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In the plastic injection industry, plastic injection molding is one of the most
extensively used mass production technologies and has been continuously
increasing in recent years. Cost evaluation is essential in corporate operations
to increase themarket share and lead in plastic part pricing. The complexity of the
plastic parts and manufacturing data resulted in a long data waiting time and
inaccurate cost evaluation. Therefore, the aim of this research is to apply a cost
evaluation approach that combines hybrid deep learning of a tunicate swarm
algorithm (TSA) with an artificial neural network (ANN) for the cost evaluation of
complicated surface products in the plastic injection industry to achieve a faster
convergence rate for optimal solutions and higher accuracy. The methodology
entails the ANN, which applies feature-based extraction of 3D-model
complicated surface products to develop a cost evaluation model. The TSA is
used to construct the initial weight into the learningmodel of the ANN, which can
generate faster-to-convergent optimal solutions and higher accuracy. The result
shows that the new hybrid deep learning TSA combined with the ANN provides
more accurate cost evaluation than the ANN. The prediction accuracy of cost
evaluation is approximately 96.66% for part cost and 93.75% for mold cost. The
contribution of this research is the development of a new hybrid deep learning
model combining the TSA with the ANN that includes the calculation of the
number of hidden layers specifically for complicated surface products, which are
unavailable in the literature. The cost evaluation approach can be practically
applied and is accurate for complicated surface products in the plastic
injection industry.
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1 Introduction

The plastic injection industry accounts for approximately 80% of the modern plastic
industry (Gao et al., 2017). In recent years, plastic injection molding has become the most
extensively used mass production technology, continuously increasing the quantity of
plastic products. According to a market analysis report from Grand View Research, the
market value of global injection molded plastics in 2022 was approximately USD
303.78 billion, with an anticipatory 4.6% compound annual growth rate (CAGR) from
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2023 to 2030 (Grandview Research, 2022). The expansion is
predicted to be driven by the incremental demand for plastic
products from numerous applications, including automotive
parts, packaging, home appliances, electronics, and medical
equipment. Modern advancements in reducing the rate of
defective manufacturing have increased the importance of
injection molding technology for complicated surface products. It
is anticipated to be an obstacle to market growth throughout the
forecasting period. The pricing of part is affected by various factors,
and thorough cost evaluation is crucial to operating a successful
business. Nevertheless, the complexity of the plastic parts and
manufacturing data resulted in a long data waiting time and
inaccurate cost evaluation (Che, 2010). The cost evaluation is
overestimated, resulting in the loss of commercial opportunities
due to the higher cost. On the other hand, cost evaluation, which is
underestimated compared to actual expenditure, can result in losses
in business. The costs of plastic injection parts vary widely
depending on the quantity ordered and suppliers. The ordering
of large quantities results in exponential losses. As a result,
manufacturers look for efficient collaboration and rapid response
to expand cost evaluation capabilities.

However, a number of research reviews have studied the emphasis
and diversity of cost evaluation. Che (2010) mentioned automatic
production technology that requires lower production costs and
rapid injection speed, resulting in increased plastic product demand.
Chang (2015) asserted that the key to business success in a highly
competitive market is timeliness and accurate cost evaluation, which
indicates the increased performance for lower cost, higher quality, and
delivery on time. Shekarabi and Dorri (2017) stated that thorough cost
evaluation and reducing the loss of time to market are necessary for
durable business operations in the expeditiously expanding high-
technology industry. Khosravani and Nasiri (2020) mentioned that
plastic injection molding is popularly used to manufacture complicated
surface products with varying sizes despite technological breakthroughs
in this area for supporting a wider variety of applications. Chan et al.
(2018) and Kadir et al. (2020) also mentioned that cost evaluations are
generally based upon historical data on similar parts and the experience
of the cost appraiser. These processes are without appropriate practical
operation to reduce cost evaluation mistakes for complicated surface
products and decision-maker variability. Taghinezhad et al. (2021)
stated that traditional cost evaluation methods are inaccessible to
decision-makers, and available elevation cost evaluation guidance is
limited and outdated. However, a gap still exists in the method of
previous research to decrease cost evaluation errors for decision-makers
and increase the convergence rate to achieve faster optimal solutions in
model development. Therefore, the aim of this research is to apply a cost
evaluation approach that combines hybrid deep learning of the tunicate
swarm algorithm (TSA) with an artificial neural network (ANN) for the
cost evaluation of complicated surface products in the plastic injection
industry to achieve a faster convergence rate for optimal solutions and
higher accuracy, which can unravel the complications of conventional
cost evaluation. The contribution of this research is that the new hybrid
deep learning model integrating the TSA and ANN with the proposed
calculation of the number of hidden layers, specifically for complicated
surface products, which is unavailable in the literature, delivers less cost
evaluation and a faster convergence rate.

This research is divided into four sections as follows: Section 2
illustrates the materials and methods that represent literature

reviews and describes the methodology deployed on the new
hybrid deep learning TSA with the ANN for the cost evaluation
for complicated surface products; Section 3 discusses the capability
results of model development in cost evaluation; and finally, Section
4 demonstrates conclusions and recommendations for the
guidelines of future study.

2 Materials and methods

This section studies materials and methods of the theory and
research related to this study, including cost evaluation in plastic
injection, deep learning, TSA, and ANN. The methods propose new
hybrid deep learning of the TSA with the ANN to develop a cost
evaluation model for complicated surface products in the plastic
injection industry. The details are as follows.

2.1 Cost evaluation in plastic injection

The product cost evaluation necessitates knowledge about all
expenditures related to production and product development,
including many other charges for the least error price. The cost
evaluation analysis and control cost for using the most beneficial
resources and reducing manufacturing costs are essential for the
initial product development period. The product cost in the
development section is defined as 70%–80% of the product cost
and 80% of the product quality. The concept design phase only
covers 6% of the overall cost (Che, 2010). The diverse cost evaluation
approaches constantly evolve and aim to improve the precision and
efficiency of cost evaluation (Tyagi et al., 2015). Therefore,
knowledge about the factors that influence cost and practical cost
evaluation is imperative to business survival in a competitive market
(Chang, 2015). A wide variety of publications are available on cost
evaluation, spanning numerous different costing approaches. Niazi
et al. (2006) and Ganorkar et al. (2017) also divided cost evaluation
methods based upon grouping with comparable features and
covered various costing approaches that provide the concept in
qualitative and quantitative methods, as shown in Figure 1. The
quantitative methods are based upon detailed product design
consideration divided into parametric and analytical methods.
The analytical function uses the calculation of distinct product
parameters or the total number of elementary units representing
different factors used during manufacturing. The qualitative
methods are principally based upon a comparable consideration
of a new product and the previous experience of an estimator that
can adjust from foundation data. This technique, also known as
case-based reasoning, is excellent for an early-stage cost evaluation
while the produced product is not yet completed.

