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The present article deals with the buckling response of functionally graded
multilayer graphene platelet-reinforced composite (FG-GPL RC) rectangular
plates with circular/elliptical cutouts resting on a Winkler-type elastic
foundation under uniaxial and biaxial normal and shear loads. Rule of mixtures
and the Halpin–Tsai approach are applied to obtain the effective Poisson’s ratio,
mass density, and elastic modulus of the reinforced composite. The governing
equations are developed by applying the third-order shear deformation plate
theory. Then, the finite element procedure is used to solve the problem. Four
different types of graphene platelet distributions, namely, UD, FG-X, FG-V, and
FG-O, are considered. A broad range of factors such as plate aspect ratio, plate
slenderness ratio, applying uniaxial and biaxial normal and shear loads to the plate,
several Winkler elastic foundation stiffness parameters, different displacement
boundary conditions, the effect of size of the circular cutout and orientation of the
elliptical cutout, and the influence of GPL weight fraction are discussed in several
tabular and graphical data in detail.
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1 Introduction

The increasing usage of composite materials, such as carbon nanotube (CNT) and
graphene-reinforced composite (GRC) structures, due to their countless applications and
superior material properties, has led to several studies and articles investigating the different
aspects and behaviors of these appreciable materials. GRC structures have several
advantages, such as lightweight, flexibility, transparency, energy absorbency, and
electrical and thermal conductivity, and their foreseeable wide application in different
industries has attracted significant attention in recent years. Adding a low content of
nanofiller reinforcements with a specific distribution pattern to the matrix can surprisingly
improve the structural behavior. Hence, several research studies have been carried out on the
structural analyses of shell- and plate-type structures reinforced with graphene platelets
(GPLs). Those studies mentioned here are related to the behavior of structures that are
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reinforced by GPLs. In detail, Song et al. (2018), by applying the
first-order shear deformation theory (FSDT), showed that the
weight fraction of nanofillers and GPL distribution pattern are
two main factors affecting the bending and buckling behaviors of
the FG-GPL RC plates. Shen et al. (2018) investigated FG-GRC-
laminated cylindrical panels and noticed that the piece-wise FG
pattern of graphene reinforcement may enhance the buckling forces
and the post-buckling strength. The governing equations for the
post-buckling responses of the panels were proposed based on
Reddy’s higher-order shear deformation shell theory and von
Kármán strain–displacement relationships. Shen et al. (2017)
employed the higher-order shear deformation plate theory
(HSDT) to present the thermal post-buckling of FG-GPL-
laminated plates supporting on an elastic medium. They
presented that the critical buckling temperature of the plates may
be enhanced by the FG graphene reinforcement distribution pattern
of the structure. Song et al. (2017) examined the buckling and post-
buckling responses of the uniaxially and biaxially compressed FG-
GPL RC plates and revealed that by adding only 1.0 wt% GPLs, the
FG-X structure achieved the highest critical buckling force up to
5.55 times that of the neat epoxy plate. In their study, theoretical
formulations were proposed based on the FSDT and von Kármán-
type nonlinear kinematics and included the effect of an initial
geometric imperfection. A two-step perturbation technique was
employed to determine the asymptotic post-buckling solutions,
and the biaxial compressive post-buckling equilibrium paths of
both perfect and imperfect plates simply supported on all edges.
Babaei and Asemi (2020) applied the Hamilton principle, FSDT, and
finite element method (FEM) to study the influence of the volume
fraction of CNTs on the displacements of annular sector plate and
observed that enhancing the volume fraction of CNTs from 0.11 to
0.17 causes a reduction of more than 36% in the transverse
displacements. Asemi et al. (2020) used the Hamilton principle
based on FSDT and FEM to derive the governing equations of
motion of FG porous annular sector plates reinforced by GPLs for
three various types of porosity patterns. They revealed that in the
case of the GPLA pattern, the transverse displacement is decreased
by 91% by adding only 1 wt% of GPLs to the metal matrix. Abedini
Baghbadorani and Kiani (2021) applied FSDT of shells and Donnell
kinematic relationships and Hamilton principle to derive the
governing equations for the free vibrations and the boundary
conditions of GPL-RC cylindrical shells. They showed that when
the inner and outer layers of the GPL-RC cylindrical shells have the
maximum content of reinforcements, maximum frequencies are
obtained. Thai et al. (2019) proposed the NURBS procedure based
on the four-variable refined plate theory to analyze FG-GPL RC
plates and proved that the structures with FG-O and FG-X patterns
lead to the minimum and maximum amounts of natural frequencies
and buckling loads, respectively. Jafari and Kiani (202) presented the
free vibration behavior of thick, multilayer composite plates with
different distribution patterns of GPLs and obtained the same results
as Thai et al. (2019). They applied a quasi-3D plate model which
captures the thickness stretching effects and non-uniform shear
strains through the thickness. With the aid of the Navier solution,
suitable for plates with all edges simply supported, Fourier
expansions were implemented for the essential variables of the
displacement field. Closed-form expressions were provided to
obtain the natural frequencies of FG-GPL RC plates. Yang et al.

