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The complexity of mechatronic systems has increased with the significant
advancements of technology in their components which makes their design
more challenging. This is due to the need for incorporating expertise from
different domains as well as the increased number and complexity of
components integrated into the product. To alleviate the burden of designing
such products, many industries and researchers are attracted to the concept of
modularization which is to identify a subset of system components that can form
a module. To achieve this, a novel product-related dependency management
approach is proposed in this paper with the support of an augmented design
structure matrix. This approach makes it possible to model positive and negative
dependencies and to compute the combination potency between components
to form modules. This approach is then integrated into a modified non-
dominated sorting genetic algorithm III to concurrently optimize the design
and identify the modules. The methodology is exemplified through the case
study of a layout design of an automatic greenhouse. By applying the proposed
methodology to the case study, it was possible to generate concepts that
decreased the number of modules from 9 down to 4 while ensuring the
optimization of the design performance.
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1 Introduction

The need for incorporation of a multidisciplinary engineering approach makes the
mechatronic design a complex task to achieve (Torry-Smith et al., 2013; Mohebbi et al.,
2014). To obtain a final design, one must go through the whole design process composed of
conceptual design, preliminary design, and detailed design. In each of these phases, one of
the main challenges is to find near-optimal solutions considering the information available.
The problem statement of a mechatronic design usually presents multiple conflicting
objectives which makes the design task even more complex Many researchers in the field of
engineering design (Zhang et al., 2023), evolutionary computation (Xia and Li, 2020), and
generative design are still working to solve the complex real-life design problems coupled
with optimization such as mechatronic design (Dehghani and Trojovský, 2023). Therefore,
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from a design perspective, there still is a crucial need for a better
methodology to model (Chouinard et al., 2020), manage, and
evaluate a design (Mohebbi et al., 2018).

One of the new trends in engineering research and
development is product modularity. According to (Gershenson
et al., 2003), the precise definition of product modularity has not
been unanimously defined among the research community.
However, most definitions share the same idea that combining
or regrouping components into modules increases the modularity
of a product. Many benefits come with modularization as it
becomes easier to replace a part when it is broken or when the
system needs to be upgraded. Moreover, it is also easier to redesign
the layout of the product by changing the position of the modules
or testing different modules to compare their performance.
Additionally, modularity allows for the development of product
families which reduces the number of parts to be dealt with by both
the designer and the company. The impact of modularity on
product and product process performances has also been
evaluated up to a certain degree with more empirical studies
(Piran et al., 2016; Vickery et al., 2016). Generally, modularity
improves design and development.

In this work, concepts from engineering design and evolutionary
computation are combined to overcome issues related to module
identification during the layout design phase. Module identification
can be seen as combining two or more components, subsystems, or
systems to form a module. To achieve module identification, one
must face three main issues.

The first issue is to correctly model the product-related
dependencies (Torry-Smith et al., 2014; Chouinard et al., 2019).
A component’s dependency can be defined as how a component
affects another one. The dependency between two components can
be detrimental. For example, a heat source close to a heat sensor will
cause the heat sensor to capture erroneous values of the
environment. The dependency can also be beneficial such as a
heat source close to a fan that can help regulate the temperature
of a room.

The second issue is to define the combination compatibility
between components. The combination of two components implies
that they are physically integrated to form a module. Considering
that two components can have both beneficial and detrimental
dependencies at the same time, it can be difficult to decide
whether they should be combined or not within the same module.

The last issue is to identify modules that do not deteriorate the
design optimizer performance. Hence, the module identification
methods must be well integrated into the design optimization
process. For example, evolutionary computation has operators
such as crossover that will need to be adapted to maintain the
design space exploration capabilities of the evolutionary algorithm.

The main objective of this paper is to integrate module
identification during the design optimization process. The
contribution lies in module identification based on product-
related dependency management and complex number design
structure matrix (DSM) representation which are used to
evaluate the combination compatibility between components. The
module identification utilizes an evolutionary algorithm to generate
and evaluate modules. The methodology is then validated through a
case study in which the layout design of an automatic greenhouse is
of concern.

The remaining part of the paper will be structured as follows:
Section 2 presents a brief literature review of modular design
combined with design optimization. Section 3 describes the
proposed methodology. Section 4 presents the layout design of
an autonomous greenhouse as a case study. Section 5 reports the
results and analysis of the layout design of an autonomous
greenhouse. Finally, Section 6 concludes this paper.

2 Literature review on product modules
identification

This section will describe a brief state-of-the-art survey on the
use of modularity and genetic algorithms in product design.
Afterward, it will be easier to position the work presented in this
paper and identify its contributions.