A number of literature reviews have been conducted on costing
methods to study cost evaluation approaches. Wang (2007)
presented the ANN with feature extraction to develop a cost
estimation model for plastic products. This research compared
the model learning cycle that selected the number of model
learning cycles as 50,000 and reduced the projection area
parameters. The mean absolute percentage error (MAPE) was
decreased by 0.77%, and the cost percentage error was
approximately ±2%. Che (2010) integrated particle swarm
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optimization (PSO) with the ANN and applied factor analysis to
identify the peculiarity effect on the cost data of the product and
mold for cost evaluation. The findings demonstrate that
incorporating PSO with the back-propagation (BP) neural
network improves the accuracy of cost identification for plastic
injection molding by the cost percentage error (CPE) of parts, and
mold costs are approximately ±0.4% and ±0.5%, respectively, which
can lower the parameter settings of the BP neural network. Wang
et al. (2013) applied PSO with the ANN to develop a cost estimation
model of part costs in plastic products. The outcome of testing data
for the CPE is approximately ±0.2% to ±1%. PSO can find optimal
solutions and improve the convergence rate, which can achieve
better accuracy. Tyagi et al. (2015) presented a product life-cycle cost
identification mathematical model for a multigeneration
manufacturing-based product that emphasizes market and
technical risks. This study of mathematical models meets the
need to obtain better accuracy and confidence in the prediction.
Chan et al. (2018) developed a new cost identification method for
additive manufacturing (AM) using big data analytics cyber
manufacturing. This method applies feature extraction on elastic
net (EN) regression with least absolute shrinkage and selection
operator (LASSO) regression within each cluster. The outcome
shows that the smaller cluster size affects the learning ability. The
prediction error of LASSO is 85.16% less than that of EN regression,
resulting in EN regression achieving better accuracy and efficiency
than LASSO regression. Tosello et al. (2019) integrated AM in the
injection molding process chain to optimize the value chain and
manufacturing cost. The result indicates that using the AM inserts
reduces lead times in product development by up to 66%, which can
reduce the production time by at least 5 days and improve the
manufacturing process. Ahn et al. (2020) developed a transportation
cost evaluation model for prefabricated construction that adopted
feature extraction of geo-fence-based large-scale GPS data with
support vector regression (SVR) to predict transportation
demand. The accuracy result of trailers and the duration are 86%

and 88%, respectively, and the actual transportation cost decreased
by approximately 14%, improving transportation cost evaluation
efficiency. Tabkosai and Kengpol (2022) proposed a cost evaluation
model for plastic products that integrated a 3D convolutional neural
network (3D-CNN) with voxelization that can enhance excellent 3D
voxel processing from a 3D model. The result proves that voxel 1283

resolutions are superior to voxel 643 resolutions for both the part and
mold. The accuracy of part and mold costs is approximately 97.55%
and 92.66%, respectively.

According to previous research, various techniques are used in
many different aspects of cost evaluation. However, a gap still exists
in the method for reducing cost evaluation errors and a faster
convergence rate for optimal solutions. Therefore, this research
aims to apply the hybrid deep learning ability of the TSA to find
optimization parameters of the ANN model to enhance learning
capability and achieve higher accuracy to fill the gap mentioned
above, which is unavailable in the literature.

2.2 Deep learning

Deep learning is a model that transfers the critical representation
of self-learning characteristics at a multilayer ANN. Multi-
dimensional scaling is a technique that automatically converts
input attributes to output attributes (Emmert-Streib et al., 2020).
Deep learning is the most popular method for information
conversions due to its ability to handle information processing
and instantly recognize an attribute of data at different levels of
abstraction (Chien et al., 2020). The capability of deep learning
models has surpassed that of widely used alignment-based methods
with more outperformed in some circumstances (Mathieu
et al., 2022).

Deep learning is a rising territory of machine learning (ML) and
artificial intelligence (AI) that can have learning capabilities from
data, which is a mainstream technology nowadays. Deep learning

FIGURE 1
Classification of cost evaluation methods (Niazi et al., 2006; Ganorkar et al., 2017).
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technology emerged from the ANN, which is used extensively in
prediction, visual recognition, text analytics, cybersecurity, and
other domains, as shown in Figure 2A (Sarker, 2021). A deep
neural network typically consists of multilevel hidden layers,
involving input and output layers. Figure 2B represents the
typical neural network architecture compared with a deep neural
network. The difference between a regular neural network and a
deep learning network is the number of hidden layers. A typical
neural network has one hidden layer, while a deep learning network
has multiple hidden layers. The hidden nodes in each layer are
processed from the input layer to the output layer (Xing and
Du, 2018).

2.3 Tunicate swarm algorithm

TSA is an optimization technique for solving non-linear
constrained problems, which draws inspiration from the
survival behavior of tunicate swarms in the ocean’s depths.
Among the simplest bio-inspired meta-heuristic optimization
algorithms is the TSA. In over 74 benchmark problems,
superiority over alternative optimization methods was
demonstrated conclusively (Kaur et al., 2020). Fetouh and
Elsayed (2020) mentioned that an effective and simple design
encourages the consideration of implementing and enhancing
this algorithm for the situation at hand. The TSA primarily
emulates the swarming behavior and jet propulsions of marine
tunicates that facilitate their navigation and foraging operations.
A population of tunicates engages in swarming behavior in the
TSA to locate the best food source; this behavior indicates the
fitness function of the model. The tunicates in this swarm adjust
their positions concerning the first optimal tunicates that are
garnered and updated in each epoch. At the beginning of the
TSA, a random initialization population of tunicates is generated
within the allowed ranges of the control variables.

In the mathematical modeling for the first behavior of the
tunicate, the jet propulsion must satisfy three essential
conditions, namely, preventing collisions among the agent,
approaching the position of the best agent, and maintaining
proximity to the optimal solution (Sharma et al., 2020).

Conversely, swarm behavior serves the purpose of notifying other
seekers of their presence in order to locate the best optimal solution.
The TSA starts with the tunicate populations being initialized
randomly while considering the allowable bounds of the control
variables. A→ is a randomized vector to prevent conflicts between
search agents in each tunicate. The new search agent position
computation to avoid the collision between tunicates can be
modeled as follows:

�A � �G
�M
, (1)

G
→ � c2 + c3 − �F, (2)

�F � 2 × c1, (3)
where �A is a randomized vector for the initial tunicate, �G is the
gravity force, �F is the movement of water in the ocean, and c1, c2, and
c3 are disorder grades with a range [0, 1].

The social force among search agents is the colony strength
between the tunicates stored in a new vector �M that is determined
as follows:

�M � ⌊Pmin + c1 × Pmax − Pmin⌋, (4)

where �M is the colony strength between the tunicates and Pmin and
Pmax are the minimum speed and maximum speed of the tunicate to
build social liaison, respectively. The variable Pmin has a value of 1,
and variable Pmax has a value of 4.

In order to transition to the position of the optimal tunicate, one
can prevent conflicts between tunicates and get closer to the optimal
tunicates as follows:

PD
��→ � FS

�→− rand ×Pp
�→

x( )
∣∣∣∣∣ ∣∣∣∣∣, (5)

where PD
��→

is the distance between the food source and tunicate, FS
�→

is
the position of the food source (optimal fitness value), Pp

�→(x) is the
position of the tunicate, and rand is the disordered grade in
space [0, 1].

The best tunicate can adjust its ranking to reflect the current
state of affairs. The position of the food supply is related to this, as
shown in the following equation:

FIGURE 2
Relationship between deep learning (Sarker, 2021) and the typical architecture of a neural network and deep neural network (Xing and Du, 2018).
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Pp
�→

x( ) � ⎧⎨⎩ FS
�→+ �A×PD

��→
, if rand≥ 0.5

FS
�→− �A×PD

��→
, if rand < 0.5

. (6)

In order to search for the optimum tunicate positions, the
approach allows for keeping the optimal solutions and adjusting
the others. The collective tunicate behavior can be expressed
as follows:

�P x + 1( ) � Pp
→

x( ) + Pp
�→

x + 1( )
2 × c1

. (7)

The final position inside a random region is determined by the
position of the tunicate. The tunicate swarm algorithm can be
summed up as follows.

- Parameters �A, �G, and �M prevent and encourage in a defined
search space and escape conflict between tunicates.

- In order to use vector variations �A, �G, and �M, it is anticipated
that the investigation and exploitation method will obtain a
greater value.

- The collective behavior exhibited by the TSA is comparable to
the behavior of tunicate colonies and jet propulsion.