(2017a) investigated the buckling and post-buckling behaviors of
functionally graded multilayer nanocomposite beams reinforced
with a low content of GPLs resting on an elastic foundation. The
nonlinear governing equations of the beam on an elastic foundation
were derived within the framework of the first-order shear
deformation beam theory and then converted into a nonlinear
algebraic system by using the differential quadrature method.
They showed that GPLs with a bigger surface area and
comprising fewer single-GPL laminates may provide better
reinforcing influence; however, for GPL aspect ratios and width-
to-thickness ratios more than 4 and 1000, critical buckling force and
post-buckling path will be almost identical. Furthermore, many
studies have been implemented to show that functionally graded
nanofiller distribution patterns also play a key role in the structural
response of composite structures (Pradhan and Phadikar, 2010; Lei
et al., 2015; Zhang et al., 2015; Bui et al., 2016; Lin et al., 2017; Ansari
et al., 2018; García-Macías et al., 2018; Lin et al., 2018; Muni Rami
Reddy et al., 2018; Shahrjerdi and Yavari, 2018; Yang et al., 2018;
Nguyen et al., 2019; Thai et al., 2019; Hung et al., 2021; Saiah et al.,
2022).

Many studies have investigated the effect of an elastic
foundation on the structural behavior of composite structures to
show that the existence of an elastic foundation can exhibit better
performance of the structure. For example, Asemi et al. (2014)
achieved highly accurate results by employing a three-dimensional
elasticity-graded element to study the buckling response of FG
annular sector plates. Their results revealed that the size and
location of buckling deformations are mainly influenced by how
the plate is partially rested on the elastic foundation. Shariyat and
Asemi (2014b) observed that applying an elastic medium as the
foundation leads to higher buckling forces and causes narrower,
local, and shorter buckling deformations. Mohammadi et al. (2014)
investigated the buckling response of a GPL sheet resting on an
elastic foundation subjected to thermal conditions and shear loads
using the differential quadrature method (DQM). Fattahi et al.
(2019) studied the buckling behavior of GPL sheets resting on an
elastic Pasternak and Winkler medium and revealed that critical
axial buckling forces of the rested GPL sheet for the Pasternak
foundation were greater than those obtained for the Winkler
foundation.

Structural members, including plates, beams, and shells, are
often subjected to different load conditions that may cause the
buckling phenomenon. Several research studies have been
conducted to investigate the buckling problem of composite
structures under different loading conditions, including uniaxial
and biaxial normal and shear loads. For example, Asemi et al. (2013)
presented the buckling of heterogeneous FGM plates subjected to
different normal and shear forces by applying a 3D elasticity
approach. Asemi et al. (2015) applied a 3D elasticity-based
graded FEM to study the shear buckling analysis of FGM
annular sector plates. Fan et al. (2020) applied the
Gurtin–Murdoch surface theory of elasticity to analyze the
buckling behavior of FGM skew nanoplates subjected to shear loads.

Composite plates find application as a structural member in
various fields, like automobiles, space vehicles, submarines, and
many others, where a high strength and stiffness-to-weight ratio are
desired. Sometimes, holes and cutouts of various shapes are
unavoidable in these types of plates for their proper functioning.
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These structural members are usually subjected to in-plane loading.
With geometrical discontinuities, these composite plates with holes
are more vulnerable due to an increase in stress near discontinuities
(holes), which results in the buckling phenomenon. Therefore, the
buckling analysis of these structures for better safety and evaluation
of the load-bearing capacity of these composite plates is essential.
Limited studies have been conducted on the structural analyses of

