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Recent advancements in additive manufacturing technologies and topology
optimization techniques have catalyzed a transformative shift in the design of
architected materials, enabling increasingly complex and customized
configurations. This study delves into the realm of engineered cellular
materials, spotlighting their capacity to modulate the propagation of
mechanical waves through the strategic creation of phononic band gaps.
Focusing on the design of sandwich panels with cellular truss cores, we aim
to harness these band gaps to achieve pronounced wave suppression within
specific frequency ranges. Our methodology combines surrogate modeling with
a comprehensive global optimization strategy, employing threemachine learning
algorithms—k-Nearest Neighbors (kNN), Random Forest Regression (RFR), and
Artificial Neural Networks (ANN)—to construct predictive models from
parameterized finite element (FE) analyses. These models, once trained, are
integrated with Particle Swarm Optimization (PSO) to refine the panel designs.
This approach not only facilitates the discovery of optimal truss core
configurations for targeted phononic band gaps but also showcases a marked
increase in computational efficiency over traditional optimization methods,
particularly in the context of designing for diverse target frequencies.

KEYWORDS

phononic metamaterials, sandwich panels, band gaps, machine learning, surrogate
optimization

1 Introduction

In nature, we can findmanymaterials that possess exceptional properties resulting from
millions of years of evolutionary processes. A remarkable example of this is the intricate
porous structure found in the core of bones, which far surpasses the structural efficiency of
most artificial materials created by humans. The concept of incorporating design principles
found in natural materials into man-made materials can be achieved through architected
designs. While embedding architecture into materials is not new, recent advancements in
additive manufacturing technologies have revolutionized the creation of cellular materials
with increasingly complex and tailored designs. These technologies allow for precise control
over the internal structure and properties of the materials, offering unprecedented
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possibilities for material engineers (Guo et al., 2021; Kladovasilakis
et al., 2022; Yang et al., 2023b).

Furthermore, the field of topological optimization has made
significant steps in modifying the architecture of materials to achieve
specific objectives such as high strength, stiffness, and lightweight.
By leveraging computational algorithms and mathematical
optimization techniques, researchers can explore and manipulate
the arrangement of material within a given volume. This approach
allows for the creation of materials with optimized structural
properties, resulting in enhanced performance and efficiency.
Numerous studies have extensively demonstrated the efficacy of
these architected materials and topological optimization approaches
(Schaedler and Carter, 2016b; Yang et al., 2024).

Engineered cellular materials possess interesting static
properties and can also be utilized to control the propagation of
mechanical waves. One such example is the creation of phononic
band gaps. Phononic materials can suppress the propagation of
mechanical waves within a specific frequency range, and this
property has been extensively studied in recent years (Hussein,
Leamy, and Ruzzene, 2014). Researchers have designed phononic
materials with tailored band gap properties using novel design
strategies and advanced manufacturing techniques. These
materials have potential applications in a wide range of fields,
such as energy absorption, sound insulation, and vibration
damping. Various researchers have investigated the band gap
behavior of two-dimensional periodic cellular materials (Jensen,
2003; Ruzzene and Scarpa, 2005; Liebold-Ribeiro and Körner, 2014;
Warmuth and Körner, 2015), observing significant band gaps in the
case of chiral quadratic and hexagonal lattice configurations. In
addition, it can be concluded that lattices with high coordination
numbers enable the generation of band gaps, with the struts acting as
mechanical resonators (Wang et al., 2015). These investigations
show that if the geometrical or material properties of the struts are
altered, it is possible to manipulate the corresponding band
gap. Therefore, a natural extension is the application of topology
optimization techniques in the design of lattice materials with
phononic band gaps.

Various topology optimization strategies have been used in
phononic materials to maximize the band gap between two
adjacent bands in the phononic band diagram, where the
common design variables correspond to the material properties
or geometrical characteristics of the struts used to create the lattice.
Some of the optimization tools used include genetic algorithms (GA)
(Gazonas et al., 2006; Bilal and Hussein, 2011; Liu et al., 2014),
particle swarm optimization (PSO) (Guo and Zhang, 2022; Tikani,
Ziaei-Rad, and Moosavi, 2023), bidirectional evolutionary structural
optimization (BESO) (Fan et al., 2016), and gradient-based
optimization algorithms (Yi et al., 2019; Quinteros et al., 2021a;
Cool et al., 2024). Other investigations have implemented multi-
objective optimization strategies for phononic materials,
considering mass or stiffness restrictions (Dong et al., 2014), the
topology of perforated plates (Hedayatrasa et al., 2016b), or
phononic plates with tunable band gaps under equiaxial stretch
(Hedayatrasa et al., 2016a).