2.1 Modularity, genetic algorithm, and
product design

Even though product modularity has beneficial effects on design
and development, there are still many research topics that need to be
studied. One of the main challenges, mentioned by (Hölttä-Otto and
de Weck, 2007), is evaluating when to favor a modular design or an
integral design. Many researchers are working on overcoming this
challenge. For example, AlGeddawy et al. (2017), achieved a
modular design based on the design for assembly. To do this, a
combination of Cladistics which is a classification tool used in
biology, design structure matrix (DSM), and the principle of
product granularity level was used. This methodology allows the
designer to have a compromise between modularity and integration.
Moreover, Hölttä et al. (2005), mentioned that there is a tradeoff
between modularity and the performance of the product. If the
constraints and performances of the product are more rigid, an
integral design seems to be more adequate. However, if the
performance requirements are flexible, a modular design can be
favored for product variety, ease of re-design, maintenance, repairs,
etc. From this, it is possible to realize that the degree of modularity
depends on the product specifications and purposes. To evaluate the
degree of modularity needed, many papers can be found in the
literature. For an exhaustive literature review, it is recommended to
look at Gershenson et al. (2004) as well as a more recent review of
Bonvoisin et al. (2016). In this section, a brief literature review will be
done about the motivation and evaluation of the degree of
modularity.

Yu et al. (2003) automatically developed modular product
architectures through DSM clustering. DSM clustering was
achieved using a specialized genetic algorithm (GA) to manage
the different possible clusters. The minimum description length was
used as the objective function, which is a model that approximates
the system. Xiaogang et al. (2006) used a GA to reorganize the DSM
to bring the values closer to the diagonal. A coordination cost
function that was computed with the modified DSM was used to
evaluate which cluster was better. Wrigley et al. (2019) optimized the
layout of a light water modular nuclear reactor power plant. Module
identification was done by translating the process and
instrumentation diagram into a DSM. Then, a clustering
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algorithm reorganized the DSM to form modules that are fed to a
GA for layout optimization. Cheng et al. (2012) presented a
modularization method based on axiomatic design and design
structure matrix. The axiomatic design was used to decompose
the system and DSMs were used to evaluate the interaction between
design parameters. Finally, a GA optimized the minimal description
length for DSM clustering to achieve design parameters’ module
identification. In these works, module identification is achieved by
reorganizing the DSM and clustering components based on
component-component interactions. The issue with these
methodologies is that the effect of modularization on the design
performance is not included in the design optimization or even
design selection. Hence, the set of modules found with DSM
clustering is not necessarily the optimal set of possible modules
in terms of design performance.

Tseng et al. (2008) designed a product with a green life cycle
using a GA algorithm that optimizes the likelihood of two
components being in the same module based on the concept of
liaison intensity. Consequently, the idea is to maximize the liaison
intensity in a module and to minimize the liaison intensity between
modules. Paras et al. (2018) used a grouping GA to redesign used
products in the garment industry. The product was divided into a
manageable number of parts. Then, the grouping GA combined
different parts to achieve the redesign requirements. The objective
called design fitness is a weighted sum of four garment specific
objectives. Xiao et al. (2009) uses a GA combined with fuzzy pattern
recognition for module decomposition. The objective function is the
proximity of the pattern of a solution with a user-defined ideal
pattern. Since the objective is to find a near user-defined ideal
pattern, the near-optimal pattern is not guaranteed since it is user-
dependent. Meng et al. (2007) achieved module identification for
product families using a single objective GA. The single objective is a
weighted sum aggregation of four different objectives related to a
modular design for product families. Shan et al. (2008), Shan and
Chen (2009), Shan and Chen (2011) used the weighted sum of four
types of DSM for a model formulation which is functional,
geometrical, physical, and auxiliary. Then, the optimization of an
objective function based on the life cycle of the product and two
principles of modular design were done with particle swarm
optimization, improved particle swarm optimization, and
harmony search algorithms. Kreng and Lee (2004) offered a four-
phase methodology. The first phase is analyzing the functional and
physical interactions between components. Phase two is finding the
proper modularity metrics or modular drivers which will guide the
modularity process. The third phase consists of modeling the
modularization using a non-linear programming model. The final
phase is optimizing the objective function using a grouping GA that
clusters components into modules. In these works, the optimization
considers modular metrics as well as product-related metrics.
However, they use a single objective optimization for a multi-
objective optimization problem which means they will converge
on one design based on the selection of promising designs.
Furthermore, the design performance is not included in the
optimization process.