these composite structures to find the effect of cutout size and shape
on their behavior. For example, Lakshmi Narayana et al. (2018)
conducted a numerical study using FEM to show the effects of
different shapes of cutouts on the thermal buckling response of
graphite/epoxy-laminated plates. They found that for a plate with an
elliptical cutout, the values of the critical buckling temperatures are
enhanced by increasing the cutout orientation from a horizontal
case to a vertical case. Geng et al. (2020) analyzed the buckling of
FG-GPL RC plates with a circular hole subjected to normal loads
based on the FSDT and FE approaches for three different GPL
distribution patterns. Ashrafi et al. (2013) showed that stresses
around the circular cutout of FGM plates under biaxial tensions
may be considerably decreased by the FG distribution of the material
properties. Asemi et al. (2016a) applied FEM to provide mechanical
stress distribution of FGM plates around the circular cutout and
natural frequencies of the plate. Alashkar et al. (2022) utilized

FIGURE 1
Geometrical schematic of the FG-GPL RC plate with circular/elliptical cutouts under uniaxial and biaxial normal and shear loads resting on the
Winkler elastic foundation.

FIGURE 2
Various GPL patterns in an FG-GPL RC plate.

TABLE 1 Mechanical properties of the epoxy matrix and GPLs.

Property name Epoxy matrix GPL

Modulus of elasticity (Gpa) 3 1,010

Poisson’s ratio 0.34 0.186

Density (kg/m3) 1,200 1,062.5

Frontiers in Mechanical Engineering frontiersin.org03

Kalhori et al. 10.3389/fmech.2023.1293713

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1293713


computational modeling to study the effect of circular cutouts’
diameter and arrangements on the buckling response of FGM
plates. The obtained results denoted that horizontal arrangements
exhibit the highest critical buckling loads and best buckling
performance.

Reviewing relevant articles showed that several research studies
have been conducted on the behaviors of the composite structures
reinforced by CNTs and GPLs. However, fewer studies have been
conducted to study the effects of circular/elliptical cutouts on the
buckling response of composite structures, especially FG-GRC
plates. Due to the various industrial applications of graphene
platelet-reinforced composite plates in mechanical and aerospace
engineering, the need to fill the void of how circular and elliptical
cutouts influence the buckling response of GPL RC plates is sensed.
Particularly, the effect of shear loads and elliptical-shaped cutouts on
the buckling response of plates is less investigated. Furthermore,
plates on an elastic foundation are common structural elements
employed in many civil engineering applications, such as
foundations, storage tanks, swimming pools, floor systems of
buildings and highways, and airfield pavements. Therefore, the

influence of biaxial normal and shear loads and elastic
foundation on the buckling response of FG-GPL RC plates with
circular/elliptical cutouts is studied for the first time in the present
work. In addition, most of the previous studies are based on FSDT
and CLPT, which are suitable for moderately thick and thin plates,
respectively. FSDT overestimates the buckling loads for thick plates
rather than the third-order shear deformation plate theory (TSDT).
Hence, in the present study, the governing equations are derived
applying the TSDT to investigate the influence of a broad range of
factors such as plate aspect ratio, plate width/thickness ratio, size
and shape of the cutout, uniaxial and biaxial normal and shear loads,
several Winkler elastic foundation stiffness parameters, different
boundary conditions, and GPL nanofiller weight fraction on the
buckling loads of FG-GPL RC plates. The influence of four major
graphene platelet (GPL) distribution patterns, namely, UD, FG-X,
FG-V, and FG-O, on the buckling response of plates is investigated.
Rule of mixtures and the Halpin–Tsai approach are applied to obtain

TABLE 2 Comparison of the critical buckling load ratio (NC
cr /N

M
cr ) for a simply supported FG-GPL RC plate under uniaxial compression.

Distribution pattern Song et al. (2017) Present Difference %

UD 4.3236 4.2847 0.9077

FG-X 5.5544 5.5439 0.1893

FG-O 3.0476 2.9540 3.1686

TABLE 3 Effect of the b/h ratio on the buckling load (MN/m) of the FG-GPL RC
plate with a circular cutout (a/b � 1; r/b � 0.2, CCCC, uniaxial load, and
1.0 wt%).

