
Uncertainty-aware explainable AI
as a foundational paradigm for
digital twins

Joseph Cohen1* and Xun Huan2

1Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, United States, 2Department of
Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States

In the era of advanced manufacturing, digital twins have emerged as a foundational
technology, offering the promise of improved efficiency, precision, and predictive
capabilities. However, the increasing presence of AI tools for digital twinmodels and
their integration into industrial processes has brought forth a pressing need for
trustworthy and reliable systems. Uncertainty-Aware eXplainable Artificial
Intelligence (UAXAI) is proposed as a critical paradigm to address these
challenges, as it allows for the quantification and communication of
uncertainties associated with predictive models and their corresponding
explanations. As a platform and guiding philosophy to promote human-centered
trust, UAXAI is based on five fundamental pillars: accessibility, reliability,
explainability, robustness, and computational efficiency. The development of
UAXAI caters to a diverse set of stakeholders, including end users, developers,
regulatory bodies, the scientific community, and industrial players, each with their
unique perspectives on trust and transparency in digital twins.
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1 Introduction

Enabled by Industry 4.0 technologies, Digital Twins (DTs) have attracted enormous
attention for advanced manufacturing in recent years. Due to recent advancements in cloud
storage and computing, Artificial Intelligence (AI), and Industrial Internet of Things (IIoT)–
enabled connectivity of Cyber–Physical Systems (CPS), DT systems have become
increasingly realizable (Bergs et al., 2021). First introduced two decades ago and
formalized by Grieves (2014), the DT concept—of which several definitions and
variations have been developed since—has important implications on real-time
condition monitoring of physical assets in manufacturing production systems. For
clarity, this work will use the DT definition used by Kochunas and Huan (2021), which
considers the existence of the DT as tied to the active operation of a physical asset in the
context of its life cycle. This contrasts with other digital models and digital shadows (Bergs
et al., 2021) that may exist before or after the monitored asset is in-service. As elaborated by
Kochunas and Huan (2021), digital models, twins, and shadows are all valid aspects that exist
within the entire life cycle of an asset, including after it is decommissioned.

Overall, while the DT concept is relatively new in implementation, DTs are largely based upon
existing and mature modeling and simulation components (Fuller et al., 2020). We refer to
Aheleroff et al. (2021) for more information concerning enabling technologies for DTs and the
value that existing DTs provide for specific industries. Modeling components of a DT systemmay
consist of a combination of experience-based, physics-based, data-driven models, and hybrid
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approaches combining thesemodes (Liao andKöttig, 2016). Experience-
based techniques are often heuristic rules carefully designed by the
accumulation of extensive human expert knowledge (Liao and Köttig,
2016). Physics-based simulations may be too computationally expensive
to resolve in real time, whereas data-driven models can perform tasks
such as prediction, inference, and control in online settings once trained.
Due to the recent development and feasibility ofMachine Learning (ML)
techniques, data-driven models have become increasingly popular
alternatives for real-time monitoring that is integral for DTs (Jaensch
et al., 2018), particularly in advanced manufacturing applications where
novel and complex physics are difficult to fully capture. DT systemsmay
be employing ML for an assortment of classification or regression tasks,
and reinforcement learning techniques to obtain optimal policies for
decision-making. For example, Alexopoulos et al. (2020) proposed a DT
framework using deep learning for vision-based inspection. Their
proposal included simulating virtual datasets to streamline manual
labeling efforts. Meanwhile, Xia et al. (2021) demonstrated the utility
of deep reinforcement learning for operations optimization tasks,
including manufacturing scheduling.