Many research studies apply the TSA. Aribowo et al. (2020)
proposed the TSA to improve the performance of the feed-forward
neural network (FFNN) that used optimization weight to obtain
better output results for the adaptive power system stabilizer
parameter. The outcome demonstrates that the TSA can adjust
parameters and outperform the outputs of alternative approaches.
Kaur et al. (2020) proposed a new bio-inspired metaheuristic
optimization method that studies the TSA to analyze sensitivity,
convergence, and scalability analysis with the ANOVA test. The
outcome shows that the TSA can obtain a better optimal solution
than other algorithms, which can solve problems with unknown
search space. Fetouh and Elsayed (2020) applied an improved TSA
with distribution network reconfiguration (DNR) for optimal
control and operation of capacitor banks (CBs) and distributed
generators (DGs) that can achieve the optimal solution and
outperforms the other algorithms in the literature. The benefit
of research can reduce power losses by approximately 96.97%. The
results show that the TSA can enhance performance for fully
automated distribution networks. Sharma et al. (2020) applied
the TSA to evaluate the optimal solution of the unknown
parameters for the photovoltaic module under standard
temperature conditions. The RMSE results indicate that the
optimization of the TSA is superior to other algorithms and
yields an excellent convergence rate. Nguyen et al. (2020)
designed the TSA for the Internet of Health Things (IoHT) to
protect medical image data in a cloud server using energy-efficient
lightweight encryption and fog computing. The efficiency of IoHT
combined the peak signal-to-noise ratio (PSNR) with the number
of pixel changing rate (NPCR), resulting in improved accuracy of
medical reports and fewer computations on a cloud server.
Houssein et al. (2021) combined a TSA with a local escaping
operator (LEO) to improve the convergence rate and local search
performance of swarm agents for image segmentation. The
performance of TSA-LEO achieves optimal solutions and
accelerates the convergence rate with better efficiency than

other metaheuristic algorithms. According to the previous
research mentioned above, it was found that the TSA can solve
unknown search space and enhance the rapid convergence rate.
Although the TSA is widely used in optimal solutions to solve
unknown parameters, no evidence has been found to develop the
TSA in the cost evaluation of complicated surface products.
Therefore, this research aims to apply the TSA to optimize
initial weight to improve the performance of the ANN that can
achieve faster-to-convergent optimal solutions and higher
accuracy in the cost evaluation model.

2.4 Artificial neural network

The ANN involves computations and mathematical models that
include diverse processing components comparable with human brain
processing, which obtain inputs and transfer output based upon their
predetermined activation functions (Kengpol and Neungrit, 2014). The
most widely used ANN for a wide range of issues is based upon a
supervised procedure that employs multilayer perceptrons (MLPs) with
BP learning algorithms. TheANN architecture comprises an input layer
as the neuron is the input variable to problem solving. The different
values are distinct in each characteristic, causing attribute disorder and
influencing the obtained findings. Therefore, normalization is essential
to convert data to a single based upon each attribute (Henderi, 2021).
The hidden layer is responsible for conveying the weighted connections,
which are indicated as weights in the computation process of the input
layer and transferred to the output layer through the hidden layer. The
weight value is important to the propagation of the networkmodel. The
magnitude of the signal that traverses from the hidden layer to the
output layer is determined by the weight connected between them. The
number of independent variables used to predict the target value of
output in themodel is directly proportional to the number of neurons in
the input layer. The number of hidden layers and neurons is determined
by the complication of the model, which describes the computation in
the methodology section. The forward propagation is the initial process
consisting of weights and biases to minimize the error for the neural
network training of the input layer and processing transferred in
backward propagation of the output layer. Figure 3 depicts the
processing of necessary neurons at their hidden nodes.

The neuron receives the hidden nodes from each input. Then,
the activation function is used to compute the optimal solution in
the output model through the summation of the input node values
multiplied by their assigned weights. The mathematical function of
the ANN can be explained as follows (Kengpol and Neungrit, 2014).

In order to define the number of hidden layers for large features
and achieve optimal solutions, Equation 8 presents the calculation of
the number of hidden layers, developed by the authors, which is
usually estimated through trial and error tests to reduce cost errors
in the development model.

Nh � 			
Ns

√ / I +O( ), (8)

where Nh is the number of hidden layers, Ns is the number of
samples, I is the number of the input, and O is the number of
the output.

The output result can be determined from Eqs (9) and (10):
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yj � f ∑wijxi + bj( ) � f v( ), (9)
v � ∑wijxi + bj, (10)

where yj is the activation values, f is the activation function, v is the
summation of weight in each input, wij is the weight variables of
input neurons i to output neurons j, xi is the input variable, and bj is
the bias variable.

The activation function applied the sigmoid function that is
suitable for non-linear problems to predict the result as follows in
Equation 11:

f z � 1
1 + exp−z

, (11)

where fz is the fitness function of the variable.
Several research studies propose an ANN. Juszczyk et al. (2018)

suggested the capacity to receive information in the automated
training process of neural networks and apply it to calculate
sports field construction expenses. Kengpol et al. (2018)
explained that the capability of the ANN has the advantage of
predicting data that have never been seen before in the learning
process. The ANN is one of the techniques used to solve non-linear
problems, which necessitates computing intelligence. The BP
algorithm is a supervised learning technique that accurately
recognizes patterns and predictions (Kengpol and Klunngien,
2019). Elhoone et al. (2020) used an expert system based upon
ANNs in conjunction with the Internet of Things (IoTs) to
determine the most efficient AM procedures for a wide range of
product development in a cyber network-processable environment.
Moreover, the ANN can classify and detect complex non-linear
problems without using complicated mathematics that achieves
prediction accuracy (Wong et al., 2022). Predictive modeling is
essential to research that can be studied and improved using the
ANN as demonstrated by the success of these studies. However, no
evidence has been encountered to propose a hybrid deep learning

TSA with an ANN for the cost evaluation of complicated surface
products in the plastic injection industry. Therefore, the purpose of
this study is to provide a new approach to fill the gap
mentioned above.

2.5 Research methodology

The cost evaluation model in the plastic injection industry
applies a hybrid deep learning methodology using a TSA with an
ANN for complicated surface products. Figure 4 represents the
method that entails feature-based extraction of complicated surface
products using the TSA to construct the initial weight into the ANN
learning process, which is described in more detail as follows:

Step 1: Data preparation.

1. Data collection: The data preparation method starts with
collecting and categorizing raw data from the 3D-model
complicated surface products and quotation data. The
product design varies in appearance in application usage.
This study emphasizes complicated surface products of
electronic parts, automotive parts, packaging parts, and
medical parts for developing a cost evaluation model. An
example of a complicated surface part is given in Figure 5.

2. Feature parameters: The plastic injection industry has more
advanced technology in product design and production
processes that result in plastic products having a more
complex appearance. The designer uses CAD/CAM
technology to create a 3D model of specific products in the
design stage. This method extracts feature-based parameters of
a 3Dmodel for complicated surface products as input variables
into the ANN model. The input variables are quantitative
parameters that require converting all non-calculable data
into calculable values. The input variables involve the
maximum size of the product in the X, Y, and Z axes, the

FIGURE 3
Architecture of the artificial neural network (ANN) (Henderi, 2021).
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FIGURE 4
Cost evaluation of the hybrid tunicate swarm algorithm (TSA) with the ANN (developed by the authors).

FIGURE 5
Example of complicated surface products and parameter features.
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surface part, the weight part, and the volume of the product, as
shown in Figure 5. In this study, the focus is on the material
polypropylene (PP) because of its wide usage and its most
excellent feasibility for a high market value. The key factors in
calculating the immemorial plastic injection cost evaluation
include material costs, manufacturing costs, and molding costs
(Wang, 2007). Table 1 represents the distinctions between
standard cost evaluation approaches and our novel cost
evaluation model in bringing feature parameters to use as a
replacement for various factors.

