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Rolling bearings always operate under variable speed conditions, which poses a
challenge for researchers in identifying and classifying bearing faults. In contrast to
the stationary speed condition, the Fault Characteristic Frequency (FCF) under
variable speed conditions exhibits a variable value that depends on the
instantaneous shaft rotational speed (ISRS). The representation of the FCFs in the
frequency domain reveals overlapping patterns among them. To solve the
mentioned problem, a novel tool is proposed and established by mixing the two
methods: The Fourier-based SynchroSqueezing transform (FSST) and Principal
Component Analysis (PCA). By illustrating the envelope signal in time-frequency
distribution using FSST, the FCF is highlighted in each ISRS value. Finally, this time-
frequency distribution is used as input of PCA to classify rolling bearings. Thismethod
successfully diagnosed both inner race fault and outer race fault of rolling bearings.
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1 Introduction

The rolling bearing plays an important role as a fundamental component within
mechanical systems, making detecting faults in rolling bearings an essential objective in
technical vibration diagnosis (Malla and Panigrahi, 2019). Under stable rotation speed
conditions, vibration signal analysis can easily capture bearing fault characteristic
frequencies. However, rolling bearings usually operate under variable rotational speed,
challenging detection faults. When illustrating the signal in the envelope domain, the
impulse frequencies vary with survey time in the case of varying rotational speed. Thus,
applying the traditional envelope analysis method at constant rotational speed will bring
false diagnosis results.

Recently, rolling bearing fault diagnostics under non-stationary conditions has become
a key topic with researchers. Most popular methods remove the effect of non-stationary
conditions by using order tracking. Dien and Du, 2020 used generalized demodulation to
separate envelope orders and computed order tracking to detect the rolling bearing fault.
Wang et al., 2014 removed the smearing effect of varying speed to present fault
characteristic frequency order and then used envelope order tracking to diagnose the
rolling bearing fault. However, these methods required assistant devices such as a
tachometer or encoder (Di Lorenzo et al., 2017; Randall, 2017). It will increase the
measurement cost and make it difficult to install.

The time-frequency representation (TFR) can identify the signal frequency components
and disclose their time-varying characteristic (Zhang, 2019). This advantageous capability
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makes it particularly suitable for diagnosing rolling bearings under
non-stationary conditions. There are several methods of converting
a signal into TFR, such as continuous wavelet transform (CWT)
(Kamiel et al., 2020), Short-time Fourier transform (Xu et al., 2020),
and The Fourier-based Synchrosqueezing Transform (Ke et al.,
2021). Among those methods, FSST provides more accurate
frequency curves in both the time and frequency domains than
STFT and CWT. Less important frequency components will be
filtered out by FSST with appropriate window parameters, keeping
main frequencies. In addition, FSST maintains the consistency and
interpretability of Fourier analysis, making it easy to relate the
results to the fundamental frequency components of the signal.
By extracting the features of rolling bearing vibration, it becomes
possible to obtain an intuitive representation of FCF over
survey time.

When vibration signals are converted to TFR, general indicators
can be calculated to extract feature value s (Shukla et al., 2015) in
each frequency component. Calculating indicators following the
time axis of TFR avoids the frequency overlapping effect of varying
rotation speed. However, not all indicators are useful as input to an
automatic classification model. If all indicators are the input, the
classification results can be low accuracy and waste computing
sources. So, Principal Component Analysis converts high-
dimensional general indicators to a lower-dimensional feature
vector while preserving the most important information. Thus,
this work proposes a method based on time-frequency analysis
using FSST and PCA to automatically classify rolling bearing faults
under time-varying speeds with three classifications—normal, inner,
and outer fault. The contributions of the proposed approach are
as follows:

(1) In industry, rolling bearings do not operate independently but
often function in conjunction with other components,
resulting in various sources of noise signals. Hence, it is
necessary to employ noise filtering methods for the rolling
bearing signal. Tunable Q-factor Wavelet Transform
(TQWT) can decompose signals into different frequency
components, so the effect of random frequencies can be
exactly removed.

(2) The FSST is more accurate than CWT or STFT in
representing instantaneous frequencies in case of variable
rotation speed. The FSST clarifies the overlapped frequency
components. The frequency lines are precisely compressed,
which reduces noise frequency components to obtain reliable
calculating results.

(3) Finding feature values of a signal that can be clustered clearly
on a graph helps minimize misclassification in automatic
classification results. Calculating the PCA of GIs for each
frequency component is an effective feature extraction from
TFR in separating data into clusters.

(4) With varying rotational speeds, classifying solely through
deep learning is impossible. The proposed method has
proved its effectiveness with an appropriate feature
extraction, resulting in low computational cost and high
accuracy, making it suitable for low-profile devices.