The optimization problem for the band gap can be highly
demanding due to the large number of objective function
evaluations required, which involves solving multiple eigenvalue
problems. The computational effort also grows rapidly as the model

dimension, or the number of design variables increases. To
overcome this challenge, researchers have explored surrogate
optimization techniques that rely on machine learning and deep
learning algorithms (Muhammad and Lim, 2022; Kudela et al.,
2023). Surrogate models are approximations of input-output
relationships built from sampled data obtained by high-fidelity
numerical simulations. These models allow for quicker
identification of local or global optima, and since they can make
predictions much faster than the high-fidelity simulations, the
computational cost associated with the optimization based on
surrogate models is generally negligible. Bacigalupo et al. (2020)
applied machine learning techniques for band gap optimization of a
periodic tetrachiral metamaterial. They implemented a surrogate
optimization strategy based on a combination of Radial Basis
Functions networks and quasi-Monte Carlo sequences. The
performance was compared to a traditional approach based on
the evaluation of the objective function using the high-fidelity
model, demonstrating that a similar solution is obtained in a
much shorter time with surrogate optimization. Dong et al.
(2020) introduced a surrogate modeling approach to design an
elastic metamaterial structure formed of unit cells. They
employed a multi-layer feedforward artificial neural network
(ANN) to predict the band diagram, with hyperparameters fine-
tuned using genetic algorithms (GA). Based on the trained and
optimized ANN model, the authors utilized the Nelder-Mead (NM)
algorithm to find the optimal design that maximizes the band gap. Li
et al. (2020) proposed a novel data-driven approach that integrates
image-based finite element analysis and deep learning techniques for
designing 2D phononic crystals (PnCs). In this case, an autoencoder
is trained to extract topological features from test images. Finite
element analysis is then employed to evaluate the band gaps of the
samples. A multi-layer perceptron is also trained to uncover the
inherent relationship between the band gaps and topological
properties. With the trained models, Li et al. (2020) constructed
phononic crystals that exhibit anticipated band gaps, thereby
demonstrating the effectiveness of their approach. Gurbuz et al.
(2021) developed a novel design technique for two-dimensional
PnCs by employing conditional generative adversarial networks
(GANs). To improve the performance of the proposed
conditional GAN, they introduced a multi-input channel design
that considers the underlying relationship between cell shapes and
their associated transmission loss. This approach allows the GAN to
suggest cell geometries tailored to achieve the desired metamaterial
transmission behavior. Kudela et al. (2023) presents an innovative
methodology for the topology optimization of phononic crystals by
replacing traditional, computationally intensive solvers with a deep
learning (DL) model for fast prediction of dispersion diagrams. The
study showcases the effectiveness of combining surrogate DLmodels
with genetic algorithms for optimizing phononic crystal geometries,
aiming at efficiently designing materials with tailored band gaps.

On the other hand, cellular materials are highly desirable for use
as cores in sandwich panels (Schaedler and Carter, 2016a). Sandwich
panels consist of thin face sheets or skins and a lightweight, thicker
core sandwiched between the skins to achieve superior bending
stiffness. Sandwich panels with lattice-based cellular cores are
particularly attractive in applications requiring multifunctional
materials, such as lightweight and high-strength structural
materials. While various investigations have been carried out to
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find the optimal cell that maximizes the stiffness-to-weight ratio in
these types of panels (Liu and Lu, 2004; Liu et al., 2006), little
attention has been paid to designing sandwich panels with vibration
attenuation (band gap) properties. Recently, researchers have begun
to explore the use of cellular cores with band gap properties. Guo
et al. (2021)conduct a comprehensive investigation into the
dynamics of a 3D-printed sandwich beam with an hourglass
lattice truss core. It presents a theoretical model validated
through finite element analysis and experimental tests. The study
introduces a novel vibration suppression technique using a non-
linear energy sink (NES), demonstrating its effectiveness through
parametric studies. Sun et al. (2021) studied the vibroacoustic
properties of sandwich beams with a square truss core, achieving
significant vibration reduction in specific frequency ranges.
Quinteros et al. (2021a) optimized the phononic band gap of a
periodic sandwich structure with a square core topology,
demonstrating the feasibility of designing sandwich panels with
cellular cores that exhibit large phononic band gaps. Gazzola et al.
(2022) present a study on designing and modeling a novel single-

phase sandwich panel for acoustic insulation applications, utilizing
architected cellular materials with a focus on achieving significant
phononic band gaps. The research introduces an innovative
approach by incorporating a periodic structure with a specially
designed unit cell, enhancing the panel’s sound transmission loss
(STL) capabilities, especially in resonance-dominated frequency
ranges. Cool et al. (2024) developed a topology optimization
framework focused on the vibroacoustic design of sandwich
structure cores. The primary objective is to minimize sound
transmission through these structures while maintaining volume
and structural stiffness constraints.