Due to these recent developments, DTs increasingly depend upon
black box predictive models. However, the opaqueness of existing ML
methods creates obstacles for trust, inhibiting potential for DT adoption
in industry. This can have devastating consequences for high-stakes
and/or safety-critical applications where trustworthiness is a priority.
Defining trustworthiness in the context of DTs is itself nontrivial.
Doroftei et al. (2021) proposed 4 dimensions of human-agent trust for
DTs: reliable performance, process understanding, intended use
conforming to design purpose, and socio-ethical implications.
Similarly, Trauer et al. (2022) proposed a 7-step Trust Framework
for DTs after surveying industry professionals. In a recent report, the
National Institute of Standards and Technology (NIST) discussed the
emerging DTs in the context of existing standards and guidelines,
offering considerations on trustworthy applications (Voas et al., 2021).
Despite these contributions, defining and establishing trustworthiness
for DTs in a systematic, comprehensive, and context-relevant manner
remains a major challenge.

This perspective paper will first discuss gaps in DT
trustworthiness through a variety of stakeholder perspectives,
elucidating current factors limiting confidence in the data-
driven models that are the building blocks of DT operation.
The paper will then delineate five core pillars of trustworthy DTs
to address these limitations, and how the development of
uncertainty-aware explainable artificial intelligence (UAXAI)
as an underlying fundamental framework can facilitate the
adoption of explainable and trustworthy DT systems. The
main contribution of this paper is then to, through the
presentation of UAXAI, provide structure and guidance for
upcoming future research efforts to better streamline the
transition towards resilient, sustainable, and human-centered
AI in Industry 5.0.

2 Stakeholder perspectives on
trustworthiness

To facilitate the adoption of trustworthy data-driven DTs, this
paper considers five diverse stakeholder perspectives: end user,
developer, regulatory, scientific, and industrial. The proposed

UAXAI framework, introduced in the next section, is motivated
from all the perspectives elaborated in this section.

2.1 End user perspective

From an end user standpoint, trust in DTs is paramount. Operators
and decision-makers rely on these systems for real-time insights, and
the reliability of predictions can directly affect manufacturing
production. Black box models often give point estimates with no
explanation or justification for predictions, with no uncertainty or
confidence measure. This can inhibit trust for end users, who may
appreciatemore information tomake judgments onwhether to trust the
prediction and health status of the DT operation. An important
challenge is that state-of-the-art accurate and eXplainable Artificial
Intelligence (XAI) methods characterized as “trustworthy” may still
easily deceive end users. In a recent study in human-computer
interaction, Banovic et al. (2023) demonstrated how exaggerating the
capabilities of an untrustworthy AI system can obscure end users’
objectivity in evaluating its reliability. This demonstrates that our
criteria for evaluating user trust cannot be limited to simply gauging
the apparent quality and fairness of predictive models used for DTs.

2.2 Developer perspective

Developers face the challenge of building and maintaining DT
systems that are robust and efficient. With current black box
techniques, it is difficult for developers to identify regions of
strength and weakness in the model’s predictions. Data-driven
methods are also often incompatible with unlabeled data
ubiquitous in manufacturing applications. In addition, they can be
exceedingly difficult to train and tune due to challenges in
convergence: for example, the loss function when training a neural
network tends to be highly nonconvex, and trainable parameters are
often stuck in local minima with no guarantee on global optimality
(von Eschenbach, 2021). Additionally, performance often relies on
data-dependent and opaque hyperparameter settings.

2.3 Regulatory perspective

Regulatory bodies are increasingly concerned with the ethical and
safe deployment of AI systems. The recent NIST report on emerging
standards for DTs brought forth 14 considerations defining trust as
“the probability that the intended behavior and the actual behavior are
equivalent given a fixed context, fixed environment, and fixed point in
time” (Voas et al., 2021). Compliance with legacy standards and
guidelines is especially important for safety-critical systems, where
failure could have catastrophic implications on lives and costs. Purely
data-driven models may be exceedingly brittle for worry-free usage.
This also manifests in DTs: small perturbations in operating
conditions may lead to divergent and unreliable predictions.
Without developed safeguards and engineering redundancies in
place, it is difficult to guarantee system performance given
unpredictable model tendencies. The development of new
regulations and policies for AI systems is of intense interest, and it
remains to be seen how this will impact DTs in the coming generation.
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2.4 Scientific perspective

Domain scientists and engineers who have accumulated years of
expertise may be skeptical of data-driven predictions from DT systems.
Data-driven findings, particularly without justification or explanation,
may appear to contradict established science and convention. In
general, ascertaining whether these findings are indicative of physical
phenomena or are simply experimental artifacts remains nontrivial.
While skepticism under uncertainty is important for robust decision-
making, black box techniques exacerbate existing distrust and aversion
to data-centric methods (von Eschenbach, 2021).