Step 2: Model parametric for the TSA.
This section proposes a new method for constructing the initial

weight from the TSA technique applied to an ANN that has more
capabilities than other swarm intelligence algorithms to find the
faster optimal solution. Therefore, this study enhances the learning
model and achieves better accuracy. The step and flowchart are
given in Figure 6. The steps proposed for the TSA methodology are
given below.

Step 1: Generating the initial tunicate population. The TSA
produces the initial population of tunicates Pp

�→(x), which is equal to
the number of nodes that are processed in the ANNmodel. The TSA
process commences by randomly initializing the tunicate
population, which is defined within the value range of 0–1, and
the total population consists of 50,370 tunicates that consider the
allowable limits of the control variables under the condition of the
model learning ANN.

Step 2: Identifying the initial parameter. Table 2 represents the
parameter setting of the TSA that is to define the initial parameters
to be used in the next step of calculation, including c1, c2, c3, and rand,
that specify random parameters in the range from 0 to 1 [0,1]. The
constant value assigned to Pmin is 1, and Pmax is defined as 4. The
max iteration is determined at 1,000 iterations.

Step 3: Calculating the fitness value. The fitness function was
obtained from the start of the calculation from the colony strength
between the tunicates in vector and M → from Equation 4. Then, the
movement of water is calculated in the ocean �F from Equation 3.
Then, the gravity force �G is determined from Equation 2, and the
new search agent position �A is computed from Equation 1. Finally,
the position of the food source that is represented by the best
tunicate position (Fs) is computed to obtain the optimal fitness
value. The optimal function is FS

�→
= [Pp

�→(x)]2 in each tunicate.
Step 4: Determining the jet propulsion and swarm behavior of

the tunicate. In order to transition to the position of the optimal
tunicate for evaluating the best search agent within the available
search space after computing the fitness value, the distance between

the food source and the tunicate PD
��→

is calculated from Equation 5.
The best tunicate can adjust its ranking to reflect the current state of
affairs. The position of the search agent is determined from Equation
6 for verifying the boundary condition of the position of the tunicate
Pp
�→(x).

Step 5: Updating the position of each search agent: In order to
adjust the locations of the tunicates and update the positions of the
search agents, the new positions of the tunicates are determined by
data concerning the optimal position of the tunicates and the social
interactions among the tunicates in Equation 7.

Step 6: Calculating the fitness value of updated search agents.
The fitness value of the updated search agents from Equation 7 that
are out of bounds in the regulative search space are evaluated by the
nearest limit that should be chosen.

Step 7: Adjusting the search agent if it goes beyond the region of
search space. The fitness function associated with each new location
search is computed, and the tunicate position that is the fitness value
is updated by adjusting the search agent if it is better than the
previous optimal solution. Then, the position of the tunicate Pp

�→(x)
is updated.

Step 8: Checking stopping criteria. Termination requirements
should be verified. The method continues iterating until the
algorithm terminates, at which point the iteration count is
incremented by one. Stylianos et al. (2022) proposed
optimization iterations to enhance the performance of carbon
nanocomposite reinforcement in cement-based materials. This
method compared the number of iterations between
20 iterations, 200 iterations, and 1,000 iterations. The results
show that a maximum number of 1,000 iterations achieved
excellent accuracy at approximately 99.99%. Therefore, a
maximum number of 1,000 iterations are applied in this research
to repeat steps 5–8 to obtain great results.

Step 9: Returning the best optimal solution (initial weight). The
output of the optimal solution acquired from the TSA is transferred
to process learning for the initial weight of the ANN model.

In the process, the TSA yields the best optimal solution as the
initial weight to use as the default weight in the feed forward of the
ANN model, which is clarified in step 3 in the following order.

Step 3: Model parametric for the ANN
According to the literature review, this segment proposes the

new hybrid TSA-ANN for the cost evaluation of complicated surface
products. The learning process of the ANN uses a feature extraction
of complicated surface products and obtains the initial weight from
the output of the TSA that is applied to the FFNN. In order to
minimize prediction errors, this section suggests a training and
validation model configuration for an architecture that would

TABLE 1 Factor comparison of the traditional and new cost evaluation approaches.

Cost factor Immemorial plastic injection cost
evaluation

New cost evaluation approach

Raw material cost Raw material, weight of product, weight of runner, and number
of cavities

Feature parameters are used instead of values for raw material cost, manufacturing cost,
and molding cost

Manufacturing
cost

Cycle time, machine rate (THB/min), and number of cavities

Molding cost Cost of the mold machine, cost of the mold, and number of
cavities
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evaluate the cost of complicated surface products in the plastic
injection industry, which is explained in more detail as follows.

1. The dataset is split into training, validation, and testing sets
(60%, 20%, and 20%, respectively): The most crucial aspect of

learning process development is splitting data for model
validation (Xu and Goodacre, 2018). Hemelings et al. (2021)
adopted the splitting data process, which is significant in the
learning model. This research divided the dataset into three
groups for model development, namely, 60% of the training
datasets, 20% of the validation datasets, and 20% of the
testing datasets.

2. Model parametric for the ANN: This segment applies the
feature parameters of 3D-model complicated surface
products as the input variable of the ANN. The initial
weight of the ANN was obtained from the TSA technique
in the result of step 9 in Figure 6. The parametric list was
obtained from trial and error to minimize errors by splitting
datasets for training, validation, and testing datasets to find the
optimal solution for the ANN model. The hybrid TSA-ANN
model architecture in this research is given in Figure 7.

In the starting model development of the ANN, the input is
denoted by the first layer, which consists of the input variable
obtained from the feature extraction of complicated surface
products as six nodes. The input variables involve the maximum
size of the product in the X, Y, and Z axes, the surface part, the
weight part, and the volume of the product. Due to the different
value ranges for each attribute, normalization is necessary to convert
the data to a similar scale (Henderi, 2021). In order to construct the
equation for normalization between 0 and 1, the minimum value of
the variable to be normalized is initially subtracted. Following the
subtraction of the minimum value from the maximum value, the
resulting value is divided by the minimum value, as shown in
Equation 12:

Xnorm � Xi − Xmin( )/ Xmax − Xmin( ), (12)
where Xnorm is the new normalization data, Xi is the set of observed
values of X, Xmax is the maximum value in X, and Xmin is the
minimum value in X.

Alwosheel et al. (2018) suggested that the minimum number of
samples suitable for the ANN is 50 times the number of variables.
The learning process of the ANN can achieve satisfactory
performance, with a sample size of 2,000 (Alwosheel et al., 2018).
However, the sample size according to the above definition for

FIGURE 6
Flowchart of the proposed TSA (Arabali et al., 2022).

TABLE 2 Parameter setting of the tunicate swarm algorithm (TSA).

Algorithm Parameter Value

Tunicate swarm
algorithm (TSA)

Tunicate populations Pp
�→(x) 50,370

Parameter Pmin 1

Parameter Pmax 4

Number of iterations 1,000

Parameter c1 Random [0,1]

Parameter c2 Random [0,1]

Parameter c3 Random [0,1]

Parameter rand Random [0,1]

Fitness functionFS
�→

FS
�→ � [Pp

�→(x)]2
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6 input variables in this research is approximately 6 × 50 = 300. In
order to obtain excellent learning capability of the ANN, the number
of samples is specified as 2,000. The number of inputs is six variables,
and the number of outputs is two target values for the calculation
mentioned in Equation 8. Thus, the number of hidden layers is
[

					
2, 000

√
/(6 + 2)] = 5.59, so inference uses 6 hidden layers for

this research.
The optimal number of hidden nodes is determined using the

number of nodes with the least amount of error to validate the
learning model. Table 3 demonstrates the model summary of the
ANN, and the input layer has 6 hidden nodes for variables, in
which the output shape is (none, 6). Next, the hidden layers 1, 2,

and 3 define the number of hidden nodes as 64, and the output
shape is (none, 64). Then, the hidden layers 4, 5, and 6 define the
number of hidden nodes as 128, and the output shape is (none,
128). The final layer is the output layer of the part, and the mold
that defines 1 hidden node for the target value as the output shape
is (none, 1). The “None” in the output shape means a dynamic
dimension of a batch without being pre-determined that is
flexible to adjust the batch size by extrapolating shape from
the context in each layer. The “Param #” column represents
the number of parameters that are multiplied between the weight
of the previous layer and the current layer, plus with bias, which
can be explained as follows.