Xu et al. (2018) used a two-step methodology for the modular
design filament winding process equipment. The first step is to find
the modules from components using a grouping GA and modular
driving forces. The second step is to optimize the performance

requirement using a non-dominated sorting genetic algorithm II and
the modules found in the first step. Even though multi-objective
optimization is used, the modularization process and design
optimization are done separately. As mentioned above, this could
lead to a set of suboptimal modules. Wei et al. (2015) used three
principles for modular design: interaction within a module, interactions
between modules, and components affecting the same functional
requirements should be combined into a module. To identify
modules, a multi-objective optimization is done where all three
principles are concurrently optimized using the improved strength
Pareto evolutionary algorithm. Finally, to choose the best set from the
Pareto set, a fuzzy selection mechanism is used to eliminate the bias
from human selection. However, the design performance is not
included in the optimization process. Zheng et al. (2023) proposed
an improved genetic algorithm named NSGA2-FCM to identify
modules in a product. The authors use the FBS mapping to break
down the function and structure aspects of the system and highlight
their dependencies for the module identification process. The proposed
methodology has been tested on a beer fermenter. Even though this
method uses FBS mapping to calculate the affinity between two
modules, it does not explicitly optimize the design performance
while identifying the modules. Furthermore, the number of modules
seems to be a parameter that is given by the user. Consequently, the
methodology does not optimize the level of modularity.

Ali et al. (2023) present a generic modularization framework
based on the conceptual model of a product. The principle is to use a
conceptual knowledge graph to find the dependencies between the
different components. Then, the knowledge graph is encoded as
chromosomes with the linear linkage encoding in order to feed it to
the genetic algorithm. The framework proposed many options for
objective functions that have been found in the literature. All of these
objective functions are for modularization, consequently, the
optimization of the design performance is not taken into
account. Furthermore, the difference between positive and
negative dependencies might be considered in the knowledge
graph, but it is not explicitly shown in their methodology and
their online shop case study.

Wang et al. (2023) present a methodology to identify the impact
of product structural characteristics on modularity based on a data-
driven model. The data is created by generating many random
structural DSM that represent virtual products. This method has
been developed by the authors due to the difficulty of finding data.
Then, the module identification is done with the aid of a hierarchical
clustering algorithm. Based on these results, the authors were able to
discuss the impact of the number of parts and average number of
connected nodes on the product’s modular performance. This work
uses binary DSM to represent the structural properties of the product.
Hence, they can define that between two components there is a
dependency, however, they do not consider if the dependency is
positive or negative. This could lead to the formation of a module that
increases the modular performance of the product but decreases its
functional performance.

As mentioned by Gershenson et al. (2004), there is a need for
flexibility in the modularization of a product to consider modules in
the early design stages such as layout design. Moreover, Bonvoisin
et al. (2016) also express a lack of flexibility during the
modularization process. Metrics and methods for modularization
are often problem-specific which restricts their use.
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2.2 Main objective and contributions

The main objective of this paper is to offer a tool that allows the
user to evaluate the effects of modularization on the design
performance while optimizing the design performance.

As mentioned in the literature review, one of the main
challenges that designers face is to know when to design a
system that is composed of multiple changeable and replaceable
subsystems (modular design) instead of a system that cannot be
easily decomposed into subsystems (integral design). In the
literature review, multiple ways are proposed to overcome this,
but to the best of the authors’ knowledge, there is no approach
that fully integrates the modularization with the multi-objective
design performance optimization. Indeed, most of them use a two-
step strategy where the first step is to identify the modules and the
second step is to optimize the design. Therefore, the design
performance is not necessarily used as a driver to evaluate if a
modular design is better than an integral design.

The main contribution of this work is to use the power of genetic
algorithms and design performances to create, evaluate, and rank
designs with different levels of modularity. The original aspects of
the developed methodology can be listed as follows:

• Formation of modules during design optimization allows to
have a GA with a diverse population in terms of level of
modularity.

• The GA has an elitist mechanism that evaluates if
modularization is favored or not based on design
performances. In other words, designs of different levels of
modularity are compared together based on multiple design
performances. Hence, allowing a direct comparison of
modular designs and integral designs.

• Multi-objective optimization which leads to a Pareto front
containing multiple near-optimal solutions with different
levels of modularity. Hence, the user can have a better
overview of the trade-offs of choosing a modular design
instead of an integral design.

Therefore, the main objective of the developed approach is to
present the usability and feasibility of evaluating the level of
modularity needed for a specific system based on design
performances in one multi-objective optimization run. The
proposed approach could greatly help designers find the proper
level of modularity while keeping an adequate design performance.

Within the scope of this paper, the modularization of an
autonomous greenhouse was done with a GA and design
performances. This paper details the steps followed for the
development of this approach.

3 System design description

Figure 1 shows the overview of the methodology as well as the
contribution of this paper. Although the problem statement and
optimization problem formulation have been treated in detail in
our previous work (Law-Kam Cio et al., 2020), a summary will be
presented in Section 4 for completeness. However, the main focus will

be the component combination modeling, as well as its integration
into the optimization algorithm.