The remainder of this paper is structured as follows: Section 2
mentions the background theory of FSST and PCA, then details the

processing scheme of this proposed method. Next, Section 3
demonstrates the experiment test, and the conclusion is given in
the last section.

2 Principle of the proposed method

2.1 Clarifying varying rotation speed effect

2.1.1 Noise filter
Acquired signals often contain background noise from

environments. TQWT has effectively denoised bearing vibration
signals (Du et al., 2022). Figure 1 shows the TQWT flowchart. As
Figure 1 shows, the TQWT method decomposes a signal into sub-
signals, removes random frequencies in the sub-signals, and finally
reconstructs the pure vibration signal. Separating small components
makes identifying periodic and non-periodic components easier
over time. From there, the circulatory component caused by
machine parts, including rolling bearings, can be retained.

2.1.2 Envelope spectrum analysis
Analyzing the envelope spectrum is an essential step in rolling

bearing signal processing. The envelope of a vibration signal
provides the capability to identify the causes of vibration or to
recognize the parameters of a vibration system, such as meshing
frequency and fault characteristic frequency (Wang et al., 2018). The
envelope signal reflects crucial information regarding the amplitude
of the oscillations and any abnormal events occurring during the
operation of the machine. The technique of transforming the signal
envelope is based on the Hilbert Transform in the time domain.

2.1.3 The Fourier-based
Synchrosqueezing tranform

The FSST method was first introduced by Gaurav Thakur and
colleagues in 2013 (Thakur et al., 2013). This technique has become
popular and is used in many application areas, such as audio signal
processing, image processing, and biological signal analysis. The
FSST method performs a standard Fourier Transform on the signal
to determine its frequency content. However, instead of simply
representing frequency content as a function of time, FSST uses a
nonlinear compression operation to emphasize time-frequency
contours in the signal. This compression operation is performed
by multiplying the Fourier coefficients by a window function chosen
to match the local instantaneous frequency of the signal.
Compression results in a new set of coefficients more closely
related to the original signal structure. FSST then takes the
inverse Fourier Transform of the compressed coefficients to
obtain a time-frequency representation of the signal that
emphasizes its important features. Compared with other time-
frequency analysis techniques, FSST has many advantages. It can
capture the time-varying behavior of a signal with high accuracy,
even when the signal is unstable or nonlinear. It can also separate
overlapping frequency components in the signal that would be
difficult to distinguish using other methods.

The key point of the FSST method is to represent the “fuzzy”
STFT of f using the instantaneous rotating frequency at time t and
the frequency η (Pham and Meignen, 2017) as Eq. (1) and Eq.
(2) below:
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FIGURE 1
The TQWT flowchart.

TABLE 1 General indicator formula.

Abbreviation Full name Brief explanation Formula

MEAN Mean Average ∑X

N

RMS Root mean
square

Value that generally tends to get bigger as the degree of fault in the bearing increases
����∑X2

N

√
STD Standard

deviation
Value representing the dispersion of a signal

�������∑(X− �X)2
N−1

√
PEAK Peak Maximum value of signal absolute value max(|X|)

SK Skewness The asymmetry of the probability density function of the vibration signal 1
N∑(X− �X)3

STD3

KUR Kurtosis The sharpness of the probability distribution of the vibration signal, and if this value is close to 3, it is closer
to the normal distribution

1
N∑(X− �X)4

STD4

CF Crest factor The ratio of peak values to the RMS of a signal PEAK
RMS

CL Clearance factor Peak value divided by the square of the root mean max(|X|)
(∑ �

X
√

N )2

SF Shape factor RMS divided by mean RMS
MEAN

IF Impulse factor The ratio of peak values to the mean of a signal PEAK
MEAN

P2P Peak to peak The difference between maximum and minimum values of the signal max(X) − min(X)

FIGURE 2
The proposed method in flowchart.
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ω̂f t, η( ) � 1
2π

∂t arg Vg
f t, η( ){ } � R

∂tV
g
f t, η( )

2iπVg
f t, η( )⎧⎨⎩ ⎫⎬⎭ (1)

where arg Z{ }, R Z{ } is the argument and real part of complex
number Z, respectively, and Vg

f (t, η) is STFT of f signal, the STFT
defined as:

Vg
f t, η( ) � ∫

R

f τ( )gp τ − t( )e−2iπη τ−t( )dτ (2)

2.2 Feature values

2.2.1 Evaluate statistical feature
General indicators (GI) represented in Table 1, such as root

mean square (RMS), standard deviation (STD), and Crest Factor
(CF), are commonly used in signal processing and data analysis to
quantitatively describe various characteristics of a signal. Because
TFR contains time domain signals in each frequency component, GI
can be calculated regardless of varying speed. These indicators are
calculated as follows:

2.2.2 Principal component analysis
Principal Component Analysis is a multivariate data analysis

method aimed at reducing the dimensionality of the problem at
hand. Its primary objective is to identify linear relationships
among variables that capture the overall patterns of data
variations (Zhao et al., 2019). Mathematically, the orthogonal
decomposition of data variations is the signal’s feature
components. PCA is a linear transformation that converts
original data into a reduced set of explanatory variables called
principal components. These principal components are
uncorrelated with each other and can replace a large number of
correlated explanatory variables. The brief algorithm for PCA is
outlined as Eqs 3–8 below (Jafarian et al., 2016):

1. Selecting data to compute matrix.
2. Finding characteristic values and characteristic vectors.

R � XTpX)/(n − 1( ) (3)
R − λiI( )Pj � 0, j � 0, 1, 2, 3, . . . , m( ) (4)

where n is the number of rows of matrix X, λi is characteristic value
and Pj is the matrix of characteristic vectors.

3. Reducing matrix dimensions of characteristic vectors.

P � p1, p2, p3, . . . , pr[ ] (5)

4. Computing data related to the main system coordinate.

Xp � Xp PPT( ) (6)

5. Calculating the different amounts of data related to the main
coordinate at every moment.

ri k( ) � Xi k( ) −Xp
i k( ), i � 1, 2, 3, . . . , m( ) (7)

6. Computing the remaining amount in every moment.

res � ∑m

i�1r
2
i k( ) (8)

2.3 The proposed flowchart

Combining these methods, the data is processed according to the
flowchart in Figure 2. The proposed method is PCA of general
indicators of FSST. Feature values of the signal are extracted step by
step. First, the signal is converted into TQWT formation to reduce
the noise in the frequency spectrum. Then, the FSST method is
employed to obtain the time-frequency distribution (TFD) of rolling
bearing operated in varying rotating speed conditions over time.
From the TFD, the bearing’s conditions are verified based on the
fault characteristic frequencies. The next step calculates the GI in the
time domain to evaluate each frequency component. The PCA of
general indicators is the feature values of the signal, which are inputs
of automatic classifier models. Finally, the input is trained by six
classifier models to verify the type of bearing fault and evaluate the
effectiveness of the models.

3 Experiment evaluations

3.1 Effectiveness of the feature
extraction method

An experiment test rig is performed at the Fault Diagnostic
Laboratory, Hanoi University of Science and Technology (HUST),

FIGURE 3
Experimental setup.

TABLE 2 Experimental bearing parameter.

Bearing type Pitch diameter Rolling ball diameter Number of rolling ball Meshing angle

ER16 D � 38.52mm d � 7.94mm N � 9 β � 0°
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to demonstrate the proposed method effectively. The experimental
setup is depicted in Figure 3. A three-phase motor drives the rotating
shaft, and an AC drive controls to change the shaft rotational speed.
A magnetic brake is connected to the remaining part of the shaft to
create a load during the investigation process. Two ER16 rolling
bearings are attached to the rotating shaft. The rolling bearing on the
right is a normal bearing without any faults, while the other rolling
bearing is the one under investigation, where rolling bearing faults
are replaced at this position. Investigation bearings are “normal,”
“inner race fault,” and “outer race fault.” The Endevco 2228C
accelerometer is mounted in the housing of the investigated
rolling bearing along the radial direction and stored at a
sampling frequency of 20 kHz. The speed of the rotating shaft is
driven from 13 Hz to 24.4 Hz in 10 s, and the load level of the

magnetic brake is 5 Nm. 10 signal samples are acquired for each fault
type. The acquired signals are filtered by a bandpass band in a
measurement device and pre-processed by TQWT to obtain original
signals. The parameters of the rolling bearing are provided
in Table 2.

The faulty rolling bearing exhibits inner and outer race faults,
and the fault characteristic frequencies for each type of fault are
determined as follows by Eq. (9) and Eq. (10):

Outer race faultfo � N

2
1 − d

D
cos β( ).fn Hz( ) (9)

Inner race faultfi � N

2
1 + d

D
cos β( ).fn Hz( ) (10)

Detecting and diagnosing rolling bearing faults involves
analyzing the FCF. Each fault category corresponds to its
unique FCF, directly related to the operational rotational
frequency. The coefficient determining the FCF is based on
the bearing’s structural parameters. The FCF of the Inner Race
(FCFI) can be calculated by multiplying the FCF coefficient,
FCFI = 5.43 fr, with the shaft’s rotational frequency (fr), and

FIGURE 4
Processing envelope signal by: (A) Envelope spectrum; (B) Time-Frequency representation.