FIGURE 7
Hybrid deep learning TSA with ANN model architecture.

TABLE 3 Model summary of artificial neural network (ANN) architecture.

Layer (type) Output shape Param # Activation function

Input_Layer (None, 6) 0 -

Hidden 1 (None, 64) 448 ReLU

Hidden 2 (None, 64) 4,160 ReLU

Hidden 3 (None, 64) 4,160 ReLU

Hidden 4 (None, 128) 8,320 ReLU

Hidden 5 (None, 128) 16,512 ReLU

Hidden 6 (None, 128) 16,512 ReLU

Mold_Output (None, 1) 129 Linear

Part_Output (None, 1) 129 Linear

Total Param# 50,370

Remark: Total Param# = 50,370 is the number of hidden nodes of the ANN.

ReLU activation function provides enhanced training efficacy and accelerated computation for non-linear problems.

Linear activation function generates more significant variation based upon the neural network structure.
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Hidden 1: The number of Param # in hidden 1 is 448, which is
obtained as 6 (input variables) multiplied by 64 (hidden node in
hidden 1) and plus by 64 (bias value in hidden 1).

Hidden 2: The number of Param # in hidden 2 is 4,160, which is
obtained as 64 (hidden node in hidden 1) multiplied by 64 (hidden
node in hidden 2) and plus by 64 (bias value in hidden 2).

Hidden 3: The number of Param # in hidden 3 is 4,160, which is
obtained as 64 (hidden node in hidden 2) multiplied by 64 (hidden
node in hidden 3) and plus by 64 (bias value in hidden 3).

Hidden 4: The number of Param # in hidden 4 is 8,320, which is
obtained as 64 (hidden node in hidden 3) multiplied by 128 (hidden
node in hidden 4) and plus by 128 (bias value in hidden 4).

Hidden 5: The number of Param # in hidden 5 is 16,512, which is
obtained as 128 (hidden node in hidden 4) multiplied by 128
(hidden node in hidden 5) and plus by 128 (bias value in hidden 5).

Hidden 6: The number of Param # in hidden 6 is 16,512, which is
obtained as 128 (hidden node in hidden 5) multiplied by 128
(hidden node in hidden 6) and plus by 128 (bias value in hidden 6).

Mold output: The number of Param # in the mold output layer is
129, which is obtained as 1 (target value of the mold cost) multiplied
by 128 (hidden node in hidden 6) and plus by 1 (bias value in
mold output).

Part output: The number of Param # in part output layer is 129,
which is obtained as 1 (target value of part cost) multiplied by 128
(hidden node in hidden 6) and plus by 1 (bias value in part output).

Wibawa et al. (2018) used the rectifier linear unit (ReLU)
activation function for the learning model to identify abnormal
heart rhythms, which provides enhanced training efficacy and
accelerated computation. Furthermore, the model optimization
incorporated the Adam approach for weight adjustment, which
yielded outstanding outcomes. Consequently, the ReLU activation
function is implemented in the hidden layer of each dense that can
apply the Adam approach to complicated functional mappings for
non-linear problems to optimize the cost evaluation model, as
shown in Equation 13. Feng and Lu (2019) proposed a straight-
line equation as an identity function to the linear activation function
that maintains a constant value that suits the default activation when
developing a multilayer perceptron. The linear activation function as
specified for the output layer in this study is denoted by Equation 14.

ReLUActivation Function; f xi( ) � 0 forxi ≤ 0
x forxi > 0

{ � max 0, x{ },
(13)

where xi is the input for each neuron of function f on i, the output is
0 when xi< 0, and the output is x when xi>0.

Linear Activation function; f xi( ) � kxi, (14)

where xi is the input for each neuron of function f on i and k is a
constant value.

3. Training, validation, and testing data for the ANN model: The
accuracy of training datasets is being able to learn the correct
patterns. The validation datasets aid in precisely fine-tuning
the learning model, and the testing datasets furnish reliable
metrics that instill confidence in the deployment of deep
learning. This process uses the trial and error method to
minimize errors in each dataset, which aims to achieve

better accuracy and faster convergence for the learning
model of the ANN. The optimal solution to minimize errors
is to evaluate the efficiency of the learning model using error
metrics to compare the predicted costs with the actual costs,
which are described in more detail in the next section.

Step 4: The learning model efficiency is evaluated for the hybrid
deep learning TSA-ANN.

According to the information mentioned above, error metrics
are employed to assess the performance of the learning model of
training, validation, and testing datasets that compare the predicted
costs with the actual costs. The outcomes of these evaluations are
significantly impacted by the implementation of deep learning
techniques. Dessain (2021) suggested that the mean square error
(MSE) and mean absolute error (MAE) are commonly used
indicators for assessing the effectiveness of cost evaluation
models and achieving excellent results. Consequently, the MSE
and MAE are applied in this research to evaluate learning model
efficiency for the hybrid deep learning TSA-ANN, which can be
formulated using Equations (15) and (16).

Mean square error; MSE � ∑n
i�1 Avi − Evi( )2

n − 1
, (15)

Mean absolute error; MAE � ∑n
i�1 Avi − Evi| |

n
, (16)

where Avi is the actual observed value, Evi is the corresponding
predicted value, and n is the number of observations.

The efficiency of learning evaluation is considered by error
metrics of the MSE and MAE. The parametric list configuration
of the ANN model is fine-tuning to minimize errors. If the error
metrics show an unstable trend and still have high errors, it is
essential to repeat and adjust the parametric lists. On the other hand,
the error metrics trend is stable and obtains excellent accuracy,
resulting in achieving the best model for cost evaluation in the
plastic injection industry. The results of learning the new hybrid
TSA-ANN model are illustrated in Section 3.

3 Results and discussion

This section outlines the methods utilized for cost evaluation in
the plastic injection industry. The suggested method for evaluating
the cost of the hybrid deep learning TSA-ANN involves the process
of the ANN obtaining the initial weight from the TSA to develop a
cost evaluation model. The error metrics used the MSE and MAE to
assess the efficiency of the cost prediction in the context of part and
mold costs. The performance comparison of learning evaluation
models for the ANN and a new hybrid deep learning TSA-ANN is
shown in Table 4.

The MSE of testing datasets for the ANN model in terms of part
costs is approximately 0.06139 and mold cost is approximately
0.09121. The MSE for the new hybrid deep learning TSA-ANN
of part and mold costs is approximately 0.00462 and 0.00527,
respectively. The MAE of the ANN is approximately 0.12094 for
part costs and 0.13597 for mold costs. The new hybrid deep learning
TSA-ANN-obtained MAE of part and mold costs is approximately
0.04113 and 0.05998, respectively. The outcome indicates that the
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new hybrid deep learning TSA-ANN has fewer error than the ANN
for both MSE andMAE. As a result, the convergence behavior of the
model development for the new hybrid deep learning TSA-ANN is
superior to that of the ANN.

