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Finding innovative, stable, and environmentally acceptable perovskite (PVK) sunlit
absorber constituents has developed a major area of study in photovoltaics (PVs).
As an alternative to lead-based organic-inorganic halide PVKs, these PVKs are
being researched for use in cutting-edge PVK solar cells. While there has been
progress in this field as of late, there are still several scientific and technical
questions that have yet to be answered. Here, we offer insights into the big picture
of PVK toxicity/instability research, and then we discuss methods for creating
stable, non-toxic PVKs from scratch. It is also believed that the processing of the
proposed PVKs, which occurs between materials design and actual devices,
poses novel challenges. PVK PVs that are both stable and ecologically benign
can be created if these topics receive more attention. It is interesting to note that
although perovskite solar cells (PSCs) have impressive power conversion
efficiency, their commercial adoption is hindered by lead toxicity. Lead is a
hazardous material that can cause harm to humans and the environment. As a
result, researchers worldwide are exploring non-toxic lead-free photovoltaics
(PSCs) for a sustainable and safe environment. To achieve this goal, lead in PSCs is
replaced by non-toxic or less harmful metals such as tin, germanium, titanium,
silver, bismuth, and copper. A study has been conducted that provides
information on the characteristics, sustainability, and obstacles of replacing
lead with these metals in PSCs. The paper also explores solutions for stability
and efficiency issues in lead-free, non-toxic PSC commercialization, including
alteringmanufacturing techniques and adding additives. Lastly, it covers the latest
developments/future perspectives in lead-free perovskite solar cells that can be
implemented in lead-free PSCs.
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1 Introduction

Despite being the most plentiful, free, and sustainable energy
source, traditional photovoltaics (PVs) are still more expensive than
fossil fuels in most places (Gratzel, 2014; Green et al., 2014). This
highlights the critical need for the rapid advancement of PVs of the
subsequent group that are both extremely competent and suitably
priced. In this context, perovskite (PVK) solar cells (PSCs) have
developed as a revolutionary thin-film PV technology, rapidly
reigniting research into the development of PVs (Liu et al., 2013;
Jeon et al., 2014; Correa-Baena et al., 2017). The power conversion
efficiency (PCE) of PSCs has climbed recklessly now up to 23%
which has been shown in (Kojima et al., 2009; National Center for
Photovoltaics, 2024).

The major light absorbers in PSCs are PVK-type materials.
Since the earliest days of PSC research, lead-based organic-
inorganic halide PVKs (OIHPs) (Kim et al., 2012; Zhou et al.,
2016), with a typical chemical formula of ABX3 (Kim et al., 2012;
Zhou et al., 2016), have been the most explored PVKs. PVK
absorber materials now include “low-dimensional” and
chalcogenide PVKs (PCP) (Snaith, 2013; Cao et al., 2015; Tsai
et al., 2016; Xiao et al., 2018). Perovskites are a class of extremely
effective solar cells based on Pb halides. The most popular type is
Pb-based organic-inorganic halide perovskites, which have the
general formula ABX3. Here A can be CH3NH3 + (MA+) or
HC(NH2)2 + (FA+); B is Pb2+; and X can be I, Br or Cl (shown in
Figure 1). These perovskites are widely studied because of their
high efficacy and low rate. They can be used in different forms,
including thin films, quantum dots, and nanorods. However, the
stability and degradation of perovskites are important
issues that need.

Despite current research into alternate PVKmaterials, the B-site
positive ion in modern PSCs is still lead (Fabini, 2015). If all the

electricity in the United States were to be generated by PSCs using
the most well-deliberated OIHP, the annual consumption of lead
would be 160 tons (Fabini, 2015). Eliminating Pb from PSCs is the
only long-term solution to the Pb-toxicity problem, even though
PSCs may be managed and regulated to decrease environmental Pb
discharge. The quantity of harmful components permitted in
consumer or domestic niche applications, such as portable PVs,
is extremely low (Hailegnaw et al., 2015). The band alignment
between the perovskite material and the selective materials of
n-type and p-type is crucial for effective charge extraction. In
particular, the electron transport layer’s conduction band edge
should be lower than the perovskites, while the hole transport
layer’s valence band edge should be higher. This relationship is
illustrated in Figure 2.

United States, Occupational Safety and Health
Administration (OSHA), for instance, classifies lead and its
compounds as very dangerous and has established a legally
acceptable exposure limit of 0.05 mg/L for general industry
(Levin et al., 1997). Due to the high expense of creating Pb-
based PSCs and the need to invest heavily in protecting workers’
health from the metal’s narcosis and eye/nose/throat irritation.
The necessity for organic positive ions to cover the “A-site” in the
PVK assembly is another major issue with existing lead-based
bulk OIHPs. These organic compounds have a mild interaction
with the metal-halide octahedra at PSC circumstances when the
inorganic cations are present (Brunetti et al., 2016).

Although PVKs include ammonia functional groups in their
crystal structure, the organic species inside them are more
hygroscopic, making them more susceptible to deterioration
when exposed to air (Leijtens et al., 2015; Rong et al., 2015).
Lead and chemical instability of PSCs based on lead-containing
bulk OIHPs are the key difficulties. To solve these issues, researchers
must identify novel PVK options that are innocuous and firm while

FIGURE 1
The lattice assembly of common OIHPs.
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hitherto possessing sufficient PCE as an alternative to the currently
employed lead-based PSCs. From this viewpoint, this paper
primarily emphasizes the critical need to pinpoint the historical
roots of the current PVK light-absorber materials’ inherent toxicity
and instability, and then address approaches to designing new
environmentally friendly, stable PVKs. Future synthesis of novel
lead-free PVK compounds is discussed to round up the paper.

2 Evaluation of prospective new PVKs’
effects on the environment and their
durability over time is essential

Getting the basic stuff out, synthesis/processing of cells, cell
assembly, utilization, and decommissioning of cells are the usual
stages in the life span of a PSC panel (Volans, 1987; Babayigit et al.,

FIGURE 2
(A) A typical PSC energy diagram shows the energy levels of materials in different layers and (B) the band-bending of energy levels during charge
separation.