The aim of this investigation is to develop a computationally
efficient framework based on surrogate models for designing
sandwich panels with cellular truss cores capable of exhibiting
large phononic band gaps. The study investigates different truss
core configurations and employs surrogate modeling combined with
a global optimization strategy to facilitate the optimization process.
Thus, as far as our knowledge, this is the first effort toward
maximizing band gaps based on surrogate models for sandwich
panels with cellular truss cores.

In our investigation, we selected k-Nearest Neighbors (kNN),
Random Forest Regression (RFR), and Artificial Neural Networks
(ANN) as surrogate models to span a range of complexities and
learning paradigms, allowing us to assess their adaptability to our
specific problem domain. kNN, with its simplicity and minimal
assumption about data structure, offers an intuitive baseline for
comparison. RFR introduces more complexity through ensemble
learning, providing robustness against overfitting and the ability to
capture nonlinear relationships. ANN, representing the most
complex model, has the capacity for high-dimensional function
approximation, making it potent for capturing intricate patterns
within the data. This selection enables a comprehensive evaluation
of surrogate modeling techniques, from straightforward to highly
complex, to identify the most effective approach for designing
sandwich panels with cellular truss cores exhibiting large
phononic band gaps. Our choice aligns with recent advancements
in machine learning applications for engineering problems (Yang
et al., 2023a; Yang et al., 2023b).

FIGURE 1
Example of a band diagram exhibiting a band gap.

FIGURE 2
Unit cells of the sandwich panels under consideration. (A) Central zig-zag. (B) Pyramidal. (C) Double Pyramidal.
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These surrogate models were trained using data generated from
a parameterized finite element (FE) model developed explicitly for
the panels under investigation. The input parameters utilized in the

machine learning models were directly associated with the topology
and geometry of the truss cores, while the output parameters
consisted of the central frequency and width of the band gaps.

FIGURE 3
Top-down and isometric view of the core topologies, illustrating the Irreducible Brillouin Zone (IBZ) (in light gray). The same colors indicate
members with equal properties. (A) Central zig-zag. (B) Pyramidal. (C) Double Pyramidal.
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The optimization is performed in an iterative procedure, where the
process starts optimizing band gaps using a trained surrogate model.
Then, the configuration identified as optimal is included in the
database to repeat the process. This iterative strategy gradually
increases the accuracy of the surrogate model close to the
optimal design. The optimization algorithm adopted in this bi-
level framework corresponds to a PSO (Han and Zhang, 2012).
PSO’s inherent ability to converge swiftly toward optimal solutions
while maintaining diversity in the search space aligns well with the
characteristics of our problem domain. This allowed us to effectively
search for optimal truss core configurations, resulting in sandwich
panels with band gaps around desired design frequencies.

In selecting PSO as our optimization algorithm, we recognize its
well-documented strengths and limitations. According to Nayak
et al. (2023), PSO is distinguished as the most successful
optimization algorithm among available nature-inspired
algorithms due to its high efficiency and adaptability across
various dynamic environments. This makes it particularly
suitable for our iterative optimization framework, designed to
optimize phononic band gaps. PSO’s simplicity, combined with
its effectiveness in navigating complex search spaces, underscores its

selection for this complex task. Despite PSO’s sensitivity to
parameter settings, its proven track record across diverse
applications from networking to power generation justifies our
choice (Gad, 2022). The rest of the paper is organized as follows.
Section 2 presents the sandwich panel of interest and briefly
describes the band gap identification using band diagrams.
Section 3 presents the details of the bi-level optimization
framework proposed, while Section 4 contains the results
obtained after implementing the proposed framework on the
sandwich panels studied. Finally, Section 5 contains the most
relevant conclusions drawn from this study.

2 Sandwich panels and phononic
band gaps

2.1 Band gaps in periodic structures

Phononic band gaps arise from the periodic arrangement of
structures within a material, affecting elastic wave propagation. In
the context of elastic waves, the Floquet-Bloch wave theory can
describe the behavior of a material with a periodic structure by
representing the elastic waves as a superposition of Bloch waves. In a
structural finite element model, periodic boundary conditions can be
imposed using the Floquet-Bloch wave theory by assuming that the
displacement of the material at one end of the unit cell is equal to the
displacement of the material at the other end. This assumption can
be written mathematically as (Quinteros et al., 2021b):

u X + r( ) � u X( )ejk·r (1)

Here,X denotes the coordinate of a particular material point, r is
the periodicity length of the cell, k is the wave vector, and j
represents the imaginary unit. Once periodic boundary
conditions have been imposed, the finite element model can be
used to calculate the vibrational modes of the unit cell:

K k( ) − ω2
iM k( )( )ui � 0 (2)

where ωi is the frequency associated with the vibration mode ui, K is
the stiffness matrix of the unit cell, and M is the mass matrix of the
unit cell. It should be noted that the stiffness and mass matrices after
applying the periodic boundary condition are functions of the wave
vector k.