b/h UD FG-X FG-O FG-V

10 Mode 1 426.790 555.260 269.750 348.840

Mode 2 604.830 710.790 401.040 503.030

Mode 3 747.950 805.940 522.560 633.980

Mode 4 923.590 999.980 627.820 775.960

15 Mode 1 29.944 33.861 20.671 26.038

Mode 2 31.556 34.682 22.236 27.738

Mode 3 32.177 35.561 22.589 28.151

Mode 4 39.842 40.566 29.257 35.412

20 Mode 1 13.433 16.394 8.926 11.414

Mode 2 14.379 17.120 9.700 12.327

Mode 3 14.650 17.541 9.853 12.522

Mode 4 18.809 21.312 12.993 16.352

30 Mode 1 4.156 5.384 2.686 3.458

Mode 2 4.516 5.755 2.945 3.779

Mode 3 4.589 5.874 2.986 3.835

Mode 4 6.041 7.517 3.980 5.094

TABLE 4 Effect of the GPL weight fraction and GPL pattern on the buckling load
(MN/m) of the FG-GPL RC plate with a circular cutout (a/b � 1; b/h � 20;
r/b � 0.2, CCCC, and uniaxial load).

Weight fraction
(wt%)

UD FG-
X

FG-
O

FG-V

0.0 Mode
1

3.390 3.390 3.390 3.390

Mode
2

3.629 3.629 3.629 3.629

Mode
3

3.698 3.698 3.698 3.698

Mode
4

4.747 4.747 4.747 4.747

0.5 Mode
1

8.408 10.081 6.192 7.635

Mode
2

9.000 10.603 6.709 8.221

Mode
3

9.170 10.847 6.818 8.358

Mode
4

11.773 13.415 8.950 10.856

1.0 Mode
1

13.433 16.394 8.926 11.414

Mode
2

14.379 17.120 9.700 12.327

Mode
3

14.650 17.541 9.853 12.522

Mode
4

18.809 21.312 12.993 16.352
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the effective Poisson’s ratio, mass density, and elastic modulus of the
reinforced composite. The finite element procedure is employed to
solve the problem.

2 Problem modeling

2.1 Geometry and material properties of an
FG-GPL RC plate

We combine the advantages of both FGM and GPL using a
functionally graded graphene platelet-reinforced composite (FG-
GPL RC) structure. GPLs and isotropic epoxy are considered the
reinforcement and the matrix of the composite media, respectively.
An FG-GPL RC plate with length a, width b, total thickness h, and
a circular cutout with radius r, as shown in Figure 1, is assumed in
this paper. The plate is resting on a Winkler elastic foundation,

where kw indicates the stiffness of the Winkler elastic foundation.
The plate is constructed of NL layers with identical thickness t.
GPLs in each individual layer are uniformly distributed, but their
volume fraction changes from layer to layer, which leads to a
functionally graded pattern. Therefore, each individual layer of the
GPL RC plate is isotropic and homogeneous. Figure 2 shows the

TABLE 5 Effect of different boundary conditions and GPL patterns on the
buckling load (MN/m) of the FG-GPL RC plate with a circular cutout (a/b � 1;
b/h � 20; r/b � 0.2, uniaxial load, and 1.0 wt%).

BC UD FG-X FG-O FG-V

SSSS Mode 1 12.807 15.630 8.452 10.666

Mode 2 13.740 16.346 9.215 11.564

Mode 3 13.896 16.637 9.279 11.623

Mode 4 17.854 20.259 12.234 15.182

CCCC Mode 1 13.433 16.394 8.926 11.414

Mode 2 14.379 17.120 9.700 12.327

Mode 3 14.650 17.541 9.853 12.522

Mode 4 18.809 21.312 12.993 16.352

TABLE 6 Effect of the plate aspect ratio and GPL pattern on the buckling load
(MN/m) of the FG-GPL RC plate with a circular cutout (b/h � 20; r/b � 0.2, CCCC,
uniaxial load, and 1.0wt.%).

a/b UD FG-X FG-O FG-V

1 Mode 1 13.433 16.394 8.926 11.414

Mode 2 14.379 17.120 9.700 12.327

Mode 3 14.650 17.541 9.853 12.522

Mode 4 18.809 21.312 12.993 16.352

2 Mode 1 26.083 32.723 17.075 21.900

Mode 2 26.417 32.997 17.337 22.223

Mode 3 34.562 41.668 23.020 29.355

Mode 4 35.932 42.732 24.118 30.670

4 Mode 1 24.056 30.361 15.707 20.163

Mode 2 24.057 30.361 15.707 20.163

Mode 3 30.854 37.645 20.446 26.086

Mode 4 30.854 37.646 20.447 26.086

TABLE 7 Effect of the circular cutout radius and GPL pattern on the buckling
load (MN/m) of the FG-GPL RC plate with a circular cutout (a/b � 1; b/h � 20,
CCCC, uniaxial load, and 1.0 wt%).