3.1 Modeling components’ dependencies

To model component dependencies, A DSM with complex
arrays will be used which was developed in the authors’ previous
work (Chouinard et al., 2020). This augmented DSM uses complex
numbers to differentiate negative and positive dependencies. By
treating negative and positive dependencies separately, it is possible
to aggregate multiple DSMs together while avoiding the loss of
information caused by sign cancellation. Indeed, often the negative
dependencies are represented by negative numbers and positive
dependencies by positive ones. Hence, during the aggregation,
the summation of negative and positive dependencies might be
0 which can lead the designer to falsely believe that there are no
dependencies between two components. The arrays of the DSM are
described as:

DSM* � aij + bijj[ ]
where the real part aij describes the positive dependency and the
imaginary part bij shows the negative dependency amongst
component i and component j . This notation has the advantage
of conserving and accumulating positive and negative dependencies
separately during the aggregation of matrices. In this methodology,
the chosen aggregation method is a weighted sum of all the DSMs.

3.2 Modeling the component combination

For the DSM aggregation process, a matrix named expert
combination matrix (ECM) is added to take into consideration
the designer’s experience in combining components. ECM is
introduced to reflect on the feasibility of combining two
components into a module. This also includes evaluating if the
effort needed to combine two components consumes too many
resources in terms of time and cost even though there are no clear
adverse effects. Once DSM* is obtained, a matrix called combination
potency matrix (CPM) can be computed that can be described as:

CPM � f aij + bijj( )[ ] � aij
bij

[ ]
where aij + bijj is found in the DSM*. The idea is to find a function
f(.) that allow the quantification of the combination potency based
on the complex number notation.

The concept of complex DSMs has not been widely used. Hence,
there is no formulation of f(aij + bijj) given in the literature,
therefore in this work, a simple ratio f(aij + bijj) � aij

bij
will be

used. The chosen function is based on a simple and intuitive
view of the matter. Indeed, a ratio of positive dependencies and
negative dependencies gives a range of values from 0 to ∞, where
0 means that there is no combination potency between two
components and ∞ means that there is a high combination
potency. A scale of numerical and qualitative values is shown
based on the different values of the real and imaginary parts:
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f aij + bijj( ) � ∞∣∣∣∣ aij > 0 and bij � 0{ } → High combination potency

1< f aij + bijj( )<∞∣∣∣∣ aij > bij{ } → Combination potency

f aij + bijj( ) � 1
∣∣∣∣ aij � 0 and bij � 0{ } → Independent

f aij + bijj( ) � 1
∣∣∣∣ aij � bij ≠ 0{ } → Neutral

0< f aij + bijj( )< 1 ∣∣∣∣ aij < bij{ } → Low combination potency

f aij + bijj( ) � 0
∣∣∣∣ aij � 0 and bij > 0{ } → No combination potency

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
It is important to mention the difference between cases 3 and 4.

The combination process of case 3 should be easier than the one for

case 4, since in case 3, the two components are independent due to
the absence of dependencies. Moreover, in case 4 the designers
need to deal with adverse effects. For this reason, the numerical
value for case 3 is slightly higher than for case 4 which is why the
numerical value for case 3 is represented by the “1+” symbol.
Hence, even though the numerical value of case 3 would be
mathematically undefined. From a coding point of view, it is
possible to catch this exception in an if statement and assign its
numerical value to 1.00001 to respect the “1+” symbol assigned
to case 3.

3.3 Integrating the component combination
in evolutionary computation

The chosen evolutionary algorithm in this work is a modified
version of the non-dominated sorting genetic algorithm -III
(NSGA-III) (Deb and Jain, 2014). Part of these modifications is
presented in a previous work of the authors (Law et al., 2020). The
components’ combination has also a chance of being performed
during the reproduction phase of the NSGA-III (See Figure 2).
There is a probability associated with the occurrence of the
combination operator just like the mutation operator. The
components’ combination is done on a clone of a random
individual from the population. Here, the individual represents
a design. Hence, the population is composed of many designs that
compete with one another in order to find a set of near-
optimal designs.

From Figure 2, not only the methodology allows individuals
with modules to compete with individuals without modules, but it
also allows competition between modules. Hence, it is possible to
evaluate the effect of modularization on the design performance
(i.e., objectives), thus, if a specific module is beneficial, it will
improve one or more objectives. Using this strategy, the
algorithm will favor optimal modules, if they exist, based on the
design performance. However, the optimization algorithm must be
adapted to achieve this.

The component combination happens within an individual
(i.e., a design). Hence, the population will be composed of many
individuals that formed different modules during the optimization.
To keep track of the individuals’modules, each individual will have
a combination tracker vector (CTV). To be more precise, the CTV

FIGURE 1
Overview of the methodology. The red squares represent the places of focus in this paper.