FIGURE 3
Toxicity evaluation and mechanisms in PVKs (A) PVK solar panels have an average projected lifetime altered (Babayigit et al., 2016). (B) Possible
pathways of PVK toxicity, (C) Biological experiment outcomes utilized to evaluate Pb and Sn-based PVK toxicity (Jellicoe et al., 2016).
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2016), as illustrated in Figure 3A. Dangerous PVK-formed species
will be released during all these phases, but it is too soon to do a full
life cycle analysis of the PSC technology. Consequences like as land
and water degradation are inevitable, as is the introduction of these
toxins into the food chain, which ultimately reaches human people
(Florence et al., 1988). Possible catastrophic incidents during PSC
production, transit, storage, and use, such as fire or floods, provide
additional environmental concerns (Dauvalter, 1955). As a result,
Pb’s indirect toxicity has far-reaching effects on human health and
the natural world. In addition, PVKs may be detrimental to
ecosystems and people through a variety of different processes,
such as acidification and nanotoxicity (see Figure 3B).

Sn-based PSCs, for instance, have been shown to attain PCEs of
10%, making them a promising green option for PSCs. Recent
research (Babayigit et al., 2016), however, shows that in Sn-based
PVK materials, oxidation may proceed rapidly in ambient or
aqueous settings, resulting in the creation of hydroiodic acid
(Babayigit et al., 2016; Abate, 2017).

Zebrafish study shows that Strontium Iodide is more intensely
lethal when compared to Lead Iodide (Figure 2C). The greater
acidification effects of Sn2+ compared to lead ions are largely to
blame for this. Nanoscale lead-based and lead-free PVKs for PSCs
and optoelectronics are expected (Im et al., 2014; Jellicoe et al.,
2016). Nanoscale materials harm cells and biological systems, so,
probably, nanoscale PVK materials are also dangerous.

The utilization of a mesoporous layer in the mesoporous
architecture facilitates the expeditious extraction of
photoinduced electrons from the perovskite material. This
results in a reduction of the electron transport distance and
eliminates the need for a high level of crystal quality to
achieve effective light absorption (Tétreault et al., 2010).
Nevertheless, in comparison to other arrangements,
mesoporous perovskite solar cells often exhibit a reduced Voc

(Kang et al., 2016) and diminished light absorption beyond
720 nm wavelengths (Chen M. et al., 2016). The need for a

perovskite overlayer to avoid mesoporous layer-HTL contact
might cause short circuits (Yan et al., 2016). Moreover, there
is an ongoing dispute over the role of the mesoporous layer,
especially considering the remarkable efficiencies demonstrated
by two-dimensional perovskite solar cell (PSC) devices. The
highest recorded efficiency, as reported in reference (Fu et al.,
2014), is at 20.7%. Titanium dioxide (TiO2) is used as a
mesoporous layer due to its broadband gap energy of 3.5 eV,
chemical and thermal stability, photodegradation resistance,
non-toxicity, and cost-effectiveness (Haruyama et al., 2015;
Sabba et al., 2015). Figure 4 shows that mesoporous layer
thickness affects perovskite polycrystal penetration into
TiO2 pores.

In a study conducted by authors (Wang et al., 2016), it was
observed that a mesoporous layer of TiO2 with a thickness ranging
from 260 nm to 440 nm adequately filled the pores of mesoporous
TiO2, as depicted in Figure 5. These results suggest that between
these bounds lies the sweet spot for maximizing light absorption
while minimizing recombination due to route length. When testing
the solar efficiency of each component, it was discovered that the
mesoporous TiO2 device, although thinner, performed well Figure 6.
One possible explanation is that the higher electron density in TiO2

improves charge transfer and collecting efficiency (Wu et al., 2017).
Nanoscale PVKs may be harmful due to their fibrous structure

(Xiao Z. et al., 2015; Ju et al., 2017a; Ju et al., 2018), and radical
species group (Ming et al., 2016). A meaningful evaluation of the
toxicity of PVK compounds, both those already in use and those that
have yet to be discovered, necessitates the prompt construction and
implementation of a systematic system of biological investigations.
Despite the potential importance of this avenue for PSC research,
nothing has been done thus far.

Figure 7 shows that water, light, heat, and oxygen are the most
detrimental to the stability of a PVK material. A wide range of
processes, including polymorphic transformation, hydration, ion
transport (Ke et al., 2017a), breakdown, and oxidation, are

FIGURE 4
Perovskite solar cell cross-sectional SEM picture (Patrick et al., 2015).
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responsible for the degradation of OIHPs by these agents. While Pb-
based OIHP deterioration has been extensively investigated in recent
years, our knowledge of Pb-free PVKs is still in its infancy. The
stability problem of upcoming PVK materials may be much more
complicated than that of Pb-based OIHPs, according to certain
studies in the literature.

Many decay pathways may be active simultaneously. CsSnI3, a lead-
free candidate PVK material with a 1.3 eV optical bandgap and decent
carrier mobility, is one such example (Yin et al., 2017). CsSnI3 PVK is
thermally stable because of its inorganic composition and robust
covalent bonding for its lattice assembly (Volonakis et al., 2017). The
“black” phase of g-CsSnI3 rapidly undergoes a “yellow” polymorph
transformation when exposed to air (Saparov et al., 2015; Slavney et al.,
2016). Nevertheless, oxygen may quickly oxidize Sn (II) in CsSnI3 to Sn
(IV), turning it into Cs2SnI6 (Giustino and Snaith, 2016).

Moisture from the air may also penetrate CsSnI3 PVK thin films,
where it can form hydrates and break down the material into metal
halides. The PCE of PSCs based on CsSnI3 may drop precipitously
due to a combination of these degrading processes. Due to their
extreme instability in the ambient environment, they can decay in a
matter of minutes if not enclosed.

It is difficult to examine these pathways in isolation, but doing so
is essential if we are to solve the PSC instability problem once and for
all. In addition, there are several other Pb-free PVK possibilities
whose stability and deterioration have been poorly researched (Xiao
et al., 2017a; Xiao et al., 2017b; Yang et al., 2017), including CsGeI3,
CsSnxGe1-xI3, Cs2TiI6-xBrx, and Cs2AgBiBrI6. Research into their
resistance to the major environmental variables (humidity, light,
heat, oxygen) and possible breakdown mechanisms is promising.
New, Pb-free, stable PVKs for PSCs can be designed using the

FIGURE 5
Estimating the IV curves of a device, coating thickness, and pore filling in a perovskite (Wang et al., 2016).