Cutout size UD FG-X FG-O FG-V

×0.5 (r/b = 0.1) Mode 1 15.170 19.293 9.873 12.715

Mode 2 17.610 21.667 11.664 14.881

Mode 3 26.881 30.675 18.462 23.207

Mode 4 30.533 36.491 20.428 26.123

×1 (r/b = 0.2) Mode 1 13.433 16.394 8.926 11.414

Mode 2 14.379 17.120 9.700 12.327

Mode 3 14.650 17.541 9.853 12.522

Mode 4 18.809 21.312 12.993 16.352

×1.5 (r/b = 0.3) Mode 1 11.871 13.408 8.252 10.326

Mode 2 12.027 13.556 8.355 10.488

Mode 3 12.112 13.571 8.413 10.573

Mode 4 12.122 13.678 8.471 10.577

TABLE 8 Effect of the Winkler elastic foundation and GPL pattern on the
buckling load (MN/m) of the FG-GPL RC plate with a circular cutout (a/b � 1;
b/h � 20; r/b � 0.2, CCCC, uniaxial load, and 1.0 wt%).

Kw (N/m3) UD FG-X FG-O FG-V

0 Mode 1 13.433 16.394 8.926 11.414

Mode 2 14.379 17.120 9.700 12.327

Mode 3 14.650 17.541 9.853 12.522

Mode 4 18.809 21.312 12.993 16.352

1.00E+08 Mode 1 14.983 17.704 10.486 13.033

Mode 2 15.420 18.059 10.761 13.415

Mode 3 16.157 18.860 11.400 14.095

Mode 4 19.477 21.861 13.714 17.074

5.00E+08 Mode 1 18.446 20.832 13.663 16.504

Mode 2 18.622 20.980 13.819 16.679

Mode 3 20.249 22.427 15.160 18.215

Mode 4 21.706 23.701 15.985 19.426

1.00E+09 Mode 1 21.313 23.385 16.344 19.400

Mode 2 21.544 23.586 16.533 19.628

Mode 3 23.203 24.948 17.739 21.130

Mode 4 23.870 25.475 18.103 21.669
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five uniform or functionally graded distribution patterns of GPL
nanofillers. UD denotes the uniform distribution, and FG-X, FG-
O, FG-V, and FG-Λ show the functionally graded patterns of
GPLs. The UD distribution 1) denotes a homogeneous and
isotropic multilayer plate in which nanofillers are uniformly
dispersed across the thickness of the plate. The GPL volume
fraction is dispersed symmetrically and linearly in FG-X 2) and

FG-O 3) distributions, in which the GPL amount gradually
changes from the top or bottom surfaces to the middle layer.
The unsymmetrical patterns are FG-V 4) and FG-Λ 5)
distributions. An adequately large number of layers, (NL), leads
to a gentle and connected distribution pattern along the plate
thickness. The volume fraction VGPL of the kth layer for different
GPL patterns is given as follows (Jafari and Kiani, 2021):

TABLE 9 Influence of uniaxial and biaxial normal loads on the buckling load (MN/m) of the FG-GPL RC plate with a circular cutout resting on an elastic foundation
(b/h � 20; r/b � 0.2, CCCC, and 1.0 wt%).