2.5 Industrial perspective

Ultimately, industry practitioners and executives are seeking
solutions that improve key performance indicators such as yield,
throughput, reduced downtime, availability, quality, and cost
reduction. Data-driven methods for DTs can come with steep
implementation costs (e.g., sensor installation, data collection and
storage, GPUs/TPUs), and also come with pressing questions on
cybersecurity and privacy preservation. While there have been
successful case studies of DTs operating at scale (Betti et al., 2020),
the decision to trust DT models from the perspective of industry largely
depends on how they materially benefit business operations. Like other
technologies, the adoption of DTs may resemble Gartner’s Hype Cycle
characterized as follows: the initial technology trigger, the peak of inflated
expectations, the trough of disillusionment, the slope of enlightenment,
and the plateau of productivity (Strawn, 2021). We note that this cycle is
especially pertinent due to the recent explosion of generative AI
capabilities such as large language models; some industry practitioners
may have raised expectations due to hype, and it may take more time to
understand how to deploy DT and AI technologies productively.

3 UAXAI: Uncertainty-Aware
eXplainable AI

Based on the existing challenges identified above, we suggest five
guiding principles for the development of trustworthy DTs: accessibility,
reliability, explainability, robustness, and computational efficiency. These
principles are defined in this section and will form the foundational
pillars of UAXAI, a proposed framework centered on improving
trustworthiness for data-driven DTs. The UAXAI framework is not
limited to a specific methodology, but is characterized as a platform that
incorporates human explanations and expertise. Figure 1 summarizes
the framework’s prioritization of each foundational concept as well as the
resulting benefits towards trustworthiness.

3.1 Accessibility and UAXAI

In this context, accessibility is defined as the degree to which human
operators can understand how to use and interface with DTs. This can
encompass a wide variety of aspects ranging from having understandable
parameter settings that are intuitive for experts to tune, to inclusive
universal design principles. Data visualization tools and adaptive
interfaces are essential to promote accessibility (Todi et al., 2020). Our

position is that UncertaintyQuantification (UQ) and communication is a
key enabler for end users to understand the risks involved with trusting a
DT systemwith confidence. Prabhudesai et al. (2023) provided empirical
evidence that including uncertainty information into decision support
systems combats overreliance and promotes critical understanding. In
general, the principle of accessibility can be quantified via operator survey
feedback and compliance to standards, and DT interfaces should be
designed to meet target accessibility specifications.

Accessibility in DTs is closely tied to human psychology, cognitive
processes, and even local culture. The UAXAI framework respects the
research contributions from the human-computer interaction (HCI)
community, recognizing the importance of presenting information in
a format that resonates with users. Unlike black box models, the
UAXAI concept aims to create user-friendly AI systems that
empowers operators, lowering the barrier of entry of using these
techniques. By making it so that operators can easily interact and
interface with DTs, practitioners can introduce these systems in
reskilling programs with less friction.

3.2 Reliability and UAXAI

This principle is defined as the ability to demonstrate high
performance on a quantifiable, consistent, and reproducible basis.
Reliability metrics for fault diagnosis problems may include
classification performance evaluation quantities such as precision,
recall, area under the receiver operating characteristics (AUROC) or
precision-recall (AUPR) curves. These are often more robust metrics
than accuracy alone, which can easily appear misleadingly high
under class imbalance situations commonly encountered in
manufacturing applications.