FIGURE 6
Mesoporous insulating-oxide-based PSC (Chung et al., 2012).
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information gleaned by studying the stability of these
developing PVKs.

3 Theory and experiment required to
find nontoxic, stable PVKs for PVs

Theoretical simulations screen the enormous number of PVK family
compounds and derivatives to find safe and stable candidate PVKs.
There are typically two phases to such materials screening processes.
Finding potential elements to substitute for Pb in current Pb-based
OIHPs is the first step in solving the toxicity problem. Substitutes for
PVKs in PV applications must have many of the same fundamental
electrical, conveyance, and ocular features. Group IV elements Sn2+ and
Ge2+ are often cited in the literature as suitable lead ion substitutes. Lead-
free Sn- and germanium-based PVKs for PV applications have emerged
from this logic. Sn-based PSCs have PCE approaching 10% (Ju et al.,
2017b), even though Sn2+ may be quickly oxidized to Sn4+, lowering
performance. Potential Pb-free PVK candidates can also be identified
using an electrical structure-based approach.

Pb-based OIHPs have high PCEs because the Pb lone-pair 6s
orbital has a strong antibonding interaction with the I 5p orbital,
allowing for longer carrier lifetimes and diffusion lengths (Zhang
et al., 2017). Several researchers have focused on PVKs made from
non-traditional metals because of the presence of lone-pair ns2
(McMeekin et al., 2016; Nakajima and Sawada, 2017; Ali et al.,
2018a). New compounds having antibonding contact between
orbitals around the valence band maximum can likewise exhibit
band-edge behaviour like lead-based PVKs. Skutterudite structure
has been proposed, for instance (Dai et al., 2017). Unlike lead-based
PVKs, IrSb3 possesses a band-edge feature indicative of p-p*
antibonding interaction. The crystal structure for PVK materials
provides another angle from which to hunt for promising Pb-free
PVK options.

Replace Pb2+ with an aliovalent metal cation and the resulting
PVK structure will have a different chemical formula from the usual
AB(II/III/V) X3/X6/X9 (Zhao et al., 2017a; Zhao et al., 2017b). The
electrical structure of the compounds will be altered because of this
structural alteration (Sakai et al., 2017). Figure 8A shows how crystal
structure and chemical composition can be used to create novel
PVK-type compounds with favourable electrical structures for PV
applications.

To accurately anticipate the stability of PVKs, a theory-
experiment integrated method is required because of the
complexity of the problem (Pang et al., 2016; Sun and Yin, 2017)
To get a general idea of the stability of the PVK phase, a common
empirical rule is to utilize Goldchmidt’s tolerance factor (t). Cubic
assemblies are suggested by fits in the 0.9% t% one range for PVKs,
whereas orthorhombic assemblies are suggested by fits in the 0.71%–
0.9% t% one range. Other configurations include the hexagonal
assembly, for t% 0.71 or t R 1. Figure 8B displays a flow chart for
showing non-hazardous metal-based PVK intrants with PV
constancy. This technique logically combines theory and
experiment. Figure 8A depicts the first step of the process, which
involves identifying a suitable metal-free PVK that does not include
lead. Although the organic A-site positive ion is intrinsically
unstable, positive ions such as caesium ions (Castelli et al., 2012;
Korbel et al., 2016) are employed as replacements (Schmidt et al.,
2017; Takahashi et al., 2018) due to their sturdier ionic interaction
through unknown negative ions.

The most promising PVK candidates may be identified by
combining A with B-site replacement. This method has been
used to effectively anticipate and synthesise compounds like
CsSnI3, Cs2AgBiBr6, and Cs2TiBr6, although there may be
additional PVK options that are less toxic and more stable (Lee
et al., 2012; Burschka et al., 2013; Pilania et al., 2016; Li Z. et al.,
2018). Several alternatives to B-site ions in PVK structures,
including monovalent metals and trivalent metals (Xiao et al.,

FIGURE 7
Degradation of new PVK materials due to environmental variables and their processes.
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2014; Chen et al., 2018a; Ávila et al., 2017; Xiao J. et al., 2015;
Elumalai et al., 2016), have been proposed. Substituting a
tetravalence metal for the B-site ion stabilizes vacancy-order
double PVKs (Kalyanasundaram and Grätzel, 1998; Leijtens

et al., 2013). The same atoms in various valence states can
substitute the B-site ion in electronic double PVKs (Xin et al., 2011).

Using Figure 8B’s manufacturing cycle, first, validate new
compounds’ intrinsic or thermodynamic stabilities using “density

FIGURE 8
Strategies for Finding Stable, Nontoxic PVKs (A) Example of the use of crystal structure and electrical structure information to potentially choose
stable, non-toxic PVK candidates for PSCs. (B) A schematic showing how to find safe, stable PVK candidates to use in PSCs (Debbichi et al., 2018).
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functional theory (DFT)” based design to guarantee they have the
requisite PV-related electronic/optical properties. As shown in
Figure 3, when the PVKs have been synthesized, they are put
through a series of experiments to determine how stable or
degradable they are in the presence of various external
environmental stimuli.

DFT-based mechanistic research complements experimental
studies (Bi et al., 2013; Leijtens et al., 2014). These parallel
theory-experiment studies (Son et al., 2014; Zuo et al., 2015)
show how to modify PVK crystal structure/composition to find
more stable PVK candidates. As can be seen in Figure 4B, the entire
stability-screening procedure considers the crucial electrical
assembly and the PVKs’ photovoltaic properties.

High amount simulated ingredients strategy can anticipate lead-
free PVK ingredients for PV utilizing computational quantum-
mechanical, thermodynamic, database development, and
intelligent data-mining methods. Although useful, these
calculations cannot replace a full material simulation, and they
often only solve a portion of the design issue. The DFT-
computed descriptors are useful for screening candidate materials
and determining their important features (Agresti et al., 2016).