a/b Load case Kw (N/m3) UD FG-X FG-O FG-V

1 Uniaxial 0 Mode 1 13.433 16.394 8.926 11.414

Mode 2 14.379 17.120 9.700 12.327

Mode 3 14.650 17.541 9.853 12.522

Mode 4 18.809 21.312 12.993 16.352

Biaxial 0 Mode 1 13.301 17.324 8.566 11.164

Mode 2 15.762 19.632 10.417 13.403

Mode 3 15.762 19.632 10.417 13.403

Mode 4 18.760 22.766 12.531 16.037

Uniaxial 5.00E+08 Mode 1 18.446 20.832 13.663 16.504

Mode 2 18.622 20.980 13.819 16.679

Mode 3 20.249 22.427 15.160 18.215

Mode 4 21.706 23.701 15.985 19.426

Biaxial 5.00E+08 Mode 1 25.996 29.847 19.786 23.486

Mode 2 26.829 30.724 20.072 24.124

Mode 3 28.139 31.840 21.065 25.474

Mode 4 28.139 31.840 21.065 25.474

2 Uniaxial 0 Mode 1 26.083 32.723 17.075 21.900

Mode 2 26.417 32.997 17.337 22.223

Mode 3 34.562 41.668 23.020 29.355

Mode 4 35.932 42.732 24.118 30.670

Biaxial 0 Mode 1 5.468 7.230 3.497 4.524

Mode 2 6.304 8.191 4.072 5.236

Mode 3 9.804 12.376 6.414 8.244

Mode 4 10.911 13.725 7.140 9.169

Uniaxial 5.00E+08 Mode 1 42.357 48.324 31.756 37.977

Mode 2 42.456 48.406 31.767 38.048

Mode 3 49.374 54.496 37.003 44.390

Mode 4 49.478 54.640 37.114 44.392

Biaxial 5.00E+08 Mode 1 17.724 20.249 13.487 16.052

Mode 2 17.792 20.315 13.666 16.103

Mode 3 17.900 20.547 13.749 16.205

Mode 4 18.038 20.549 13.804 16.283
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UD: V k( )
GPL � V*

GPL,

FG −X: V k( )
GPL � 2V*

GPL

2k −NL − 1| |
NL

,

FG − O: V k( )
GPL � 2V*

GPL 1 − 2k −NL − 1| |
NL

( ),
FG − V: V k( )

GPL � V*
GPL

2k − 1
NL

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where NL is total number of layers and assumed to be an even
number. V*

GPL is the average magnitude of the volume fraction of
GPLs and can be evaluated based on the weight fraction of GPLs
(WGPL), density of the matrix (ρm), and GPLs (ρGPL).

V*
GPL �

WGPL

WGPL + ρGPL
ρm

− 1 −WGPL( ). (2)

In the aforementioned equations, the subscripts (m) and (GPL)
stand for the matrix and GPLs, respectively. The effective elastic
modulus of the nanocomposite plate is obtained through the
Halpin–Tsai model, which is dependent on the geometry of the
nanoplatelets (Ma and Jin, 2022; Mollaei et al., 2023). Hence, the
elasticity modulus of the kth layer of the plate, which is denoted by
E(k), is regarded as

E k( ) � 3
8

1 + ξGPLL ηGPLL V k( )
GPL

1 − ηGPLL V k( )
GPL

( )Em + 5
8

1 + ξGPLW ηGPLW V k( )
GPL

1 − ηGPLW V k( )
GPL

( )Em. (3)

In Eq. 3, the elasticity modulus of the matrix is shown by Em. The
two parameters ηGPLL and ηGPLW in Eq. 3 depend on the elastic
properties of the constituents and the geometry of the platelets:

ηGPLL � EGPL − Em

EGPL + ξGPLL Em

, (4)

ηGPLW � EGPL − Em

EGPL + ξGPLW Em

. (5)

The other two parameters, ξGPLL and ξGPLW , in Eqs 4, 5 depend on
the geometrical dimensions of the nanofillers:

ξGPLL � aGPL
tGPL

, (6)

ξGPLW � bGPL
tGPL

, (7)

where aGPL, bGPL, and tGPL are assumed to be the length, width, and
thickness of GPLs, respectively.

The simple rule of mixture estimation is used to evaluate the
Poisson’s ratio and the mass density of the kth layer of the
nanocomposite plate (Cong and Duc, 2018; Esmaeili et al., 2022;
Farsadi et al., 2022):

v k( ) � vGPLV
k( )
GPL + vmV

k( )
m , (8)

ρ k( ) � ρGPLV
k( )
GPL + ρmV

k( )
m , (9)

where

V k( )
m � 1 − V k( )

GPL, (10)
where vGPL, ρGPL and vm, ρm are the Poisson’s ratio and mass density
of the GPL and matrix, respectively.

In addition, the rigidity modulus G(k) of the kth layer is as
follows:

G k( ) � E k( )

2 1 + v k( )( ). (11)

2.2 Governing equations of an FG-GL RC
plate

The governing equations of the plate resting on an elastic
foundation are derived applying the third-order shear deformation
plate theory. Hence, the displacement field (u, v,w) is assumed as

u x, y, z( ) � u0 x, y( ) + 5
4

z − 4
3h2

z3( )∅x x, y( )
+ 1

4
z − 5

3h2
z3( )w0,x, (12)

v x, y, z( ) � v0 x, y( ) + 5
4

z − 4
3h2

z3( )∅y x, y( ) + 1
4
z − 5

3h2
z3( )w0,y,

(13)
w x, y, z( ) � w0 x, y( ), (14)

where u0, v0, and w0 represent the displacements at z � 0 (the
midplane of a plate);∅x and∅y are the transverse normal rotations