The band diagram of the periodic structure can be constructed
by solving Eq. 2 for wave vectors within the perimeter of the
irreducible Brillouin zone (Maldovan, 2013). Figure 1 presents an
example of a band diagram where it is possible to observe the
relationship between the frequency and the wave vector for each

TABLE 1 Unit cell nominal properties.

Young Modulus 2.2 × 109 [Pa]

Density 1,200 [kg/m3]

L 15–30 [mm]

Skin thickness 1 [mm]

Member’s radius 0.4–1.6 [mm]

FIGURE 4
Unit cell dimensions.

FIGURE 5
Scheme of a parameterized FE model.

Frontiers in Mechanical Engineering frontiersin.org05

Meruane et al. 10.3389/fmech.2024.1329345

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1329345


vibration mode. In a band diagram, a band gap is represented by a
range of frequencies where frequencies ωi are not associated with
any wave vector. This means that the material does not allow the
propagation of elastic waves in this frequency range, effectively
acting as a frequency stopband. In a band diagram, the band gap
appears as a gap between two consecutive bands, as it is shown in the
pink region in Figure 1. For this work, the bands that define the band
gaps are named the upper and lower bands.

The size and location of the band gap in the diagram depend on
the material’s properties and the unit cell’s geometry. In general,
wider band gaps correspond to stronger phononic isolation
properties of the material, making it more effective at controlling
the propagation of elastic waves.

2.2 Sandwich panels studied

The proposed study examines sandwich panels featuring lattice-
based cellular cores, as depicted in Figure 2. These topologies are
inspired by existing designs documented in the literature (Schaedler
and Carter, 2016a). The first core topology consists of zig-zag trusses
intersecting at the center of the cell. On the other hand, the second
and third topologies comprise an arrangement of 3 × 3 basis units. In
the second panel, the basis unit takes on a pyramidal shape, while in
the third panel, the basis unit consists of upright and inverted
pyramids connected by their apexes.

All configurations are subjected to a periodic boundary
condition by implementing the Floquet-Bloch wave theory. The
periodicity is enforced along all four sides of the unit cell when
observing it from a top-down perspective. These core configurations
were specifically chosen to achieve symmetry with respect to the
x-axis, y-axis, and 45-degree axis, as demonstrated in Figure 3. This
figure depicts a top-down and isometric view of the core topologies,
highlighting the Irreducible Brillouin Zone (IBZ) in gray. In this
visualization, members with the same color share the same
properties. Also, each color is labeled with a unique number,
allowing the differentiation between members. In this sense, each
panel contains six different members.

Given the possibility of manufacturing the panels through 3D
printing, we have utilized a standard resin commonly employed in
SLA printing as the material for both the panel’s core and skins. The
three sandwich panel configurations have the same nominal
geometrical and material properties for the unit cells. These are
summarized in Table 1 and illustrated in Figure 4. The optimization
process involves adjusting the cell length (L) and the radius of the
truss members within a range of values. As a result, seven design
variables need to be optimized for each sandwich panel.

3 Proposed framework for designing
phononic sandwich panels

The proposed framework is based on four main steps. It begins
with the development of parameterized FE models, enabling the
establishment of periodic boundary conditions and generating band
diagrams to extract the central frequency and width of the primary
band gap. Subsequently, in step two, datasets are built tailored to
each core topology, encompassing various combinations of FE

model parameters. These datasets serve as the foundation for
training and testing machine learning models. In the third step,
random or grid search strategies are adopted to select optimal
architectures for the machine learning models. In the last step,
the optimization is performed by adopting the surrogate model to
evaluate the objective function. The details of this implementation
are presented below.

3.1 Geometrical parametrization (step 1)

Each panel (unit cell) is modeled by adopting a finite element
strategy developed in MATLAB’s Structural Dynamics Toolbox
(SDT) (Lieven, 2013). Then, the periodic boundary conditions
are imposed, and the band diagrams are generated. The central
frequency and width of the main band gap are then extracted from
the band diagram, as shown in Figure 5.

Now, let Δωn, ωn, and ωn+1 denote the frequency gap between
bands n and n + 1, the vector containing the frequencies of band n,
and the vector containing the frequencies of band n + 1, respectively.
Then, Δωn is determined by the difference between the minimum
value in ωn+1 and the maximum value in ωn:

Δωn � minωn+1 − maxωn (3)

It is important to note that Δωn can be negative, indicating the
absence of a gap between the bands. Adopting this definition, the
main band gap width is obtained by:

Δωn* � max Δω1,Δω2, . . . ,ΔωN( ) (4)

FIGURE 6
Flowchart of the surrogate-based optimization with a bi-
level framework.
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Here, n* represents the index of the maximum gap. It is
worth mentioning that a band gap exists as long as Δωn* is
positive. For any other case, the structure does not
present band gaps.