FIGURE 2
Overview of the modified NSGA-III algorithm. The red square
represents the added operator.
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is used to know which components are combined into a module
and to adapt operators and/or mechanisms of the optimization
algorithm. To better understand how CTV is modified
throughout the optimization process, Table 1 represents the
formation of a module of one individual after 2 component
combinations. Initially, the CTV is generated by assigning one
component (first column) to one module (second column).
Hence, at the beginning, every module contains a unique
component. The third column shows the impact of combining
two modules on the CTV. The combination is formed by
integrating the seventh component (seventh module) with the
second one (second module) which is why the CTV’s module ID
of the 3rd column, seventh row is changed to 2. Moreover, the
module ID of the third column, eighth, and ninth rows are
changed to seven and eight, respectively, to keep track of the
total number of modules. The last column represents how the
CTV will be changed if another component is added to the
module. The ninth component is also integrated with the
second component which is why the index of the third
column, ninth row is 2. The module is now formed of the
second, seventh, and ninth components.

The CTV also offers another advantage. As mentioned earlier,
some evolutionary operators will be affected by the combination
of components. For this implementation, the crossover operator
is the only one that has a conflict with the combination of
components. Indeed, applying a crossover operator between
two solutions with different combinations is most likely to
output an implausible individual. In this work, an implausible
individual is defined as an individual with too many or too few
components. This is where the CTV can be useful. To avoid
implausible individuals, a crossover between two individuals can
happen if their CTVs are identical. In other words, the crossover
operation can happen when two individuals have identical
modules. However, if their CTVs are not identical, but share
an identical module at the crossover point, an exchange between
these identical modules will be done. Otherwise, no crossover
operator is done between the two individuals. This modification
of the crossover operation is done to ensure the exploration of the
design space.

4 Case study: autonomous greenhouse
layout design

In Law et al. (2020), Law-Kam Cio et al. (2020), the authors
proposed a case study based on components’ placement and
dependencies for the layout design of an autonomous
greenhouse. This case study was chosen because it can greatly
benefit from modularity. Indeed, by integrating components into
modules, it is possible to reduce the volume occupied by
components which will increase the volume allocated for the
growth of the plants. Hence, the autonomous greenhouse will
better fulfill its main function which is to ensure the growth and
survival of plants. The formulation will briefly be presented here.

There are nine main components for the autonomous
greenhouse design. First, the pack soil contains the seeds and the
artificial soils needed for the growth of plants. Second, a water
distribution system composed of a water tank and a water pump is
needed to make sure the pack soil receives the necessary nutritious
water to grow and survive. Third, LEDs act as artificial sunlight to
allow photosynthesis and to give a growth direction. Fourth, to avoid
the plant freezing, a heater, heat sensor, and fan are used to control
the whole greenhouse temperature. Finally, an inspection system
composed of a camera and PCB board is used to give information
about the health and condition of plants to the operator of the
greenhouse. The PCB board contains sensors that give information
about the gas concentration of the greenhouse’s environment
(i.e., O2, CO2, etc.).

The new DSMs are presented in Figure 3. The DSMs have been
modified using the following adaptation of the complex scale
presented in (Chouinard et al., 2020).

Complex value � 0 + 2j → Detrimental
Complex value � 0 + 1j → Undesirable
Complex value � 0 + 0j → Neutral
Complex value � 1 + 0j → Desirable
Complex value � 2 + 0j → Necessary

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Using the formulation, the layout design of most systems can be

modeled by three matrices. The first one is the closeness matrix
which represents how far or close a component should be from

TABLE 1 Example of the use of CTV. Impact of forming a module on the CTV (third column). Impact of including a component into an existing module
(fourth column).

Component’s ID CTV initial state (number of
modules)

CTV after forming one
module

CTV after adding another component in
the module

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 2 2

8 8 7 7

9 9 8 2
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another one. The second matrix is the field of view (FOV) matrix
which indicates that a component needs to be within or outside of
the FOV of another one. The last one is the physical connection
matrix and defines the number of connections between two

components. The aggregation of these three matrices is computed
using the weighted sum approach. Using the aggregated matrix, the
CPM is calculated and shown in Figure 4. In this case study, it is
important to note that there is a difference between the closeness

FIGURE 3
DSMs of the layout design of an autonomous greenhouse. DSM of closeness (A) DSM of the field of view (B) DSM of physical connections (C)
Aggregated DSM (D).
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and the combination of two components. To illustrate this, the water
tank will be taken as an example. The water tank could be close to the
LEDs without any consequences. However, combining the water
tank and the LEDs is not favored for reasons such as water and
electronics are not compatible, and their combination can be
troublesome, but possible.

To input this sort of information, the ECM is used since its
purpose is to include expert knowledge about the physical
integration between components as mentioned above. Hence, the
water tank and electric components have a value of 1j since such a
combination is not favored since it would make the design and
development more complex. Furthermore, a value of one is given to
the ECM element of the LED and the camera to avoid lens flare since
the light could prevent the camera from achieving its functional
requirement. Including the ECM in the aggregation process, the new
aggregated matrix and CPM are given in Figure 5. It is possible to see
that the input of the designer on the combination of components has
an important impact on the CPM. For example, the LED and camera
have high combination potency as opposed to their potency being
neutral before.