Pauling’s principles (Ball et al., 2013), are computational
descriptors for intrinsic stability. Bandgap and effective mass can
approximate light absorption and carrier mobility. The basic
components of a material can provide an approximation of its
cheap cost and nontoxicity. Descriptors screen candidates with a
PVK structure and its modifications for materials with the right
attributes (Ball et al., 2013).

High-throughput computational design is computationally
expensive due to the huge conformation space and the enormous
number of acceptable descriptors for essential properties, many of
which are derived by more precise functional modelling
(Wojciechowski et al., 2014). In divergence, a good machine
learning model may be taught using existing data or data derived
through computations. To find novel candidate materials with
desirable qualities, this approach may be applied to the periodic
table, yielding insights, and guiding experimental design (Niu et al.,
2015). PVK stability and bandgap have been estimated in previous
works using a variety of techniques based on the identification of
pertinent properties (Christians et al., 2014; Qin et al., 2014; Jeon
et al., 2015).

4 Advances in lead-free perovskites

4.1 Tin perovskites

Group 14 components Tin’s 5s2 electrical configuration
resembles lead’s 6s2. With a similar outer electron shell structure
to lead (Pb) but a smaller ionic radius, tin may be a preferable option
(Zhang Q. et al., 2018). Tin can replace lead in PSCs (Wang X. et al.,
2019). Tin is cheap, non-toxic, and electrically comparable to lead
(Shanon, 1976; Ke et al., 2017b). The most researched lead-free
perovskite alternative is tin-based (Fu, 2019). Tin halide-based
perovskites have low exciton binding energy, a tiny band gap,
and excellent carrier mobility (Liu X. et al., 2020). Sn-based
perovskites offer several advantages for solar cells, but their
unstable divalent Sn states make them extremely conductive and

inefficient (Song et al., 2017). Tin-based lead-free PSCs are
ineffective because FASnI3 perovskites rapidly crystallise and
oxidise, resulting in rough morphology and large defect
concentrations (Liu X. et al., 2020). Table 1 lists current tin-
based perovskites and ways to improve them.

4.2 Perovskites with a composition based
on bismuth

The electrical configuration of group 15 element bismuth is Bi3+

(6s2). Bismuth is less toxic than lead and has many dimensions due
to its BiX63 octahedron structure (Shanon, 1976; Zhang et al., 2023).
Subsalicylate and bismuth subcitrate are therapeutic (Ganose et al.,
2017). Chronic bismuth use can induce encephalopathy and renal
failure (Ganose et al., 2017). Bismuth perovskites are attractive
because of their lead-like isoelectronic valence shell (Lozhkina
et al., 2018). Like lead (1.21 A°), Bi3+ is stable and has an ionic
radius of 1.05 A° (Wani et al., 2015; Liu et al., 2022). Bismuth-based
perovskites can replace lead-based ones due to their optoelectronic
properties, environmental friendliness, and light, heat, and moisture
resistance (Dai and Tüysüz, 2019). Bismuth-based perovskites have
the most stable optical and structural characteristics since optical
parameters did not change after 3 months without surface
passivation (Kim et al., 2016).

Table 2 lists bismuth-based perovskites and strategies for
overcoming obstacles.

4.3 Perovskites with a composition based on
Sb (antimony)

Group 15 element antimony (Sb3+) has an ionic radius of
0.75 A° and an electronic configuration of 5s2 (Wang X. et al.,
2019). An alternative to lead, antimony is non-toxic and twice as
affordable as Sn per kilogram (Lozhkina et al., 2018). Irina
Shtangeeva et al. found that high amounts of antimony in
growth media were very hazardous to plants, resulting in a
significant decrease in leaf and root biomass output (Liu Y. et al.,
2019). The alignment of Sb’s 5s and 5p orbitals with p-block anions
makes it a lone pair effect heavy hitter, and there are several
advantages to being in the 3+ oxidation state (Lozhkina et al., 2018).

Trivalent Sb, which has one set of 5s2 electrons instead of lead, is
an option. Therapeutics are the primary use of antimony
compounds (Lozhkina et al., 2018). Liu et al. (2018) performed a
theoretical evaluation of Cs3Sb2X9’s optoelectronic characteristics.
The computed carrier mobilities of Cs3Sb2I9 indicate an appropriate
band energy gap for hydrogen production and CO2 reduction due to
enhanced electronic mobilities. Cs3Sb2I9’s photocatalytic activity is
enhanced by the significant difference in hole and electron
mobilities, which slows electron-hole recombination. The
photovoltaic performance of Cs3Sb2I9 is superior to lead-based
perovskites, making it a viable replacement (Singh et al., 2018).
To manufacture solar cells efficiently, issues with antimony-based
perovskites must be resolved. In terms of solar performance,
solution-processed Sb-based perovskites are best suited for the
dimer phase (Karuppuswamy et al., 2018). The amorphousness
and pinholes in the surface form of the zero-dimensional dimer
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of methylammonium antimony iodide cause its poor PCE (Zuo and
Ding, 2017). Table 3 lists antimony-based perovskites and strategies
for overcoming obstacles.

4.4 Perovskites with a composition based
on germanium

The ionic radius of Ge2+ is 0.73 Å, and its electronic
configuration is 4s2 (Wang X. et al., 2019; Yang et al., 2021). It
is a group of 14 elements. Germanium is easy to find in nature, and

its pure organogermanium products are safe (Schauss, 1991; Ganose
et al., 2017). Germanium has little toxicity, except for tetrahydride
germane (Gerber and Léonard, 1997). The covalent character and
higher electronegativity of Germaniummake it a possible alternative
to lead PSCs (Kopacic et al., 2018). Ping-Ping Sun et al. found that
MAGeI3 is theoretically very comparable to MAPbI3 in terms of
band gap, stability, outstanding optical properties, and hole and
electron conductivity (Sun et al., 2016). The stability and
effectiveness of Ge and Sn as lead mono substitution options
have been demonstrated in lead-free perovskite studies (Ali et al.,
2018b). It is thought that perovskites based on Ge, as opposed to tin

TABLE 1 Current tin-based perovskites and their fabrication methods.

