, w, h) of the target’s
bounding box through a series of fully connected layers and
activation functions. l, w, h represent the length, width, and
height parameters, respectively, and xh is the output feature. The
input feature to the Head is denoted as xh, and the Head comprises n
fully connected layers, with the output of the i-th layer being xi. For
the classifier part, the output of the i-th fully connected layer can be
represented as shown in Eq. 16.

xi � activation Wi*xh + bi( ) (16)

Here, Wi and bi are the weight and bias of the i-th fully
connected layer, and activation is the activation function. For the
regressor part, the output of the i-th fully connected layer can be
represented as shown in Eq. 17.

xi � Wi*xh + bi (17)
Finally, the outputs of the classifier and regressor are combined

to obtain the final output for weld seam defect detection. However,

during YOLOX-s model training, for the sake of technical loss
convenience, a label-matching strategy (SimOTA) is employed
for the allocation of positive and negative samples. To enhance
the training accuracy of YOLOX-s, the goal is to minimize the loss,
or in other words, minimize the cost by assigning real bounding
boxes to corresponding anchor points, thereby improving the
model’s training effectiveness.

4 Algorithm model simulation testing

This section primarily focuses on the simulation performance
testing of the two proposed models, examining their practical
application effects in real-world scenarios. Performance
evaluation metrics include tracking error, success rate, precision,
detection accuracy, among others.

4.1 Welding robot tracking model
performance testing

In order to verify the performance of the proposed welding
machine tracking model, the study will select a self built dataset to
evaluate the performance of the proposed model. In the experiment,
the prominent HY Vision Studio equipment was used to collect
images of the weld seam. The collected image data includes
information such as the position, angle, width, height, and depth
of the weld seam. At the same time, Adobe Photoshop software is
used to perform general noise detail processing on the collected data.
This dataset was obtained through HY visual studio equipment,
which collected 156545 continuous welding trajectory images on
site, while 235422 continuous welding seam images were collected
from the network and welding site. The collected data will be cleaned
and organized, and the training and testing sets will be arranged in a
7:3 ratio. The training results are output as tracking coordinate
values. The software platform adopts a stable WINDOWS7 system
as the testing platform. Considering the high hardware platform
requirements for dense sampling, the latest INTEL I9 series
processing is used in the experiment, and the graphics card is
NVIDIA RTX3080Ti, to meet the experimental needs. Finally,
use the Python software platform to complete the experimental
simulation analysis. Precision (P), success rate, welding seam
tracking error, recall (R), and mean average precision (MAP) will
be selected as evaluation benchmarks. Additionally, classic tracking
algorithms, such as Minimum Output Sum Square Error (MOSSE)
and Discriminative Scale Space Tracker (DSST), will be introduced
as testing benchmarks. The initialization parameters of the
experimental models are presented in Table 2.

Firstly, under the digital twin system, the robot’s target tracking
parameters will be inputted, and the three tracking models will
perform welding according to the target trajectory. The tracking
error results for the three models in different image sequences are
illustrated in Figure 6.

From the results in Figure 6, it can be observed that the target
tracking effects vary across different image sequences. The proposed
model demonstrates the best performance, with a maximum tracking
error of −0.232 mm and an average absolute tracking error of 0.08 mm.
TheDSSTmodel follows with amaximum tracking error of −0.312 mm

FIGURE 5
Schematic diagram of YOLOX-s model coupling.
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and an average absolute tracking error of 0.155 mm.TheMOSSEmodel
exhibits the poorest performance, with a maximum tracking error
of −0.296 mm and an average absolute tracking error of 0.163 mm.
Additionally, a comparison of the tracking accuracy and success rate for
different models is presented in Figure 7.

Figures 7A, B present the comparison results of tracking
accuracy and tracking success rate for different models. The
Overlap Rate threshold represents the average overlap rate, used
to assess the degree of bounding box overlap, while the Location
Error threshold is the localization error used to distinguish whether
the bounding box accurately captures the target. The proposed
model achieves the fastest convergence, with a peak accuracy of

0.845, while the DSST model and MOSSE model reach peak
accuracies of 0.809 and 0.605, respectively. Furthermore,
comparing the tracking success rates of different models, as the
average overlap rate increases, the tracking success rates of all three
models continuously decrease. Overall, the proposed model exhibits
the highest tracking success rate, with an improvement of 13.65%
and 21.35% compared to DSST and MOSSE tracking models,
respectively. Additionally, a comparison of tracking quality in
different welding scenarios is shown in Figure 8.

Figures 8A–C depict the tracking quality comparison results for the
MOSSE, DSST, and proposedmodels, respectively. From the data in the
figures, it is evident that the proposedmodel performs better in tracking
height, width, andmelt depth, with amean fitting rate of 96.65%. This is
significantly superior to the other twomodels. TheMOSSEmodel has a
mean fitting rate of 80.35%, indicating poorer tracking quality, while the
DSST model has a mean fitting rate of 86.67%, better than MOSSE but
inferior to the proposed model.

4.2 Weld seam detection model
performance testing

Simultaneously, the performance of the proposed weld seam
detection model was tested. The image input resolution was set to
640 × 640, and the experiments were conducted using the
PyTorch 1.2 framework. The model’s learning rate was set to
0.01, and training was performed for 500 rounds. YOLOv4 and
Faster-RCNN were introduced as baseline tests. A comparison of
the detection results for different models is shown in Figure 9.