In this paper, the objective function from the authors’ previous
work has been used and reported in Table 2 to obtain layout designs
of an autonomous greenhouse. This table shows the relationship
between the dependencies found using product-related dependency
management and the objective functions. These objectives treat
information about the placement and size of components to
ensure the survival and growth of the plants. DX, DY, and DZ
represent the dimensions of a component, and PX, PY, and PZ their
position within the greenhouse. Finally, M, V, and A are the mass,
voltage, and current of a component, respectively.

Furthermore, the strategy for the aggregation of objectives is
illustrated in Figure 6. The methodology used to aggregate these
objectives uses axiomatic design to identify the subsystems and
components of the greenhouse. Then based on the dependencies and
objective functions of the layout design (Table 2) and the axiomatic
design, the objective functions are aggregated by associating them to

subsystems. More details of this methodology can be found in the
author’s previous work (Law et al., 2020).

5 Results and discussion

The simulation parameters are presented in Table 3. The
parameters above the thick line are the algorithm parameters of
the modified NSGA-III. The reference vector size and population
size have been chosen based on the recommendation of Deb and Jain
(2014). The rest of the parameters were fine-tuned by trials and
errors. The probabilities of combination and mutation were defined
so that the modularity process would not be done too quickly to
allow the comparison of different levels of modularity within a
simulation run. The design parameters in light gray are from the
authors’ previous work (Law-Kam Cio et al., 2020). For
completeness, the components’ parameters from Law-Kam Cio
et al. (2020) are also reported in Table 4. It is important to
mention that the modularization process starts only when the
entire population is constraints-free. By doing so, it is possible to
compare the feasible non-modular designs to feasible modular
designs. If the modularization process is better, the non-modular
design should completely disappear after a while.

To show the applicability of the methodology presented above, a
comparison of simulation runs done with and without the
modularization process is carried out. Figure 7 shows different
examples of layouts of 10 simulation runs without
modularization. Ten simulation runs were done for
reproducibility purposes. Hence, there were many duplicated
layouts and similar layouts that were outputted from these
simulations runs. Therefore, the presented layouts in Figure 7 are
the most common and near-optimal ones. By analyzing the layouts
of this study case, it is possible to notice that the optimization of the
layout unveils clusters of components. Indeed, all the examples show
physical proximity between the pack soil, water tank, and water
pump. The same conclusion can be made for the heater and the fan

FIGURE 4
CPM of the layout design of an autonomous greenhouse.
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as well as the camera and the LED. As for the heat sensor and the
PCB, only layout A of Figure 7 shows a possible combination. The
red, blue, and green lines in each figure are for the line of sight and
field of view of the components. The red lines are the line of sight of
the component starting from the center of the component. The blue
and green lines are the field of view of the components in the form
of a cone.

Figures 8–10 show the results of 10 simulation runs. The layouts
were chosen to show the different levels of modularization while
achieving the functional requirements.

Figure 8 shows four examples of highly modular layouts of an
autonomous greenhouse. These layouts have four modules. As expected
from the CPM as well as the modules identified from Figure 7, the water
tank and pack soil are combined due to their high combination potency
for each layout. For the same reason, it is possible to see that the camera
and LED are also combined. For layout D, the heat sensor and the PCB

are combined. The CPM shows that this combination can happen
without impacting the system performance and layout A of Figure 7
shows that their combination can be expected. Looking at the CPM, the
combination of the heater and fan is most likely to happen. This is
confirmed as it is possible to see all the layouts of Figure 8 except C has
the heater and fan combined. For layout C, the heater is the only
component of itsmodule, and the fan is combinedwith the camera, LED,
and PCB. Furthermore, layouts A and B include the PCB with the
module composed of the camera and LED. These combinations were
expected since the PCB has an independent dependency with all the
components except the water tank. Finally, the water pump is combined
with the water tank and pack soil even though the designer’s suggestion
was to avoid combining these two components in the ECM. This goes
to show that their combination would greatly benefit the
design performances even if it can also be difficult to achieve by
the designer.

FIGURE 5
Integrating the ECM. ECM (A) New aggregated matrix (B) New CPM (C).
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Figure 9 shows four examples of moderate modular layouts. The
number of modules for these layouts is 5. It is possible to see that the
water tank, water pump, and pack soil still form a module for every
layout. The heater and fan module have only been present in layout
A. For the other layouts, the fan is either combined with the camera
and LED module (layout C) or is a module of its own (layout B and
D). The separation of the heater and fan was not expected,
considering that the CPM shows an infinite combination potency
between these components. However, it seems that the combination
of these two simply did not happen due to the stochastic nature of
the optimization because layouts B and D show that the heater and
fan are really close to one another similarly to the layouts of Figure 7.

As for layout C, the fan simply got combined with the camera and
LED first. Then, the combination of the heater with this module was
not optimal since the heater would be closer to the heat sensor.