The central frequency is defined as:

ωn* � minωn*+1 + maxωn*

2
(5)

Ultimately, the parametrization facilitates the identification of
Δωn* and ωn* as an implicit function of the geometrical attributes of
the sandwich panel.

3.2 Datasets generation (step 2)

Two datasets are created here to train and test the machine
learningmodels. These datasets are constructed for each core topology
using various combinations of FE model parameters, which
correspond to the length of the cell and the radius of the six struts
defined previously in Figure 3. From now on, this geometrical model
parameters are denoted as x. The Latin Hypercube sampling
technique is employed to generate a set of model parameters using
the range presented in Table 1. Each sample of model parameters is

used to identify the band gap width and its central value. In this study,
ten thousand samples are generated for each core topology.

The dataset is normalized using a max-min normalization, a
crucial step in machine learning. Data normalization standardizes
the scale and distribution of features, ensuring fairness, preventing
biases, equalizing feature importance, and enhancing the
convergence and stability of models (Cabello-Solorzano et al.,
2023). After normalization, the input and output pairs fall within
the range of zero to one. Finally, the dataset for each topology is
divided into training and validation datasets.

3.3 Training machine learning models
(step 3)

Here, machine learning models’ architectures are selected using
a random search or grid search strategy, in which the training
database is used to train the models, and the validation dataset is
employed to evaluate their performance. This process aids in
selecting the most suitable network architecture and ensures that
the models have been adequately trained and validated before being
used as a surrogate model. In particular, three machine learning
algorithms are used: kNN, RFR, and ANN (refer to the

FIGURE 7
Representation of the mesh for the different topologies studied. (A) Central zig-zag. (B) Pyramidal. (C) Double Pyramidal.

FIGURE 8
Distribution of band gaps in the numerical database. The central zig-zag topology displays the largest band gaps, succeeded by the double pyramidal
configuration. In contrast, the pyramidal topology demonstrates comparatively narrower band gaps. (A) Central zig-zag. (B) Pyramidal. (C)
Double Pyramidal.
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Supplementary Appendix for an in-depth discussion on these
algorithms).

The hyperparameters of the kNN and RFR algorithms were
selected using a grid search technique, which involved defining a
grid of predefined values for each hyperparameter and
evaluating the model’s performance for each combination. On
the other hand, ANNs often have a high number of
hyperparameters, which makes exhaustively evaluating all
possible combinations infeasible using a grid search. To
overcome this challenge, a random search approach was
employed instead. The random search allows for more
efficient exploration of the hyperparameter space, making it
practical to evaluate a diverse set of hyperparameter

combinations without considering every possible
combination. Ultimately, the trained machine learning model
approximates Δωn* and ωn* for a new given model parameter x.
The approximations for Δωn* and ωn* after max-min
normalization are denoted as Δ~ωS(x) and ~ωS(x), respectively.

3.4 Optimization based on surrogatemodels
(step 4)

The last step of the process involves surrogate optimization,
where the goal is to identify a configuration with a band gap centered
around a target frequency while maximizing its width. To

TABLE 2 Hyperparameter values evaluated for fine-tuning.

Hyperparameters

kNN

Number of Neighbors 5, 10, 20, 40, 80, 160

Distance Metric Eucledian, Mahalanobis, Minkowski, Chebyshev, Cosine, Correlation, Hamming, Jaccard

Distance weighted Yes, No

Random Forest

Number of trees 50, 100, 200, 400

Neural Network

Number of hidden layers [1,10]

Number of units per hidden layer [50,800]

Transfer function in hidden layers Relu, Linear

Dropout rate [0, 0.2]

MiniBatch Size [100,600]

TABLE 3 Selected model’s hyperparameters.

Core topology

Central zig zag Pyramidal Double pyramidal

kNN

Number of Neighbors 10 10 10

Distance Metric Eucledian Eucledian Eucledian

Distance weighted Yes Yes Yes

Random Forest

Number of trees 100 100 100

Neural Network

Number of hidden layers 2 4 2

Number of units per hidden layer 600 650 650

Transfer function in hidden layers Relu Relu Relu

Dropout rate 0.1 0.1 0.1

MiniBatch Size 300 100 100
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accomplish this, PSO is employed along with the following
formulation that guides the optimization process:

x* � min
x

α ~ωS x( ) − ~ωtarget

∣∣∣∣
∣∣∣∣ − 1 − α( )Δ~ωS x( ) (6)

Here, ~ωtarget denotes the target central frequency, also normalized
using the same max-min normalization as the training database. The
constant α is utilized to control the relative importance of each term in
the objective function. It is important to note that the central
frequency and the band gap width are expected to fall within the
range of values between zero and one, as they have been normalized.
Please refer to the Supplementary Appendix for a detailed explanation
of the PSO optimization method.