Figures 9A, B present the results for detection accuracy and
detection loss, respectively. Comparing the best detection results for
the three models when converged, the proposed model achieves a
detection accuracy of 97.35%, while YOLOv4 and Faster-RCNN
achieve accuracies of 90.65% and 83.21%, respectively. The losses for
the proposed model, YOLOv4, and Faster-RCNN when converged
are 0.023, 0.045, and 0.076, respectively. Additionally, a comparison
of detection errors in melt depth and excess height for different
models is shown in Figure 10.

Figures 10A, B present the results of weld penetration depth and
reinforcement height detection, respectively. In the comparison of

TABLE 2 Model initial parameters.

Parameter indicator type Numerical value

Image size 480 × 480

Window size 48 × 48, 108 × 80, 97 × 107

Number of gradient directions 9

Padding 2.05

FIGURE 6
Comparison of tracking errors among different tracking models.

FIGURE 7
Comparison of tracking accuracy and tracking success rate. (A) Experiment number MOSSE, (B) Overlap threshold Comparison of tracking
success rates.
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weld penetration depth, the proposed model demonstrates a
detection error within the range of −0.06mm, while YOLOv4 and
Faster-RCNN exhibit errors of 0.11 mm and 0.13mm, respectively.
Regarding reinforcement height detection, all three models show
comparable performance, but the proposed model is overall more

stable with a detection error controlled within a range of 0.09 mm.
Compared to YOLOv4 and Faster-RCNN, the detection error is
reduced by 9.63% and 12.35%, respectively. Finally, a comprehensive
comparison of the weld detection performance of the three models is
presented in Table 3.

FIGURE 8
Comparison of tracking quality between different models. (A) Location error threshold Comparison of tracking accuracy, (B) Experiment number
DSST, (C) Improve KCF.

FIGURE 9
Comparison of detection accuracy of different models. (A) Detection accuracy, (B) Detection loss.
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Table 2 summarizes the comprehensive weld quality
comparison results, encompassing quality checks for four
common weld defects: spatter detection, weld bead detection,
porosity detection, and slag inclusion detection. The results
indicate that the proposed model outperforms the others in
terms of precision, recall, and detection speed. For instance, in
the comparison of spatter defect detection speed, Faster-RCNN,
YOLOV4, and the proposed model achieve frame rates of 17.54FPS,
21.52FPS, and 26.54FPS, respectively, with the proposed model
demonstrating the best overall performance.

5 Conclusion

Welding robots find widespread application in industrial
manufacturing, yet they face challenges such as low welding accuracy
and inadequate weld quality inspection, especially in high-precision and
complex scenarios. To address these issues, an intelligent welding robot
tracking technology based on digital twin technology is proposed. The

approach involves utilizing the KCF model for feature extraction in the
first welding frame image, simultaneously collecting local HOG features
to enhance feature details and achieve target tracking through filter
training. Additionally, a weld quality detection model based on the
YOLOX-s algorithm was proposed, extracting features through the
CSPDarknet network, and performing feature detection after merging
features through the FPN layer. In tracking model testing, the proposed
model’s average tracking error absolute value was 0.08 mm, whereas
DSST andMOSSE exhibited errors of 0.155 and 0.163 mm, respectively.
In tracking quality comparison, the proposed model demonstrated an
average tracking fitting degree of 96.65%, while MOSSE and DSST
exhibited 80.35% and 86.67%, respectively. In weld detection, the
proposed model, YOLOv4, and Faster-RCNN achieved detection
accuracies of 97.35%, 90.65%, and 83.21%, respectively. In weld
penetration depth quality detection, the proposed model’s detection
error was within the range of −0.06 mm, while YOLOv4 and Faster-
RCNN exhibited errors of 0.11 and 0.13 mm, respectively, making the
proposed model’s weld detection error the lowest. It can be seen that the
proposed model has excellent performance and meets the requirements

FIGURE 10
Comparison of weld seam detection errors among different models. (A) Melting width error detection, (B) Residual height error detection.

TABLE 3 Comprehensive comparison of model weld seam detection.

Detection type P R MAP Detection rate (FPS)

Sputtering defect detection Fasler-RCNN 0.823 0.828 0.795 17.54

YOLOV4 0.865 0.856 0.824 21.52

Improve YOLOX-s 0.956 0.963 0.935 26.54

Welding defect detection Fasler-RCNN 0.853 0.845 0.802 16.54

YOLOV4 0.875 0.868 0.832 20.54

Improve YOLOX-s 0.965 0.956 0.931 25.54

Pore defect detection Fasler-RCNN 0.812 0.824 0.813 18.64

YOLOV4 0.845 0.835 0.832 19.54

Improve YOLOX-s 0.934 0.945 0.935 25.64

Detection of slag inclusion defects Fasler-RCNN 0.846 0.835 0.796 17.64

YOLOV4 0.856 0.845 0.826 22.54

Improve YOLOX-s 0.945 0.952 0.932 26.75

Frontiers in Mechanical Engineering frontiersin.org10

Kang and Chen 10.3389/fmech.2024.1367690

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1367690


of welding robot automation development. The research content will
provide important technical support for the development and
construction of Industry 4.0. However, while the technology in this
study shows excellent results for common weld quality detection,
challenges remain in detecting defects such as weld beads and
abrasions. Future work should focus on gathering more feature data
to improve the model’s detection effectiveness.
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