Name of the
compound

Electrical properties
(Voc (V), Jsc (mA cm2)

Fabrication methods Reference number

CsSnI3 0.3816, 25.71 One-step/Weak hydrazine atmosphere Shum et al. (2010), Chung et al. (2012), Kumar et al. (2014),
Marshall et al. (2015), Chen et al. (2016b), Marshall et al.
(2016), Moghe et al. (2016), Song et al. (2017), Wang et al.

(2020), Ban et al. (2021)

CsSnBr3 0.86, 22.13 Easy solvothermal procedure Chen et al. (2016b), Gupta et al. (2016), Li et al. (2018b),
Coduri et al. (2019), Bonomi et al. (2020), Fang et al. (2021)

CsSnCl3 0.87, 19.82 Easy solvothermal procedure Chen et al. (2016b)

Cs2SnI6 0.53, 5.48 Vapour deposition, solid-state reaction,
thermal evaporation, and rapid annealing

Qiu et al. (2017), Umedov et al. (2020)

MASnI3 0.88, 16.8 Spin coating, Thermal evaporation Qiu et al. (2017)

FASnI3 22.5, 58 Antisolvent dripping + single-step spin-
coating

Koh et al. (2015), Liao et al. (2016), Shi et al. (2017a), Shao
et al. (2017), Meng et al. (2020a)

FASnI2Br 6.82, 54.5 Spin coating + Annealing + Thermal
evaporation

Zhang et al. (2016a)

TABLE 2 Current bismuth-based perovskites and their fabrication methods.

Name of the compound Electrical properties (Voc (V),
Jsc (mA cm2)

Fabrication methods Reference number

Methylammonium iodo bismuthate
((CH3NH3)3Bi2I9)

0.51, 0.7 Single-step spin coating/low-temperature
solution technique

Kulkarni et al. (2017)

Cs3Bi2I9 0.84, 22.13 Easy solvothermal procedure Sanders et al. (2018)

AgBi2I7 0.57, 3.31 Synthesis focused on finding solutions Singh et al. (2016)

MA3Bi2I9 0.58, 0.45 Coating with spin, annealing, and sintering Shtangeeva et al. (2011a), Zhang
et al. (2016b)

TABLE 3 Current antimony-based perovskites and their fabrication methods.

Name of the
compound

Electrical properties (Voc (V), Jsc
(mA cm2)

Fabrication methods Reference number

Cs3Sb2I9 0.76, 2.83 Approach to solution processing Karuppuswamy et al. (2018)

(NH4)3Sb2I9 1.04, 1.16 An approach to crystallization that does not involve
solvent vapour

Weber et al. (2019)

(CH3NH3)3Sb2I9 0.63, 5.10 Coating using spin, followed by annealing and
sequential depositing

Zuo and Ding (2017)

Rb3Sb2I9 0.56, 4.26 Method for vapour diffusion crystallization Chen et al. (2019), Yang et al.
(2021)
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or lead, have smaller bandgaps due to the higher orbital energy of Ge
(4s) as compared to Sn (5s) and Pb (6s). Perovskites based on Ge, on
the other hand, exhibit larger bandgaps compared to those based on
tin and lead. The fact that the [GeI6] octahedral structure is
structurally deformed is the primary cause of the unexpected
finding (Liu et al., 2018). Germanium compounds may block
mutagenic activity and prevent cancer formation under certain
conditions, demonstrating they are neither carcinogenic nor
mutagenic (Gerber and Léonard, 1997). The tumour incidence
was reduced in rats that were administered 5 parts per million of
sodium germanate in their drinking water during their lives (Gerber
and Léonard, 1997).

While germanium perovskite has several benefits, it has some
problems that must be addressed for increased efficiency.
Commercial usage of germanium-based perovskites in
photovoltaics has been hindered by poor performance (below
0.2%) and device instability (Kopacic et al., 2018). In
germanium-based PSCs, Ge2+ oxidation is the main issue. In
PSCs based on germanium, this results in poor performance
(Wang X. et al., 2019). On the other hand, if future research can
reach efficiencies beyond 10%, mixed Ge/Sn-based perovskites
might be a promising material. The exorbitant price of Ge is one
potential drawback of solar cells based on Ge (Ke and Kanatzidis,
2019). Table 4 lists antimony-based perovskites and strategies for
overcoming obstacles.

4.5 Perovskites with a composition based
on titanium

Titanium (IV), a non-toxic element, is abundant on Earth and
has exceptional stability (Ju et al., 2018). Ti4+ has an electronic
structure of 3p6 and an ionic radius of 0.53 Å (Wang X. et al., 2019).
Common reasons for gridlock in Pb-free perovskites include
instability, undesirable defect states, and insufficient band gaps
(Bansode et al., 2015). Table 5 displays the titanium-based
perovskites that are currently used.

4.6 Perovskites with a composition based
on copper

Non-toxic copper is abundant and has good charge mobility
(Sani et al., 2018). Cu2+ has an ionic radius of 0.73 Å and an
electronic configuration of 3d9 (Ke et al., 2017b; Wang X. et al.,
2019). The transition metal copper is stable. In aerobic

environments, Cu2+ can form stable compounds with a high
visible absorption coefficient (Cortecchia et al., 2016). While
copper’s (Cu2+) stable oxidation state makes it a viable alternative
to lead, the halide octahedron’s corner-sharing network is
constrained by its smaller ionic radius. There are a lot of
effective hole masses, a low intrinsic conductivity, and a low
absorption coefficient in the perovskite layer (Okano and Suzuki,
2017). Perovskites made of copper that have been used so far are
listed in Table 6.