Figures 8A–D depict the convergence behavior for the resultant
of the MSE and MAE in both part and mold costs between the ANN
and TSA-ANN. The curve of the ANN and TSA-ANN shows a
likewise pattern that compares the training datasets with validation
datasets. Figure 8A represents the learning rate of the MSE in terms
of part costs, which initially exhibits a faster convergence and
gradually decreases over the course of the subsequent
90 iterations for the ANN and 10 iterations for the TSA-ANN.
The resultant of the TSA-ANN for the training rate is approximately
0.05601 and for the validation rate is approximately 0.03943. Then,
the trend decreases until it stabilizes in 250 iterations at the
intermediate trend and halts at the stable point where the
learning trend has stabilized, which occurs in 500 iterations in
the learning process where the training rate is at 0.05431 and the
validation rate is at 0.03678. The MAE in the context of part costs
shown in Figure 8B suggested astute convergence characteristics,
despite the initial knobby nature of the path. The beginning stage
appears to rapidly converge and move downward until it is at a
stable point at 90 iterations for the ANN and 10 iterations for the
TSA-ANN. The training rate of the TSA-ANN is approximately
0.07575, and the validation rate is approximately 0.06903,
approaching the desired target value and terminating the runtime
in 500 iterations at roughly 0.08682 for the training rate and
0.07640 for the validation rate.

According to the outcome of the preceding discussion, the
convergence behavior of the mold cost has a similar pattern to
that of the part cost that compares two line plots between the
training and validation datasets. The MSE of mold cost
demonstrated a rapid decline trend, as shown in Figure 8C,
within 45 iterations for the ANN and 10 iterations for the
TSA-ANN. The result of the training rate and validation rate
with convergence is approximately 0.08658 and 0.07158,
respectively. The termination runtime of the training dataset
is approximately 0.08647, and the validation dataset is
approximately 0.07149 over the course of 500 iterations. The
learning curve of the MAE is shown in Figure 8D, which initially
demonstrates a faster convergence and steadily decreases within
55 iterations for the ANN and 10 iterations for the TSA-ANN.
The runtime stops at the stable point throughout 500 iterations,
with the training and validation rates of 0.09280 and 0.08581,
respectively. Therefore, the outcome of the MSE and MAE for the
part cost illustrates higher capability than that for the mold cost.
In addition, the convergence behavior toward the termination
runtime of the TSA-ANN results in a faster convergence
than the ANN.

The comparison of the accuracy of the TSA-ANN for evaluating
the part and mold costs of complicated surface products is shown in
Figure 9. The accuracy of part cost is represented in green charts at
approximately 92.44% for the ANN and 96.66% for the TSA-ANN.
The accuracy of mold cost is indicated in blue charts at
approximately 90.22% for the ANN and 93.75% for the TSA-
ANN. Therefore, the new hybrid deep learning TSA-ANN model
of testing datasets appears that the TSA can improve the learning
ability of the ANN and obtain better accuracy than the ANN.T
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The results of the learning model above illustrate the
methodology presented in the cost evaluation approach that
combines the ANN with the TSA and has excellent efficiency.
In terms of applications, the proposed cost evaluation model is

verified using the cost percentage error (CPE) with
complicated surface products of the new hybrid deep learning
TSA-ANN. The computing equation is as follows (Juszczyk
et al., 2018):

FIGURE 8
Learning curve comparison of the ANN and hybrid deep learning ANN with the TSA.

FIGURE 9
Accuracy comparison of the ANN and TSA-ANN on part and mold cost.
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CPE � Ypi − Yai( )
Yai

× 100, (17)

where Ypi is the prediction cost of sample i and Yai is the actual cost
of sample i.

The predicted cost evaluation of the new hybrid deep learning
TSA-ANN in terms of part and mold costs is shown in Table 5. The
first column of this table is the number of samples. The second
column contains 20 samples, all of which have complicated surface
products. The third column shows the cost prediction for the part
cost, and the prediction of the mold cost is indicated in the
final column.

The CPE facilitates sight in errors in cost evaluation. Figure 10
depicts the CPE of the complicated surface products in both part and
mold costs. The green charts obtained a CPE of
approximately ±0.40% of 13 parts, accounting for 65% of the
sample parts for mold cost. The violet charts obtained a CPE of
approximately ±0.40% of 14 parts, accounting for 70% of the sample
parts for part cost. The result illustrates cost evaluation errors of less
than 1% in both part and mold costs, which can achieve a higher
accuracy for complicated surface products. The validation and

testing data of sample parts can achieve excellent performance
for complicated surface products and can be applied to simple
surface products that can reduce the complicatedness of cost
evaluation in the plastic injection industry as well.

4 Conclusion and recommendations

The complexity of the plastic parts and manufacturing data
resulted in a long data waiting time and inaccurate cost evaluation.
Traditional cost evaluation approaches are limited and outdated,
which are inappropriate practical operations to reduce cost
evaluation mistakes for complicated surface products and
decision-maker variability. However, a gap still exists in the
method for decreasing cost evaluation errors and increasing the
convergence rate for faster optimal solutions in model development.
Therefore, the aim of this research is to apply a cost evaluation
approach that combines hybrid deep learning of the TSA with the
ANN for the cost evaluation of complicated surface products in the
plastic injection industry to achieve a faster convergence rate for
optimal solutions and higher accuracy.

TABLE 5 Complicated surface products with the prediction of part and mold costs.

No. Complex
surface parts

Part cost
prediction

Mold cost
prediction

No. Complex
surface parts

Part cost
prediction

Mold cost
prediction

1 −0.297167371 −0.420812101 11 −0.247170543 −0.201825222

2 0.713259271 0.230521984 12 −0.24271432 0.205631984

3 −0.240543195 −0.216985022 13 −0.24731432 −0.57001022

4 −0.257143195 −0.864578122 14 −0.241827143 −0.849502198

5 −0.176197271 −0.525924822 15 −0.209727143 −0.1769837

6 −0.293427143 −0.275019837 16 0.129271432 0.757600182

7 −0.238575271 −0.262981984 17 −0.119052714 0.371082198

8 −0.24181432 −0.450159837 18 −0.252356143 −0.899429922

9 0.650812714 0.3919837 19 −0.266143195 −0.51885152

10 −0.24871432 −0.973498198 20 −0.240527143 −0.34329837
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The value of this research is the higher accuracy of the new
hybrid deep learning TSA-ANN that can generate much less CPE
of the complicated surface part in both part and mold costs.
Although research has been conducted on cost estimation in
plastic injection, these consider only cost estimation in the simple
surface product. Wang (2007) obtained a CPE of
approximately ±2% for part cost. Che (2010) attained a CPE
of part and mold costs of approximately ±0.4% and ±0.5%,
respectively, and Wang et al. (2013) achieved a CPE of
approximately ±0.2% to ±1% for part costs. The outcome of
the new hybrid deep learning TSA-ANN can achieve excellent
efficiency for complicated surface products with the CPE of
approximately ±0.40% of 13 parts, accounting for 65% of the
sample parts for mold cost and approximately ±0.40% of 14 parts,
accounting for 70% of the sample parts for part cost.

The new approaches reduce cost evaluation errors for
complicated surface products in the plastic injection industry.
The methodology entails TSA to construct the initial weight into
the learning process of the ANN using the jet propulsion and swarm
behavior function to achieve the best tunicates that can generate
faster-to-convergent optimal solutions. The ANN applied feature-
based extraction of complicated surface products as input variables
for developing the model. The number of hidden layers obtained
from calculation uses the value of six for this research. A fully
connected multilayer neural network is an essential part of deep
learning. The result shows that the new hybrid deep learning TSA-
ANN provides a more accurate cost evaluation than using the ANN
only. The TSA has the function to minimize errors to find the best
tunicate that can be used as the default weight in the feed forward of
the ANN and eventually achieve a faster-to-convergent
optimal solution.

The benefit of this research is to establish a higher accuracy cost
evaluation of complicated surface products. Moreover, the ANN can
generate self-learning ability for non-linear problems, and the TSA

can save time to find the optimal solution. Thus, the new hybrid
deep learning TSA-ANN can minimize errors and decrease the
complicatedness of cost evaluation.