Figure 10 shows four examples of low modular layouts. This
shows more than five modules. These layouts are similar to the
layout of Figure 7. Indeed, it is still possible to see a tendency to
combine the water tank, water pump, and pack soil into a module.
The same goes for the heater and fan as well as the camera and LED.
Hence, in the layouts of Figure 10, some of these modules have been
made or partially made.

In all the examples of Figures 8–10, the water tank and water
pump have been combined even though the designer indicated

TABLE 2 Dependencies and objective functions of the layout design of an autonomous greenhouse.

Number Name of dependency Max or Min Objective function Decision variables

1 Total volume Min Σ(DX*DY*DZ) DX, DY, DZ

2 Volume of pack soil and water tank Max Σ(DX*DY*DZ) DX, DY, DZ

3 Mass Min Σ M M

4 Energy consumption Min Σ(V*A) V, A

5 Distance between pack soil and water tank Min Euclidean Dist PX, PY, PZ

6 Distance between pack soil and water pump Min Euclidean Dist PX, PY, PZ

7 Distance between water tank and water pump Min Euclidean Dist PX, PY, PZ

8 Distance between heater and fan Min Euclidean Dist PX, PY, PZ

9 Distance between connection points of the water tank and water pump Min Euclidean Dist PX, PY, PZ

10 Distance between connection points of pack soil and water pump Min Euclidean Dist PX, PY, PZ

11 Distance between LED and heat sensor Max Euclidean Dist PX, PY, PZ

12 Distance between heater and heat sensor Max Euclidean Dist PX, PY, PZ

13* Lighting of the pack soil with LEDs Max Euclidean Dist PX, PY, PZ

14* Capturing of the pack soil with the camera Max Euclidean Dist PX, PY, PZ

15 Distance between PCB and pack soil Max Euclidean Dist PX, PY, PZ

FIGURE 6
Objectives aggregation of the layout design of an autonomous greenhouse.
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that this combination is not suggested in the ECM. The reason why this
combination is preferred can be explained by objectives 1, 7, and 9 of
Table 2 which greatly benefit from this combination. Indeed, these
objectives are mainly related to the length and volume of the tubes
needed to do the water distribution. By combining the water tank and
water pump, the length of the tubes does not need to be handled with
the overall design of the greenhouse but solely in the design within the
module composed of the water tank andwater pump. Furthermore, this
combination also leads to the improvement of the objectives 13 and
14 of Table 2. These two objectives are related to avoiding the
obstruction of the view of the camera and the lighting of the LED.
By having the tubes, water tank, and water pump inside one module, it
is possible to reduce the obstructed area as can be seen by comparing
the designs withoutmodularizationA, B, and C of Figure 7 with the low
modular designs A, B, and C of Figure 10. Furthermore, it is possible to
observe, in highermodular designs (Figures 8, 9), that the improvement
of objectives 1,7,9, 13, and 14 is greatly increased since combining the
water tank, water pump, and pack soil reduces the overall volume and
the obstruction of the camera and LED. The reason is that the water
tank and water pump can increase their volume by increasing the width

TABLE 3 Simulation parameters. The first 6 parameters are algorithm
parameters and the other ones are design parameters.

Parameters Values

Population size 212

Reference vector size 210

Number of unimproved generations to terminate the
algorithm

1,000

Probability of combination 80%

Initial probability of mutation 40%

Final probability of mutation 10%

Maximum voltage for one component in a solution 9 V

Maximum current for one component in a solution 1,000 mA

Max mass of a solution 1,500 g

Maximum energy consumption of an individual 15 W

Greenhouse dimension 450 × 300 ×
300 mm3

TABLE 4 Components’ parameters.

Pack-soil Water tank

Dimensions range: 250 × 175 × 8 to 450 × 300 × 20 mm3 Dimensions range: 50 × 50 × 50 to 100 × 100 × 100 mm3

Mass range: 300–425 g Mass range:150–1,200 g

Heater Heat sensor

Dimensions range: 30 × 30 × 5 to 80 × 80 × 10 mm3 Dimensions range: 12 × 12 × 5 to 25 × 25 × 10 mm3

Mass range: 20–50 g Mass range: 0.1–1 g

Voltage range: 3.3–12 V Voltage range: 1.7–3.6 V

Current range: 400–7,000 mA Current range: 0.01–0.02 mA

Camera LED

Dimensions range: 10 × 10 × 2.5 to 22 × 26 × 11 mm3 Dimensions range: 40 × 40 × 1.84 to 100 × 100 × 2 mm3

Mass range: 0.1–6.4 g Mass range: 10–35 g

Voltage range: 1.7–5 V Voltage range: 2.9–3.7 V

Current range: 50–160 mA Current range: 700–1,400 mA

Field of view: 60°–90° Field of view: 60°–90°

Fan Water Pump

Dimensions range: 40 × 40 × 10 to 80 × 80 × 25 mm3 Dimensions range: 32 × 32 × 23 to 54 × 54 × 46 mm3