The solution given by the surrogate PSO optimization is only an
approximation to the true optimum and, therefore, can be improved.
This improvement is achieved by refining the surrogate model with
new sample points. The process involves evaluating the optimal
design variables x* with the surrogate and the high-fidelity (FE)

models. The optimization process can be terminated if the
difference between them is below a certain threshold. Otherwise,
new sample points are added to the training dataset, and the surrogate
model is rebuilt. This process is repeated until the differences between
models meet the stopping threshold (ε), as shown in Figure 6. This
process is known as a bi-level surrogate optimization framework (Han
and Zhang, 2012). The error function used to compare the solution
with both the surrogate and the high-fidelity models is the following:

E x*( ) � ~ωS x*( ) − ~ωT x*( )‖ ‖ + Δ~ωS x*( ) − Δ~ωT x*( )‖ ‖ (7)

FIGURE 9
Comparison of Root Mean Square Error (RMSE) across models. The kNN and NNmodels exhibit lower prediction errors with comparable results. (A)
Band gap width. (B) Central frequency.

FIGURE 10
The band gap width and central frequency, normalized using the max-min method, are presented for the pyramidal core topology. A clear
correlation between the actual and predicted values is evident. However, the coefficient of determination (R2) indicates potential for improvement. (A)
Band gap width. (B) Central frequency.

TABLE 4 PSO settings.

Swarm size 200

Cognitive Scaling factor 1.5

Social Scaling factor 1.5

Weights [0.1, 1.1]
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where ~ωT(x) and Δ~ωT(x) correspond to the central frequency and
width obtained from the high-fidelity model and have undergone
max-min normalization, respectively.

4 Performance of the
proposed framework

4.1 Finite element models and databases

In the high-fidelity model (FE), the skins are modeled using four-
node shell elements, each having five degrees of freedom per node.
Similarly, the struts are modeled using beam elements, with two nodes
per element and six degrees of freedomper node. Both skins and struts
are defined by the material and geometrical properties outlined in
Table 1, ensuring consistency in model parameters. The interface
between struts and skins is assumed to be a rigid connection,
simplifying the interaction for the sake of analysis without

sacrificing significant accuracy in the overall model’s response, The
size of the elements is determined through a mesh refinement process
to control accuracy. The skins are discretized using a 12 ×
12 arrangement of shell elements, while each strut is modeled
using two beam elements; this mesh is represented in Figure 7.

In these FE models, periodic boundary conditions are applied at
the edges of the skins. This approach effectively simulates the
behavior of an infinite lattice by considering the repetitive nature
of the unit cells. Once these boundary conditions are imposed, the
eigenvalue problem for each wavevector in the Irreducible Brillouin
Zone (IBZ) is tackled using the Lanczos algorithm. Band diagrams
are computed following the methodology described in section 2.1.
This analysis allows for the determination of the band gap width and
central frequency using Eqs 4, 5, respectively.

Figure 8 presents the distribution of band gaps obtained for the
ten thousand samples of each topology, displaying the normalized
band gap width against the central frequency. In this case, the
normalized band gap width is calculated by dividing the band gap
width by the central frequency.

Notably, out of the ten thousand model parameter combinations,
only a few exhibit band gaps. For the central zig-zag topology,
approximately 20.6% of the cases in the numerical database
demonstrate band gaps. This proportion decreases to 6.6% for the
pyramidal topology and reduces further to 1.9% for the double
pyramidal core. Furthermore, the results depicted in Figure 8
indicate that the central zig-zag topology yields the most significant
band gaps, followed by the double pyramidal topology, while the
pyramidal topology exhibits relatively smaller band gaps.

4.2 Surrogate models

The numerical database was divided into training and validation
databases, consisting of nine thousand and one thousand cases,
respectively. All combinations of parameters were considered, even
those without band gaps. This decision was made to ensure a smooth
transition during the optimization process, gradually moving from
cases with no band gap towards ones that approach the presence of
a band gap.

FIGURE 11
Pareto frontier analysis for multiobjective optimization per Eq. 6,
showcasing optimal trade-offs between ξ1 (first objective term) and ξ2
(second objective term) for varying values of the constant α. The red
vertical line indicates a 5% deviation from the target frequency.

FIGURE 12
Comparison of band gaps derived from ANN surrogate optimization (ANN SO) and kNN surrogate optimization (kNN SO) with those in the training
database. While the central zig-zag and double pyramidal topologies exhibit significant post-optimization improvements in band gap widths, the
pyramidal topology remains largely unchanged. (A) Central zig-zag. (B) Pyramidal. (C) Double Pyramidal.
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Table 2 lists the hyperparameter values evaluated for fine-tuning
the three machine learning models employed. Meanwhile, Table 3
summarizes the optimal hyperparameters chosen through grid
search for the kNN and Random Forest models and via random
search for the ANN models. Interestingly, there is a notable
consistency in the optimal hyperparameters across these models.