Reliability is a fundamental concern for DTs. Users must have
confidence in the predictions generated by these systems. The proposed
UAXAI framework contributes to reliability by enabling the
explanation of predictions, allowing accuracy metrics to be reported
alongside uncertaintymeasures. This combination provides users with a
comprehensive view ofmodel performance. In applications with weakly
labeled data, where ground truth validation is challenging, UAXAI
leverages uncertainty and explanations as surrogate error and
evaluation measures. It helps identify the strengths and weaknesses
of the model, allowing for continuous improvement and enhanced
decision-making.

3.3 Explainability and UAXAI

This principle focuses on transparency, the ability to understand
and trust predictions, as well as the long-term implications of decision-
making. In this paper, explainability is considered a central pillar for
establishing trust. While explainability as a concept is difficult to
objectively measure, feature importance and attribution methods
such as Shapley value analysis are quantitative tools that can be
used to explain model predictions (Senoner et al., 2021). Example-
based explanations and model counterfactuals (i.e., “the smallest
possible changes to produce a different outcome”) are particularly
amenable for human learning and intuitive from a HCI perspective.

However, existing XAI techniques have significant limitations that
can lead to misleading explanations. Feature attribution techniques such
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as Shapley-based methods have a variety of estimation techniques and
varying interpretations ofmarginal effects (Chen et al., 2023). Other data-
dependent techniques, such as Local Interpretable Model-Agnostic
Explanations (LIME), are sensitive to implementation details and
prone to unstable, inconsistent, and non-unique explanations
(Molnar, 2022). As a result, without proper communication of
uncertainties and context, XAI methods can be deceptive. A UAXAI
platform should incorporate these tools appropriately by unlocking user
insights on DT behavior, allowing for a more honest assessment on
relative strengths and weaknesses.

3.4 Robustness and UAXAI

This principle assures capability in handling uncertainty, noise, and
disturbances to provide meaningful, actionable solutions. For data-
driven methods, forward UQ can be useful as a robustness measure
to evaluate uncertainty in predictions (Kochunas and Huan, 2021).
Furthermore, inverse UQ can be utilized alongside new data to reduce

uncertainty. This can be accomplished via Bayesian or frequentist
approaches. Bayesian frameworks allow for a more comprehensive
overview in terms of probabilistic distributions, whereas frequenstist
approaches can be useful to swiftly calculate confidence measures.

DTs are expected to operate under various conditions, including
changing environments and noisy sensor data. UAXAI can play a
crucial role in ensuring robustness by quantifying and propagating
uncertainty. It can account for noisy sensor measurements in real-
time, making DTs resilient to fluctuations. Moreover, UAXAI serves
as an enabler for resilience, alerting operators when model
explanations no longer align with observed data. This indication
can help encourage retraining or remodeling, ensuring that the DT
remains effective and trustworthy.

3.5 Computational efficiency and UAXAI

This principle places careful consideration on runtime and
computational cost, including offline and online preprocessing,

FIGURE 1
The proposed conceptual UAXAI framework based on five pillars: accessibility, reliability, explainability, robustness, and computational efficiency.

TABLE 1 Summary table matching identified stakeholders’ unmet needs with value provided by UAXAI platform. We refer back to Figure 1 for a summary on how
these pillars contribute to trustworthiness.

Perspective Summary of unmet challenges Relevant UAXAI pillars

End User Inability to understand or justify predictions Explainability, Accessibility

Developer Difficulty in identifying model strengths and weaknesses Explainability, Reliability

Regulatory Assuring compliance to existing standards, societal responsibility Robustness, Reliability

Scientific Skepticism in opaque and black–box model results Explainability, Computational Efficiency

Industrial Skepticism in improving key performance indicators Reliability, Computational Efficiency
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postprocessing, training, evaluation, and retraining steps. Some
examples of quantifiable computational efficiency metrics
include total runtime, number of iterations required for
convergence, and time complexity. DT specifications can be
targeted on a per-application basis to reach these targets, with
stringent requirements necessary to achieve real-time
decision-making.