The contribution of this research is to integrate a new hybrid
deep learning application of the TSA with the ANN that fills a gap
in the literature and proposes a method for calculating the
number of hidden layers for reducing cost evaluation errors
and obtaining a faster convergence rate, which is unavailable
in the literature. The advantage of this study is that the new
hybrid deep learning TSA-ANN achieves higher accuracy and is
able to quote pricing rapidly for complicated surface products.
This means a reduction in cost evaluation complexity in the
plastic injection industry.

The limitations of this research are that a 3D-model file for
complicated surface products is enormously needed, which can lead
to higher computation, which can be time-consuming. In addition,
the processing of the 3D-model data seeks high graphics processing
unit (GPU) processors.

For future study, this new hybrid deep learning TSA-ANN cost
evaluation model can also be applied to other industries, and the
faster-to-convergent optimal solution should be enhanced further to
the full extent.
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Cost percentage error (CPE) of the hybrid deep learning TSA-ANN on part and mold costs.

Frontiers in Mechanical Engineering frontiersin.org15

Kengpol and Tabkosai 10.3389/fmech.2024.1336828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1336828


Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

This researchwould not have been successful without the exceptional
support of my professor. The authors acknowledge the preciously
provided knowledge, expertise, and exacting attention to detail, which
is an inspiration and keeps our works on track. The authors acknowledge
King Mongkut’s University of Technology North Bangkok (KMUTNB)
for supporting the knowledge and companies that provide supporting
data, the identities of which are protected by a confidentiality agreement.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ahn, J., Han, S., and Al-Hussein, M. (2020). Improvement of transportation cost
estimation for prefabricated construction using geo-fence-based large-scale GPS data
feature extraction and support vector regression. Adv. Eng. Inf. 43, 101012. doi:10.1016/
j.aei.2019.101012

Arabali, A., Khajehzadeh, M., Keawsawasvong, S., Mohammed, A. H., and Khan, B.
(2022). An adaptive tunicate swarm algorithm for optimization of shallow foundation.
IEEE Access 10, 39204–39219. doi:10.1109/ACCESS.2022.3164734

Chan, S. L., Lu, Y., and Wang, Y. (2018). Data-driven cost estimation for additive
manufacturing in cyber manufacturing. J. Manuf. Syst. 46, 115–126. doi:10.1016/j.jmsy.
2017.12.001

Chang, K.-H. (2015). “Product cost estimating,” in e-Design (Amsterdam,
Netherlands: Elsevier Inc), 787–844. doi:10.1016/B978-0-12-382038-9.00015-6

Che, Z. H. (2010). PSO-based back-propagation artificial neural network for product
and mold cost estimation of plastic injection molding. Comput. Industrial Eng. 58 (4),
625–637. doi:10.1016/j.cie.2010.01.004

Chien, C.-F., Dauzère-Pérès, S., Huh,W., Jang, Y. J., andMorrison, J. (2020). Artificial
intelligence in manufacturing and logistics systems: algorithms, applications, and case
studies. Int. J. Prod. Res. 58, 2730–2731. doi:10.1080/00207543.2020.1752488

Dessain, J. (2021). Machine learning models predicting returns: why most popular
performance metrics are misleading and proposal for an efficient metric. Available at:
https://ssrn.com/abstract=3927058or10.2139/ssrn.3927058.

Elhoone, H., Zhang, T., Anwar, M., and Desai, S. (2020). Cyber-based design for
additive manufacturing using artificial neural networks for Industry 4.0. Int. J. Prod. Res.
58 (9), 2841–2861. doi:10.1080/00207543.2019.1671627

Emmert-Streib, F., Yang, Z., Feng, H., Tripathi, S., and Dehmer, M. (2020). An
introductory review of deep learning for prediction models with big data. Front. Artif.
Intell. 3, 4. PMID: 33733124; PMCID: PMC7861305. doi:10.3389/frai.2020.00004

Feng, J., and Lu, S. (2019). Performance analysis of various activation functions in artificial
neural networks. J. Phys. Conf. Ser. 1237, 022030. doi:10.1088/17426596/1237/2/022030

Fetouh, T., and Elsayed, A. M. (2020). Optimal control and operation of fully
automated distribution networks using improved tunicate swarm intelligent
algorithm. IEEE Access 8, 129689–129708. doi:10.1109/ACCESS.2020.3009113

Ganorkar, A. B., Lakhe, R. R., and Agrawal, K. N. (2017). Cost estimation techniques
in manufacturing industry: concept, evolution and prospects. Int. J. Econ. Account. 8 (3/
4), 303–336. doi:10.1504/ijea.2017.10013472

Gao, H., Zhang, Y., Zhou, X., and Li, D. (2017). Intelligent methods for the process
parameter determination of plastic injection moulding. Front. Mech. Eng. 13, 1–11.
doi:10.1007/s11465-018-0491-0

Grandview Research (2022). Inject. Mould. Plast. Mark. Size Rep. 2023-2030.
Available at: https://www.grandviewresearch.com/industry-analysis/injection-
molded-plastics-market.

Hemelings, R., Elen, B., Breda, J., Blaschko, M., De Boever, P., and Stalmans, I. (2021).
Convolutional neural network predicts visual field threshold values from optical
coherence tomography scans. Investigative Ophthalmol. Vis. Sci. 62 (8), 1022.

Henderi, H. (2021). Comparison of min-max normalization and Z-score
normalization in the K-nearest neighbor (kNN) algorithm to test the accuracy of
types of breast cancer. IJIIS Int. J. Inf. Inf. Syst. 4, 13–20. doi:10.47738/ijiis.v4i1.73

Houssein, E. H., Helmy, B. E. D., Elngar, A. A., Abdelminaam, D. S., and Shaban, H.
(2021). An improved tunicate swarm algorithm for global optimization and image
segmentation. IEEE Access 9, 56066–56092. doi:10.1109/ACCESS.2021.3072336

Juszczyk, M., Leśniak, A., and Zima, K. (2018). ANN based approach for
estimation of construction costs of sports fields. Complexity 2018, 1–11. doi:10.
1155/2018/7952434

Kadir, A. Z. A., Yusof, Y., and Wahab, M. S. (2020). Additive manufacturing cost
estimation models—a classification review. Int. J. Adv. Manuf. Technol. 107 (1),
4033–4053. doi:10.1007/s00170-020-05262-5

Kaur, S., Awasthi, L. K., Sangal, A. L., and Dhiman, G. (2020). Tunicate Swarm
Algorithm:A new bio-inspired based metaheuristic paradigm for global
optimization. Eng. Appl. Artif. Intell. 90, 103541. doi:10.1016/j.engappai.2020.
103541

Kengpol, A., and Klunngien, J. (2019). The development of cyber-physical framework
for classifying Health beverage flavor for the ageing society. Procedia Manuf. 39, 40–49.
doi:10.1016/j.promfg.2020.01.226

Kengpol, A., Klunngien, J., and Tuammee, S. (2018). Development of a decision
support framework for Health beverage flavouring for the ageing society using artificial
neural network. Int. J. Comput. Theory Eng. 10, 194–200. doi:10.7763/IJCTE.2018.V10.
1225

Kengpol, A., and Neungrit, P. (2014). A decision support methodology with risk
assessment on prediction of terrorism insurgency distribution range radius and elapsing
time: an empirical case study in Thailand. Comput. Industrial Eng. 75, 55–67. doi:10.
1016/j.cie.2014.06.003

Khosravani, M. R., and Nasiri, S. (2020). Injection molding manufacturing process:
review of case-based reasoning applications. J. Intelligent Manuf. 31 (4), 847–864.
doi:10.1007/s10845-019-01481-0

Mathieu, A., Leclercq, M., Sanabria, M., Perin, O., and Droit, A. (2022). Machine
learning and deep learning applications in metagenomic taxonomy and functional
annotation. Front. Microbiol. 13, 811495. doi:10.3389/fmicb.2022.811495

Niazi, A., Dai, J., Balabani, S., and Seneviratne, L. (2006). Product cost
estimation: technique classification and methodology review. J. Manuf. Sci.
Engineering-transactions Asme - J MANUF SCI ENG 128 (2), 563–575. doi:10.
1115/1.2137750

Rosebrock, A. (2017). Deep learning for computer vision with Python: starter bundle.
United States: PyImageSearch.