Despite the structural differences, the datasets for the three core
topologies share similar underlying characteristics and behaviors,
which play a crucial role in the notable consistency of optimal
hyperparameters across different modeled structures. This
commonality suggests that the fundamental principles governing
their behavior are similar, leading to a uniform response from each
machine learning algorithm to the datasets. Consequently, this
results in a consistent selection of optimal hyperparameters
within each algorithm across the structures. To mitigate concerns
of bias in hyperparameter selection, the grid search was carefully
designed to comprehensively explore the hyperparameter space (as
shown in Table 2), ensuring an effective and unbiased
optimization process.

Figure 9 depicts the Root Mean Square Error (RMSE) associated
with the model’s prediction for the band gap width and central
frequency. The performance of the random forest method is notably
inferior compared to the other methods when predicting the central
frequency, while its performance is comparable when predicting the
width of the band gap. The kNNmodel performs best for the central

zig-zag topology, exhibiting the lowest RMSE. On the other hand,
for the pyramidal and double pyramidal topologies, the NN model
demonstrates superior predictive capability, resulting in lower
RMSE values.

As an illustrative example, Figure 10 showcases the prediction
results of the surrogate model for the pyramidal core topology.
While a clear correlation exists between the actual and predicted
values, the coefficient of determination (R2) suggests potential
enhancement. This observation supports the need for
implementing a bi-level subrogate optimization strategy. By
adopting this approach, the surrogate model can be enhanced
with additional sample points in the proximity as the
optimization process progresses towards the optimum solution.
This iterative improvement of the surrogate model allows for a
more accurate representation of the underlying system, ultimately
leading to improved optimization results.

4.3 Surrogate optimization

The optimization is performed using PSO, the specific
configuration of the algorithm can be found in Table 4. These
settings were determined through grid search considering different
combinations of parameters. The maximum stall generation
parameter is employed to establish a stopping criterion. In this

FIGURE 13
Convergence curves of the bi-level surrogate optimization strategy. A notable difference in convergence speed can be observed between the two
topologies, potentially attributed to the selection of the machine learning model, whether kNN or NN. (A) Central zig-zag. (B) Pyramidal.

TABLE 5 Surrogate optimization results.

Target
frequency (kHz)

Central zig-zag Double pyramidal

Central
frequency (kHz)

Band gap
width (kHz)

Time
(min)

Central
frequency (kHz)

Band gap
width (kHz)

Time
(min)

12 11.94 0.74 25.44 11.96 0.28 134.55

15 15.77 2.46 2.36 14.26 1.59 38.08

18 18.85 3.27 2.30 17.49 1.77 241.76
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context, the PSO optimization halts if there is no noticeable
enhancement in the best solution after 20 generations. This
safeguard ensures that the optimization process concludes if no
significant progress is observed within the specified number of
iterations. In Eq. (12), the parameter α was assigned a value of
0.7. This value was determined through a pareto frontier testing to
achieve a balance between the width of the band gap and its central
frequency. The aim was to ensure a large band gap width, with the
central frequency deviating no more than 5% from the
desired target.

Figure 11 presents the Pareto frontier for a zig-zag core system,
targeting an operational frequency of 15 kHz. It illustrates the
optimal trade-offs between the first and second objective terms
under varying α values. The red vertical line highlights a 5%
deviation from the target frequency, delineating the limit for
acceptable solution variation. This analysis is crucial for selecting
solutions that adeptly minimize the second objective
term—essentially maximizing the band gap width—while
maintaining the mean band gap frequency close to the desired
target. In this scenario, achieving this balance is accomplished with
an α value of 0.7. The optimization was conducted to target three
specific frequencies: 1.2, 1.5, and 1.8 kHz, all of which lie within the
band gaps observed in the training databases. Since the kNN and
ANN models displayed similar outcomes for the three structures
examined, it was decided to compare their efficiency during the
optimization. Figure 12 illustrates the band gaps achieved post-
optimization using ANN surrogate optimization (ANN SO) and
kNN surrogate optimization (kNN SO), juxtaposed against the band
gaps from the training database. This comparison assesses whether
the optimization yields superior results than the cases in
the database.

Upon examining the results in Figure 12, when we compare the
band gap widths obtained after optimization to those in the
database, we see some clear improvements for the central zig-zag
and double pyramidal topologies. For band gaps close to the target
average frequency (within a 5% difference), the designs from kNN

FIGURE 14
Band diagram comparisons for initial and optimized configurations in central zig-zag topology, (A) Initial configuration, (B) 12 kHz, (C) 15 kHz and (D)
18 kHz. The diagrams highlight the presence of distinct band gaps at specific target frequencies across three different optimization scenarios.