4.7 Bimetallic or double perovskites

Substituting another B′ cation for half of the B site cation in the
general formula of the perovskite structure ABO3 results in A2B2O6

or A2BB’O6, two forms of double perovskites (Saha-Dasgupta,
2020). Due to the nanocrystal surface energy in metastable
phases, nanoscale, double perovskite materials that were limited
to single monolayers exhibited quantum size effects and enhanced
stability. Stable nanocrystals include Cs2AgBiI6, which cannot be
mass-produced. The combinatorial compositions and quaternary
nature of double perovskite materials provide them with electronic
structure engineering flexibility and bandgap tunability
(Karuppuswamy et al., 2018; Khalfin and Bekenstein, 2019).
Double perovskites made of lead are more environmentally
friendly than other lead-free structures, and they have great
chemical stability, electronic dimensions, and substitutional
chemistry. LEDs, X-ray detectors, photocatalytic dye sensors,
solar cells, and lead-free double perovskites are only a few
examples of the many renewable energy and optoelectronic
applications for these materials (Dave et al., 2020; Ghrib et al.,
2021; Grandhi et al., 2021). Recent lead-free perovskites
Cs2SbAgCl6, Cs2InAgCl, Cs2BiAgCl6, and Cs2BiAgBr6 exhibit
outstanding optoelectronic properties because of their low carrier
effective masses and detectable bandgaps (Volonakis and Giustino,
2018). You may see a selection of the double perovskites that have
been utilized thus far in Table 7.

4.8 Perovskite oxide without lead

BiMnO3 is the sole transitional-metal perovskite oxide with
unique properties including insulating and high ferromagnetism in
bulk. According to a 2015 study by Di’eguez et al., solar applications
might be possible using BiMnO3 films that have lower band gaps
compared to ferroelectric oxides (Diéguez and Íñiguez, 2015).

TABLE 4 Current germanium-based perovskites and their fabrication methods.

Name of the
compound

Electrical properties (Voc (V),
Jsc (mA cm2)

Fabrication methods Reference number

CsSn0.5Ge0.5I3 0.074, 5.7 Solid-state reaction Chen et al. (2019), Li et al. (2019), Meng
et al. (2019)

MAGeI3 0.15, 4.0 Spin coating + Annealing + Sequential
deposition

Krishnamoorthy et al. (2015)

MAGeI2.7Br0.3 0.68, 0.460 Combination of sonication, spin coating, and
thermal evaporation

Krishnamoorthy et al. (2015)
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Researchers Yuji Okamoto et al. demonstrated that dye-sensitized
solar cells using perovskite oxides (SrTiO3, CaTiO3, and BaTiO3)
could achieve a high Voc in cells that were phase-pure (Okamoto
and Suzuki, 2014).

5 Possible methods for enhancing
performance in lead-free perovskites

Using additives and adjustments to the solar cell fabrication
process, lead-free PSCs may be made more efficient and stable. One
or more of the following goals can be accomplished with the
introduction of additives: control of oxidation, reduction of
vacancies, alteration of the optical bandgap, increase of the fill factor
(FF), or improvement of efficiency. The utilisation of appropriate
techniques in fabrication can successfully address issues such as
inadequate crystallisation, unfavourable morphology, and undesirable
defects. This is crucial in achieving uniform and defect-free perovskite
films without any pinholes (Ke et al., 2017c).

5.1 Tin, bismuth, Sb, and Ge-based
perovskites additives overcome obstacles

Data from (Ke et al., 2017c; Meng et al., 2019) suggests that
additives play a crucial role in lead-free perovskites. Few research
has examined the impact of additives on optical bandgap. The
power conversion efficiency (PCE) grows when the optical bandgap
narrows, as demonstrated in (Ke et al., 2017c; Meng et al., 2019). Tin-
based perovskites had increased efficiency with additives, whereas

Bismuth and antimony-based ones had lesser efficiency. This may
be because Bismuth and antimony-based perovskites have greater
optical bandgaps than tin-based ones. To increase PCE in bismuth
and antimony-based perovskites, chemicals that lower the optical
bandgap can be utilised. When additives raise the optical bandgap
of tin-based perovskites, the PCE may decrease. In experiments (Ke
et al., 2017c) adding ethylenediammonium (ED) enhanced optical
bandgaps by 1.45 eV, 1.53 eV, and 1.92 eV at 0%, 10%, and 25%
concentrations. PCE decreased with loading of 0, 8, and 23%, resulting
in 1.42%, 6.98%, and 2.45%, respectively. This is because 28% loading
results in a greater optical bandgap (Ke et al., 2017c). Optimising
additive amounts leads to improved efficiency by maintaining or
narrowing the optical bandgaps. Results in (Meng et al., 2019)
found that adding poly (vinyl alcohol) PVA did not change the
predicted optical bandgap of FASnI3 at 1.39 eV. The high PCE of
8.96% might be attributed to the PVA molecule being near the grain
boundary of the perovskite layer. Optimising the selection and number
of additives in perovskite compound production is crucial for producing
highly efficient lead-free solar cells. Table 8 shows the various effects of
adding additives to the above perovskites.

6 Recent breakthroughs/future
perspectives in PSC

Recent advancements in the field of PSCs have focused on using
different treatments, introducing hole transport materials, and
including chiral compounds to enhance their efficiency and
open-circuit voltage (Voc). These strategies will be further
explored in the following discussion.

TABLE 5 Current titanium-based perovskites and their fabrication methods.

Name of the compound Electrical properties (Voc (V), Jsc
(mA cm2)

Fabrication methods Reference
number

Cs2TiBr6 0.88, 3.84 A two-stage process for vapor deposition Chen et al. (2018b)

Cs2TiI2Br4 0.87, 3.80 A two-stage process for vapor deposition Liu et al. (2020b)

Rb2TiBr6 0.91, 3.91 A two-stage process for vapor deposition Liu et al. (2021)

Hybrid Ti-based PSCs 1.02, 3.98 A two-stage process for vapor deposition Ju et al. (2018)

TABLE 6 Current copper-based perovskites and their fabrication methods.

Name of the compound Electrical properties (Voc (V), Jsc (mA cm2) Fabrication methods Reference number

MA2CuCl0.5Br3.5 0.290, 0.021 Two-step vapour deposition method Cortecchia et al. (2016)

(CH3(CH2)3NH3)2–CuBr4 0.88, 1.78 Two-step vapour deposition method Cui et al. (2015)

MA2CuCl2Br2 0.256, 0.216 Sintering + Spin coating Cortecchia et al. (2016)

TABLE 7 Current bimetallic or double perovskites and their fabrication methods.