Mass range: 18.6–62.6 g Mass range: 80–150 g

Voltage range: 2–5.5 V Voltage range: 3–12 V

Current range: 66–170 mA Current range: 200–500 mA

PCB

Dimensions range: 30 × 30 × 1 to 50 × 50 × 4 mm3

Mass range: 5–10 g

Voltage range: 3.3–6 V

Current range: 5–50 mA
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and length of the module while decreasing its height. Hence, the
optimization shows the designer that this combination is more
advantageous for the design of a greenhouse even if it must
overcome negative dependencies.

It is possible to observe the benefits of modularity on the layout
design of an autonomous greenhouse by analyzing the results of
Figures 8–10. The more modular is the layout, the more available
space there is for the growth of the plants. Furthermore, the module
containing the pack soil and the water tank usually has a bigger
volume that implies more seeds and/or more water can be used to
grow plants. Finally, the field of view of the camera and LED
projecting on the pack soil are less obstructed by other

components. This is mainly due to the combination of the pack
soil, water tank, and water pump since the water tank and water
pump contributed the most to the obstruction of fields of view as
shown in Figure 7.

It is important to mention that some of the outputted layouts
were poor. Layout A from Figure 11 cannot be used to ensure the
growth and survival of the plants due to the undesired direction of
the camera and LED module. The filming and illumination of the
plant cannot be fulfilled adequately with this configuration. Layout B
also shows this problem as well as the heater and fan module
being blocked by the pack soil, water tank, and water pump
module. This can cause a suboptimal performance of the fan

FIGURE 7
Examples of layouts are generated without modularization. Highlighting the possible modules. (A–C) show multiple solutions with different
possible modules.
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which can lead to a local heat point or cold point. Layout C also
shows this problem.

6 Limitations and future works

The presented results showed that the proposed methodology
achieved module identification while ensuring the functional
requirements of the product. However, the methodology could
be improved by overcoming one of the issues, which is the

absence of an exploratory mechanism (e.g., niching
techniques) among the set of modules integrated into the
optimization algorithm. Indeed, the formation of one module
can prevent the formation of another one. Hence, it is possible to
obtain a local optimal set of modules if it takes over the
population. A local optimal can also mislead the designer and
cause the final product to be less optimal or to not fulfill the
customers’ needs. To overcome this issue, a niching mechanism
such as an adapted version of the crowding distance based on the
CTV might be a solution in future works.

FIGURE 8
Examples of highly modular layouts. (A–D) show the different solutions with the same modularity level.
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Another issue is that the CPM has static values that depend on
the designers’ weight assignments and the chosen computation
method. Hence, the probability of combining two components is
greatly impacted by the designers. In the case where the designer
input is inaccurate, two mechanisms could be explored to rectify

this. The first one is the exploration and study of the computation
method other than the ratio between positive and negative
dependencies. The second one is to make the CPM values
dynamic and learn through trials using reinforcement learning
algorithms.

FIGURE 9
Examples of moderate modular layouts. (A–D) show the different solutions with the same modularity level.
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Lastly, a comparative study between the proposed
methodology and other methodology should be done. To make
sure that the comparative study is valid, the current state-of-the-

art modularity methods and evolutionary algorithms
should be adapted to offer many concepts with different levels of
modularity.

FIGURE 10
Examples of low modular layouts. (A–D) show the different solutions with the same modularity level.
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7 Conclusion

This paper presents a methodology to concurrently optimize a
product design while identifying modules. The methodology uses
complex DSM to evaluate the combination potency between
components based on their positive and negative dependencies.
The combination potency is then summarized into a matrix
called a combination potency matrix (CPM). The CPM is then
integrated into a modified version of the NSGA-III to
simultaneously accomplish the module identification and layout
design optimization of an autonomous greenhouse. The proposed
methodology allowed us to find concepts of the layout of an
autonomous greenhouse with different levels of modularization.
The modularization process was able to reduce the number of
physical components from 9 down to a minimum of 4 modules.
The benefits of the modularization for the autonomous greenhouse
are more space for the growth of the plants, lower obstruction of the

filming and illuminating of the camera and LED, respectively, and
larger pack-soil and water tank which means more seeds can be
planted. The proposed methodology was able to obtain these benefits
while ensuring the fulfillment of the functional requirements of the
autonomous greenhouse. However, poor concepts were still found
due to the conflict betweenmodules and objectives functions as well as
the definition of the dominance in the non-dominated sorting. To
improve the proposed methodology some modifications as been
suggested such as a dynamic CPM as well as including diversity
among the set of modules.
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FIGURE 11
Examples of inadequate layouts. (A–C) show different inadequate solutions.
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