TABLE 6 Structural model’s parameters obtained after optimization for the
central zig-zag topology.

Target frequency (kHz) 12 15 18

Cell length, L [mm] 24.89 17.80 15.85

Skin thickness [mm] 1 1 1

r1 [mm] 1.55 0.45 1.22

r2 [mm] 0.73 0.85 0.52

r3 [mm] 1.60 1.60 1.60

r4 [mm] 0.79 0.71 0.61

r5 [mm] 1.45 0.94 0.89

r6 [mm] 1.51 1.60 1.59
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SO with a zig-zag pattern are 1.3, 1.2, and 1.1 times wider than the
training database. Meanwhile, designs from ANN SO with a double
pyramid shape have band gaps that are 1.2, 5.2, and 8.3 times the
database’s sizes. Conversely, the pyramidal structure did not fare
well, with its optimal results not surpassing the database’s. The band
gaps in the pyramidal model are narrow, closely mirroring the
surrogate model’s error magnitude, which inherently challenges the
optimization.

Given that the pyramidal structure did not yield significant band
gaps in the training database and during optimization, the detailed
analysis will concentrate on the remaining two cases. Convergence
curves for the bi-level surrogate optimization strategy across the
central zig-zag and double pyramidal structures for all target
frequencies are depicted in Figure 13. A distinct disparity in
convergence speed is evident between the two models. The
central zig-zag model converges rapidly, ranging between 1 and
17 iterations, whereas the double pyramidal model requires up to
110 iterations for its convergence error to gradually meet the
stopping criteria. This variation in convergence rate appears to
be influenced by the choice of the machine learning model,
either kNN or NN. This is reflected in the optimization times
presented in Table 5, where it is evidenced that wider band gaps
are obtained in the case of the central zig-zag in shorter times.

Optimizing directly with a finite element model demands
extensive computational resources, specifically about
12,000 evaluations per target frequency, underlining the method’s
high computational demand. This process, requiring approximately
18,000 min, is as time-consuming as creating the surrogate model’s
training database. However, the real advantage of the surrogate
model lies in its efficiency post-initial setup. It allows for quick
adaptation to new frequencies or objectives without redoing all
evaluations. This makes it exceptionally efficient for producing
various designs rapidly. In addition, the bi-level surrogate
optimization further enhances precision by aligning the surrogate
model’s outcomes with the high-fidelity model’s results, ensuring
accurate design optimization across different frequencies.

Figure 14 displays the band diagrams corresponding to initial
case where all struts have an equal radius of 1.6 mm and the cell
length is set to 30, in comparison to the optimal solutions derived
after optimization, clearly highlighting the distinct band gaps
that manifest precisely at the predefined frequencies. This
visualization underscores the efficacy of the optimization
process in achieving the targeted vibration characteristics.
Finally, Table 6 outlines the parameters of the structural
model post-optimization for the central zig-zag topology. In
every instance, elements at the cell’s center possess the
maximum radius.

5 Conclusion

This study introduces an effective strategy for designing
sandwich panels with cellular truss cores that show large
phononic band gaps. The objective was to implement different
truss core designs to have band gaps at specific frequencies and

as wide as possible. A combination of a surrogate model and a global
optimization technique was employed to enhance and expedite the
design process.

Finite element models of the sandwich panels were developed,
focusing on three primary core designs: central zig-zag, pyramidal,
and double pyramidal. Among the numerous combinations tested
for each design, only a select few achieved the desired band gaps.
Notably, the central zig-zag configuration proved superior,
succeeding in approximately one-fifth of the trials and providing
wider band gaps.

Surrogate models were constructed utilizing three machine
learning algorithms: k-Nearest Neighbors (kNN), Random Forest
Regression (RFR), and Artificial Neural Networks (ANNs). While
the Random Forest showed proficiency in predicting the band gap
width, its performance in forecasting the central frequency of the
band gap was less consistent. Among the core designs, kNN excelled
for the central zig-zag topology, whereas ANN was more suited for
the pyramidal topology.

The surrogate models were combined with Particle Swarm
Optimization (PSO) to enhance the designs. Notably, the central
zig-zag and double pyramidal configurations saw marked
improvements, with the band gap widths expanding between
1.1 and 8.3 times compared to those in the training database. In
contrast, refining the pyramidal design proved challenging due to its
limited band gaps. Post-optimization, the band diagrams revealed that
the band gaps closely matched the chosen frequencies, showing less
than a 5% deviation from the target central frequency. This
underscores the efficacy of the proposed design approach.

It is worth noting that if only the finite element models were
used, the optimization process could take considerable time - even
weeks based on computational capabilities. Setting up a surrogate
model takes about the same time at first. However, once it is set up,
the surrogate model works faster and better, especially when we need
different designs quickly. So, the optimization based on surrogate
models is a convenient choice for projects where we need to try out
many designs.
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