Efficiency is a key concern in the deployment of DTs. UAXAI
addresses this by advocating for multi-fidelity approaches, where
expensive high-fidelity physics-based simulations are
complemented with low-fidelity reduced-order models (Kapteyn
et al., 2020), or inherently interpretable models that are
computationally efficient. It also supports optimal experimental
design, aiding in the cost-effective collection of data. Rather than
relying on a single large, high-fidelity model, UAXAI promotes a
network of different models with varying fidelity levels used for
different tasks. This approach allows experts to select the most
appropriate model for a given situation, enhancing efficiency and
effectiveness for faster exploration of vast solution and
design spaces.

4 Discussion

The UAXAI framework exhibits an underlying philosophy of
prioritizing the quantification and communication of uncertainties
alongside model explanations. It directly addresses several of the
unmet needs from the stakeholder perspectives identified in
Section 2, with the overall relationship summarized in Table 1.
In Table 1, we specify the two most relevant and value–adding
UAXAI pillars that correspond to the respective
stakeholder’s needs.

The proposed framework is not limited to specific
methodologies or model fidelities, but the combination of several
existing technologies may fit well within this framework. For
example, low-fidelity models, whether they be reduced-order
models from high-fidelity simulations (Kochunas and Huan,
2021) or “inherently interpretable” linear and/or sparse data-
driven models, are computationally efficient and may be more
resilient to uncertainty due to generalization capability. However,
an advanced deep learning algorithm that offers high accuracy, or a
tool that provides accessibility benefits by unlocking savings in
labeling costs for vision-based systems such as Segment Anything
(Kirillov et al., 2023) also have their place in this vision. Model-
agnostic (e.g., LIME and SHAP) and model-specific feature
attribution methods in addition to example-based (e.g.,
counterfactual reasoning) explanation methods may each prove
useful, especially when provided with sufficient context to avoid
misleading the end user. For example, explanation uncertainty must
be explored and quantified to critically evaluate the trustworthiness
of model explanation methods (Cohen et al., 2023). The unifying
philosophy of UAXAI as a platform harmonizes these seemingly
disparate techniques to center uncertainty quantification and
communication in conjunction with explaining model behavior
in an accessible manner, while respecting computational and
industrial limitations.

In the context of advanced manufacturing, the development of
UAXAI as a foundational paradigm for DTs holds great promise. By

directly addressing and valuing the perspectives of end users,
developers, regulatory bodies, the scientific community, and
industrial players, the proposed framework promotes
transparency and human experience as important vehicles to
enhance trust. An example of an early adopter of this framework
could include manufacturing for aerospace applications, where
high–stakes and safety–critical engineering needs are ubiquitous.
We refer to Li et al. (2022) for a review of DTs for the aerospace
sector. Future work must work on seamlessly integrating UQ, XAI,
and HCI components to fully realize UAXAI as a framework for
DTs. Ultimately, obtaining and maintaining human trust is deeply
psychological, and can never be guaranteed. To this end, industry
practitioners should invest on improving the synergy between
human operators and data-driven DTs, promoting human-
centered augmented intelligence as opposed to positioning data-
driven models as adversarial expert systems that replace
human intuition.

The five pillars of accessibility, reliability, robustness,
computational efficiency, and explainability collectively
contribute to the trustworthy adoption of advanced
computation in DTs and smart manufacturing. With maturing
UAXAI techniques, end users and other stakeholders can make
better decisions on whether they should trust DT models given
calculated risks from real-time system operation. Trustworthy DTs
equipped with UAXAI will not only enhance operational
efficiency, but also serve as reliable decision support tools.
Going into the new Industry 5.0 era, it is crucial for
stakeholders to work collaboratively to integrate UAXAI into
DT ecosystems, thereby unlocking the full potential of advanced
manufacturing.
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