Name of the compound Electrical properties (Voc (V), Jsc
(mA cm2)

Fabrication methods Reference
number

Cs2AgBiBr6 1.04, 1.78 Annealed at 250° Wu et al. (2018)

Cs2NaBiI6 0.48, 1.97 Hydrothermal process with a single step Zhang et al. (2018b)
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TABLE 8 Challenges tackled by adding additives.

Recent perovskites
used

Additives used Effect of adding additive Challenges tackled by
employing effective

fabrication

Reference number

Tin Butylammonium iodide Changed the orientation of crystal
growth and enhanced grain-to-

grain contact

Sequential deposition Shtangeeva et al. (2011b)

Ethylene diammonium di
iodide (EDAI2)

The first device’s performance
reached a peak of 7.5% and

subsequently improved to a high
of 9.01%

Pulsed laser deposition (PLD)
technique

Jokar et al. (2018)

SnBr2 This addition has proven to be
effective by enhancing the PCE to
4.5% and exhibiting stability of

100 h

Anti-solvent dripping Heo et al. (2018)

SnCl2 The specific energy output (Jsc) of
the solar cell was 15.0 mA/cm2, and
the open-circuit voltage (Voc) was

385 mV; the PCE was 3.3%

Solution process Tsai et al. (2017)

SnI2 The solar cells’ efficiency increased
twofold, from around 0.78% to
around 1.8%. There has been a
reported rise of about 35% in the

values of Jsc and Voc

Melt synthesis Handa et al. (2017)

SnF2 The outcome was a bandgap of
1.28 eV and a significant

enhancement in the luminescence
lifespan, surpassing the previous

performance of the device by more
than one magnitude

Annealing Greul et al. (2017)

Piperazine Enhanced film coverage and
reduced conduction of CsSnI3 films

have been observed

Manufacturing in hydrazine-
reducing vapour

Gu et al. (2018)

Ammonium hypophosphite Better Voc and device performance,
together with higher stability, lower
defect density, and enhanced film

quality

Method of multichannel
interdiffusion

Meng et al. (2020b)

Bismuth N-methyl pyrrolidine (NMP) Adding varying concentrations of
NMP to the precursor solution
changed the crystallization rate.

Achieved a 60% improvement in Jsc
and an efficiency boost of up to

0.33 per cent

Dissolution-recrystallization method Kulkarni et al. (2017), Bai et al.
(2018)

20% BiI3 Increasing the concentration of
BiI3 causes a dramatic increase in
the photocurrent density. With an
additional 24% BiI3, 0.46 V Voc,
and 0.63 mA Jsc, the PCE in

Cs3Bi2I9 was found to be 0.25%

Method for fabricating films using
two-step evaporation and spin

coating

Ran et al. (2017), Ghosh et al.
(2018)

Sb (ANTIMONY) Methylammonium chloride Demonstrated a PCE over 2% Sequential reaction annealing Jiang et al. (2018),
Karuppuswamy et al. (2018)

Toluene Uniform film with 0.5% efficiency Two-step deposition approach, Anti-
solvent treatment

Hebig et al. (2016), Wang et al.
(2019b)

Germanium CsGeX3 Had 4.94% efficiency Calibration of optical characteristics
of lead-free inorganic PSCs is possible

without annealing

Wang et al. (2019b)
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6.1 Using various hole transfer
materials (HTM)

The data presented here emphasize the role that hole transport
materials (HTMs) play in perovskite solar cell systems’ ability to
increase efficiency and Voc. Using poly (3-hexylthiophene-2,5-diyl)
(P3HT) as the hydrogen transfer material (HTM), Sagar. M. Jain
et al. (2019) found that the fabrication efficiency of (CH3NH3)
3Bi2I9 films was raised by 1.62%. When compared to the 1.12%
efficiency attained with the conventional Spiro-OMeTAD HTL, this
value is significantly greater. Min-Cherl Jung et al. (2015) used spiro-
OMeTAD, C60, and P3HT, among other HTMs, to create
MASnBr3 perovskite solar cell devices. In that order, the
efficiencies were 0.002%, 0.221 per cent, and 0.35%. This shows
that the efficiency of the solar cell devices was greatly affected by the
HTM option, with P3HT showing the best efficiency out of the three
HTMs that were evaluated. In addition, the lack of photocurrent and
fill factor (FF) caused by spiro-OMeTAD’s high resistance is the
reason for its poor efficiency. Different HTMs can cause changes in
the open-circuit voltage of the solar cell devices; this is supported by
the fact that devices, including C60, achieve a higher Voc than P3HT
devices. Overall, these findings underscore the critical role of HTMs
in achieving improved efficiency and Voc in PSC devices and
highlight the potential for P3HT as an effective HTM in this context.

6.2 Antisolvent therapy

A study conducted by Jiewei Liu et al. discovered that using a hot
Ph-Cl antisolvent treatment prevented the electric shunting of the
Solar System and an increase in the number density of nucleation
sites in the film. When the film was annealed in an atmosphere with
a low concentration of dimethyl sulfoxide (DMSO) vapour, the
average size of the crystal particles increased. Furthermore,
according to the reference, adding DMSO vapour during
annealing increased the film quality (Song et al., 2018).

In 2017, Priyadharsini Karuppuswamy and colleagues produced
films of (CH3NH3)3Sb2I9 using antimony. They improved the film’s
surface morphology and device performance by employing
Hydroiodic acid (HI) as an additive and treating it with
Chlorobenzene (CB) Antisolvent Treatment. The alignment of
the energy levels was also improved. As can be observed from
the UV absorbance spectra, the increased surface coverage
brought about by the combination of HI and CB treatment led
to a higher absorption intensity (Karuppuswamy et al., 2018).

6.3 Interfacing manufacturing

After adding a hydrophobic scaffold to (CH3NH3)3Sb2I9 films,
several improvements were noticed. Grain size, crystallinity,
crystallisation orientation, and quality all saw improvements.
When compared to perovskites with a hydrophilic interlayer,
those with a hydrophobic interlayer produced larger grain
crystals with fewer grain boundaries, leading to better film
coverage. Priyadarshini Karuppuswamy and colleagues used
impedance spectroscopy to evaluate the effect of the pyrene layer
on transport and recombination in PEDOT: PSS/(CH3NH3)3Sb2I9

and Pyrene/(CH3NH3)3Sb2I9 PSCs. Their discovery led them to the
conclusion that pyrene prevented hysteresis in PSCs by reducing
charge carrier recombination in (CH3NH3)3Sb2I9. Researchers have
shown that adding pyrene to solar cell materials makes them more
efficient by allowing larger grains of Sb-based crystals to grow on the
material. As a result, recombination near grain boundaries is less
likely to occur (Karuppuswamy et al., 2018).