Sarker, I. H. (2021). Deep learning: a comprehensive overview on techniques,
taxonomy, applications and research directions. SN Comput. Sci. 2, 420. doi:10.
1007/s42979-021-00815-1

Sharma, A., Dasgotra, A., Tiwari, S. K., Sharma, A., Jately, V., and Azzopardi, B.
(2020). Parameter extraction of photovoltaic Module using tunicate swarm algorithm.
Electronics 10 (8), 878. doi:10.3390/electronics10080878

Shekarabi, S. A. H., and Dorri, B. (2017). Formulation and anticipated approach for
developing a new business through integrated strategic morphological analysis and
integrated fuzzy approach and estimate the cost of the integration of PSO and BP neural
network in the plastic injection molding industry. Rev. Eur. Stud. 9 (1), 239. doi:10.5539/
res.v9n1p239

Stylianos, A. G., Faidra, G. T., Zoi, M. S., Paraskevas, P., and Nikolaos, A. D. (2022).
Optimization of the carbon nanotubes reinforcement in cement-based materials.
Procedia Struct. Integr. 37, 485–491. doi:10.1016/j.prostr.2022.01.113

Tabkosai, P., and Kengpol, A. (2022). “Deep learning cost evaluation for plastic
injection industry during the COVID-19 pandemic,” in 22nd International
Working Seminar on Production Economics (IWSPE), Innsbruck, Autriche,
February, 2022.

Frontiers in Mechanical Engineering frontiersin.org16

Kengpol and Tabkosai 10.3389/fmech.2024.1336828

https://doi.org/10.1016/j.aei.2019.101012
https://doi.org/10.1016/j.aei.2019.101012
https://doi.org/10.1109/ACCESS.2022.3164734
https://doi.org/10.1016/j.jmsy.2017.12.001
https://doi.org/10.1016/j.jmsy.2017.12.001
https://doi.org/10.1016/B978-0-12-382038-9.00015-6
https://doi.org/10.1016/j.cie.2010.01.004
https://doi.org/10.1080/00207543.2020.1752488
https://ssrn.com/abstract=3927058or10.2139/ssrn.3927058
https://doi.org/10.1080/00207543.2019.1671627
https://doi.org/10.3389/frai.2020.00004
https://doi.org/10.1088/17426596/1237/2/022030
https://doi.org/10.1109/ACCESS.2020.3009113
https://doi.org/10.1504/ijea.2017.10013472
https://doi.org/10.1007/s11465-018-0491-0
https://www.grandviewresearch.com/industry-analysis/injection-molded-plastics-market
https://www.grandviewresearch.com/industry-analysis/injection-molded-plastics-market
https://doi.org/10.47738/ijiis.v4i1.73
https://doi.org/10.1109/ACCESS.2021.3072336
https://doi.org/10.1155/2018/7952434
https://doi.org/10.1155/2018/7952434
https://doi.org/10.1007/s00170-020-05262-5
https://doi.org/10.1016/j.engappai.2020.103541
https://doi.org/10.1016/j.engappai.2020.103541
https://doi.org/10.1016/j.promfg.2020.01.226
https://doi.org/10.7763/IJCTE.2018.V10.1225
https://doi.org/10.7763/IJCTE.2018.V10.1225
https://doi.org/10.1016/j.cie.2014.06.003
https://doi.org/10.1016/j.cie.2014.06.003
https://doi.org/10.1007/s10845-019-01481-0
https://doi.org/10.3389/fmicb.2022.811495
https://doi.org/10.1115/1.2137750
https://doi.org/10.1115/1.2137750
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.3390/electronics10080878
https://doi.org/10.5539/res.v9n1p239
https://doi.org/10.5539/res.v9n1p239
https://doi.org/10.1016/j.prostr.2022.01.113
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1336828


Taghinezhad, A., Friedland, C., Rohli, R., Marx, B., Giering, J., and Nahmens,
I. (2021). Predictive statistical cost estimation model for existing single
family home elevation projects. Front. Built Environ. 7. doi:10.3389/fbuil.
2021.646668

Tosello, G., Charalambis, A., Kerbache, L., Mischkot, M., Pedersen, D. B., Calaon, M.,
et al. (2019). Value chain and production cost optimization by integrating additive
manufacturing in injection molding process chain. Int. J. Adv. Manuf. Technol. 100 (1),
783–795. doi:10.1007/s00170-018-2762-7

Tyagi, P. S., Cai, X., and Yang, K. (2015). Product life-cycle cost estimation: a focus on
the multi-generation manufacturing-based product. Res. Eng. Des. 26, 277–288. doi:10.
1007/s00163-015-0196-x

Wang, H. S. (2007). Application of BPN with feature-based models on cost estimation
of plastic injection products. Comput. Industrial Eng. 53 (1), 79–94. doi:10.1016/j.cie.
2007.04.005

Wang, H. S., Wang, Y. N., andWang, Y. C. (2013). Cost estimation of plastic injection
molding parts through integration of PSO and BP neural network. Expert Syst. Appl. 40
(2), 418–428. doi:10.1016/j.eswa.2012.01.166

Wong, L.-W., Tan, G. W.-H., Ooi, K.-B., Lin, B., and Dwivedi, Y. K. (2022). Artificial
intelligence-driven risk management for enhancing supply chain agility: a deep-
learning-based dual-stage PLS-SEM-ANN analysis. Int. J. Prod. Res., 1–21. doi:10.
1080/00207543.2022.2063089

Xing, W., and Du, D. (2018). Dropout prediction in MOOCs: using deep learning for
personalized intervention. J. Educ. Comput. Res. 57 (3), 547–570. doi:10.1177/
0735633118757015

Xu, Y., and Goodacre, R. (2018). On splitting training and validation set: a
comparative study of cross-validation, bootstrap and systematic sampling for
estimating the generalization performance of supervised learning. J. Analysis Test. 2,
249–262. doi:10.1007/s41664-018-0068-2

Frontiers in Mechanical Engineering frontiersin.org17

Kengpol and Tabkosai 10.3389/fmech.2024.1336828

https://doi.org/10.3389/fbuil.2021.646668
https://doi.org/10.3389/fbuil.2021.646668
https://doi.org/10.1007/s00170-018-2762-7
https://doi.org/10.1007/s00163-015-0196-x
https://doi.org/10.1007/s00163-015-0196-x
https://doi.org/10.1016/j.cie.2007.04.005
https://doi.org/10.1016/j.cie.2007.04.005
https://doi.org/10.1016/j.eswa.2012.01.166
https://doi.org/10.1080/00207543.2022.2063089
https://doi.org/10.1080/00207543.2022.2063089
https://doi.org/10.1177/0735633118757015
https://doi.org/10.1177/0735633118757015
https://doi.org/10.1007/s41664-018-0068-2
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1336828

	Design of hybrid deep learning using TSA with ANN for cost evaluation in the plastic injection industry
	1 Introduction
	2 Materials and methods
	2.1 Cost evaluation in plastic injection
	2.2 Deep learning
	2.3 Tunicate swarm algorithm
	2.4 Artificial neural network
	2.5 Research methodology

	3 Results and discussion
	4 Conclusion and recommendations
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