FIGURE 5
Scatter plot PCA of general indicators of FSST.

TABLE 3 Classifer models comparison in detail.

Classifier Model Accuracy (%) Time cost (s)

Support Vector Machine 99.5 3.02

Nearest Neighbor Classifier 99.3 1.32

Decision Tree 98.6 1.12

Discriminant Analysis 97.9 3.24

Naive Bayes Classifier 92.5 6.28

Ensemble Classifier 98.4 22.8
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the FCF of the Outer Race (FCFO) can be expressed as
FCFO = 3.57 fr.

First, the raw signals are converted into envelope signals and then
FSST. Figures 4A,B, respectively illustrate the envelope spectrum and
TFR of rolling bearing with fault. The effect of varying frequency blurs
the envelopes. It is impossible to detect the shaft frequency and the FCF
directly. Converting the envelope spectrum into TFR separates the effect
of varying frequency to the time domain. The FCF with high amplitude
is highlighted in the TFR. The inner race fault can be manually detected
with FCFI = 133/24.4 = 5.45 fr.

With input data, which is applied to the FSST transform, the
general indicators of TFR are calculated. Then, the PCA is
executed to obtain feature values. Figure 5 represents the
scatter plot of two principal components, and input data are
concentrated into separate clusters, which create favorable
conditions for the classification step.

Table 3 compares six classifier models about accuracy and time
training cost. These training sessions are implemented on the same
computer with the same parameters: 4-fold cross-validation, learning rate
0.01, max epoch 20. Figure 6 shows that the Support Vector Machine
(SVM) achieves the highest classification accuracy. However, the training
time cost of the Nearest Neighbor Classifier (NNC) is twice as low as
SVM with similar accuracy. Thus, the Nearest Neighbor Classifier is the
most effective for automatically classifying bearing faults.

After classifying roller bearing faults by NNC, the color map in
Figure 7 visually distinguishes between different fault regions. As a

FIGURE 6
Box plot of classifier models comparison.

FIGURE 7
Classify the result of NNC.

FIGURE 8
Confusion matrix of NNC results.
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result, the model successfully built boundaries to classify three fault
types of bearing. The obtained classification result demonstrates the
effectiveness of time-frequency distribution in detecting rolling
bearing faults under varying rotation speed conditions.

Figure 8 shows the confusion matrix, the results of which are
classified by NNC. The confusion matrix points out that two fault
types, “normal” and “outer race fault,” are confused, which is caused
by the varying rotation speed effect. The matrix also indicates that
“inner race faults” are significant and easily detectable.

3.2 Comparisons with deep learning models

To demonstrate the advancement of the proposed model for
fault diagnosis in variable speed conditions of bearings, Convolution
Neural Networks are added for comparison: Transfer Learning
ResNet-50 (Wen et al., 2020). While the proposed method
focuses on feature extraction, the transfer learning method
focuses on automatically learning features. The main idea of
transfer learning is converting a time domain signal into a gray
image, then training by ResNet-50. To ensure the fairness of the
comparison experiments, all the models are executed from raw
signals to classified results with the same input parameters. 20% of
180 data is split for validation dataset. All the models use the same
dataset stop training at an accuracy of 90%. Table 4 compares two
classification methods in detail. This table proves that feature
extraction is essential for an effective classification method. In
addition, the training accuracy of transfer learning can not reach
60% because of the varying speed effect in the raw data.

4 Conclusion

Early detecting faults can significantly reduce maintenance time
and cost for rotating machines. The authors presented an automatic
method for classifying rolling element bearing faults under varying
rotational speeds. The feature values of the rolling bearing vibration
signal are extracted by calculating the PCA of general indicators of
TFR of the envelope signal. The classification results achieved an
accuracy of 99.5% with three classifications: normal, inner race fault,
and outer race fault. It can be said that the proposed feature
extraction has successfully created an effective tool for classifying
faults in rolling element bearings. This application can potentially
decrease the dependency on experts in the diagnosis process.
Moreover, it enables online diagnosis, where vibration signal data
is collected from many remote power plants.

However, if the bearing rapidly changes speed, the general indicator
of each fault type is not separate from each other, making classifying less
accurate. Although splitting signals into small signals with only
increased or decreased speed can solve the rapid change, TFR
cannot represent signals with high resolution. So, the rapid change
speed requires more research in the future.
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TABLE 4 Classification method comparison.

The proposed method PGF Transfer learning

Task Time cost (s) Task Time cost (s)

Feature extraction Envelope transform 0.1 Convert image 0.1

FSST 2

PCA of GI 0.34

Training Nearest Neighbor Classifier 1.32 ResNet-50 78
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