6.4 Semiconducting molecule outline

While creating inverted tin-based FASnI3 perovskite in 2019,
Cong Liu and colleagues added a semiconducting molecule known
as poly [tetraphenylethene 3,3′-(((2,2-diphenylethene-1,1-diyl)
bis(4,1-phenylene)) bis(oxy)) bis (N, N-diethylpropion-1amine)
tetraphenylethene] (PTN-Br) into the perovskite precursor. A
medium for transporting holes was established using the
semiconducting molecule PTN-Br. It achieved this by filling the
gaps between the grains at the grain borders. With a maximum
occupied molecular orbital energy level of −5.41 eV, this molecule
was selected. Additionally, Lewis adducts were formed when the
dimethylamino group of PTNBr interacted with unattached Sn
atoms. By interacting with the perovskite material, the π-
conjugated polymer PTNBr was able to neutralize or deactivate
trap states. Consequently, an efficiency of 7.14% was achieved.
Integrating PTN-Br into the device increased its stability against
UV radiation, thanks to the UV barrier and PTN-Br’s passivating
activity. It was able to preserve around 66% of its original efficiency
even after being continuously exposed to UV light for 5 h (Liu C.
et al., 2019). Therefore, the incorporation of semiconducting
molecules enables the production of perovskite films with
exceptional electrical properties.

6.5 Passivation surface

Bin Lyu et al. (2021) capped CsSnCl3 perovskite nanocrystals
(NC) with oleic acid/oleylamine (OA/OAm) using the hot injection
technique. After that, the structural stability, optical responsiveness,
durability, and eco-friendliness of these nanocrystals were improved
by treating them with gelatin, a natural biomass material. The
nanocrystals’ performance was enhanced by the gelatin
treatment, which enabled them to retain 77.4% of their
photoluminescence intensity even after being distributed in water
for 3 days. Polar solvents generate this effect by displacing the
weaker amino-Sn coordination with the stronger carboxylate-Sn
coordination. Nanocrystals bound to gelatin nevertheless exhibit
mostly unaltered halogen-ammonium hydrogen bonding and
carboxylate-Sn coordination. Additionally, gelatin has
demonstrated anti-mildew properties that might find wider
application (Lyu et al., 2021).

6.6 Alteration in the physical structure of
the surface

The 2017 study by Biao Shi et al. utilized textured FTO
substrates to create light-absorbing perovskites. The researchers
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were able to increase the amount of light that could be absorbed and
create larger grain-sized perovskite films with better charge transfer.
Compared to smooth FTO substrates, textured FTO substrates
significantly improved efficiency, reaching 22%. The short circuit
density also increased significantly by 14.5 per cent. It follows that
the surface form has a major impact on the enhanced efficacy of
perovskites (Shi B. et al., 2017).

6.7 Lacking lead, perovskite quantum dots

Research indicates that perovskite quantum dots (PVQDs) are
very suitable for optoelectronic devices (Wang et al., 2019c).
Yangyang Wang and colleagues synthesized inorganic lead-free
perovskite quantum dots CsSnI3 using a one-pot synthesis using
triphenyl phosphite (TPPi). This approach resulted in a remarkable
efficiency of 5.03% for the quantum dots, and the devices made from
them maintained a stable power conversion efficiency (PCE) for
over 25 days (Shi B. et al., 2017). An improved hot-injection method
was used by Hongzhe Xu et al. (2018) to create perovskite quantum
dots with the composition MASnBr3-xIx (x = 0, 1, 2, 3). Utilized as
light absorbers in mesoscopic solar cells, these quantum dots
attained an efficiency of 8.79% (Xu et al., 2018).

6.8 An introduction to chiral compounds

Pioneering research by Weiyin Gao et al., in 2022 showed how
FASnI3-based PSCs might be improved in hole transportation by
utilizing chiral cations α-methylbenzylamine (S-/R-/rac-MBA).
Aligning energy levels and facilitating effective charge transfer at
the interface were both aided by the introduction of MBAs. To
facilitate the targeted transfer of accumulated holes across interfaces,
the chiral R-MBA cation set off the chiral-induced spin selectivity
(CISS) phenomenon in R-MBA2SnI4. As a result, as mentioned in
the reference, a power conversion efficiency (PCE) of 10.73% was
achieved, along with improved device stability and reduced
hysteresis (Gao et al., 2022).

6.9 Dion-Jacobson halide perovskites with
low dimensions

Reducing Sn vacancies, improving stability with organic spacers,
and perhaps increasing photo carrier transfer with divalent organic
spacers were the outcomes of the synthesis of low-dimensional
Dion-Jacobson Sn (II)-based halide perovskites carried out by
Min Chen et al. (2018) (Chen et al., 2018c).

7 Conclusion

For PSCs to be extensively employed, breakthrough PVK
materials that are extremely effective in light of electrical change,
non-hazardous, and firm must be researched. The quest for novel

PVK materials is anticipated to receive significantly expanded R&D
funding during the next few years. While ongoing research towards
this objective appears to develop rather randomly, we propose a
reasonable roadmap that may help speed up R&D in this field. This
road map is the first step toward understanding existing and future
PVK noxiousness/dilapidation processes and advocates for more
standardized experimental methodologies. After a comprehensive
understanding of the toxicity/degradation pathways is achieved,
innovative eco-friendly PVKs may be created that are particularly
resistant to environmental stresses (using complementing theory-
experiment techniques). Significant challenges are predicted for the
future of lead-free stable PVKs thin-film manufacturing
experiments in this paper. The latter is an essential step toward
efficient and timely manufacturing of useful products. There are also
promising new avenues for research into synthesis and processing
that this opens. We anticipate that in the future, efficient and
environmentally friendly PSCs will be realized because of this
type of integrated scientific and technical R&D.
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