TABLE 10 Buckling loads (MN/m) of the FG-GPL RC plate with circular/elliptical
cutouts under uniaxial load resting on an elastic foundation (a/b � 1; b/h � 20,
CCCC, and 1.0 wt%).

c/b d/b Kw UD FG-X FG-O FG-V

0.2 0.2 0 Mode 1 13.433 16.394 8.926 11.414

Mode 2 14.379 17.120 9.700 12.327

Mode 3 14.650 17.541 9.853 12.522

Mode 4 18.809 21.312 12.993 16.352

0.3 0.133 0 Mode 1 9.582 12.129 6.266 8.047

Mode 2 10.156 12.626 6.715 8.585

Mode 3 11.292 14.002 7.453 9.569

Mode 4 13.293 15.966 8.930 11.380

0.133 0.3 0 Mode 1 22.885 24.207 15.983 20.012

Mode 2 23.261 24.402 16.368 20.372

Mode 3 23.270 24.646 16.818 20.453

Mode 4 26.699 27.676 19.704 23.540

0.2 0.2 5.00E+08 Mode 1 18.446 20.832 13.663 16.504

Mode 2 18.622 20.980 13.819 16.679

Mode 3 20.249 22.427 15.160 18.215

Mode 4 21.706 23.701 15.985 19.426

0.3 0.133 5.00E+08 Mode 1 16.531 18.973 12.355 14.849

Mode 2 16.551 18.976 12.459 14.879

Mode 3 16.894 19.282 12.730 15.219

Mode 4 17.207 19.648 12.764 15.407
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of the y and x axes. The finite element procedure is used to estimate
the eigenvalue buckling forces of the FG-GPL RC plate. A four-node
element with seven DOFs per node is employed for modeling the
plate. The displacement field of an individual node i is as follows:

Qi
e � u0iv0iwi∅xi∅yi

∂w0i

∂x
∂w0i

∂y
{ }T

, i � 1, . . . , 4. (15)

Among the displacement components, w is estimated by the
Hermitian shape functions and the other components by the
Lagrangian functions. Hence, the displacement components may be
presented as follows:

u0, v0,∅x,∅y{ } � ∑4
i�1
ψiuoi,∑4

i�1
ψivoi,∑4

i�1
ψi∅xi,∑4

i�1
ψi∅yi

⎧⎨⎩ ⎫⎬⎭, (16)

TABLE 11 Shear buckling loads (MN/m) of the FG-GPL RC plate with circular/elliptical cutouts resting on an elastic foundation (b/h � 20, CCCC, and 1.0 wt%).

a/b c/b d/b Kw UD FG-X FG-O FG-V

1 0.2 0.2 0 Mode 1 32.959 39.384 22.042 28.184

Mode 2 34.870 40.818 23.572 29.972

Mode 3 50.748 54.719 35.527 44.495

Mode 4 53.578 55.548 38.094 47.328

5.00E+08 Mode 1 46.028 48.628 34.709 41.620

Mode 2 46.100 48.656 34.755 41.679

Mode 3 57.427 58.683 42.939 51.813

Mode 4 58.180 58.755 43.472 52.496

0.3 0.133 0 Mode 1 32.833 38.978 22.056 28.144

Mode 2 33.777 39.595 22.858 29.055

Mode 3 49.547 53.796 34.936 43.676

Mode 4 50.335 54.099 35.973 44.682

5.00E+08 Mode 1 45.735 48.080 34.480 41.375

Mode 2 45.761 48.088 34.519 41.410

Mode 3 54.999 60.474 41.055 49.639

Mode 4 55.216 60.527 41.233 49.859

2 0.2 0.2 0 Mode 1 18.035 22.545 11.837 15.168

Mode 2 19.434 24.030 12.828 16.382

Mode 3 20.871 25.600 13.840 17.635

Mode 4 24.820 30.118 16.455 20.959

5.00E+08 Mode 1 29.613 33.697 22.382 26.634

Mode 2 29.914 34.026 22.499 26.853

Mode 3 31.346 35.463 23.484 28.026

Mode 4 32.069 36.132 23.830 28.579

0.3 0.133 0 Mode 1 16.976 21.185 11.166 14.275

Mode 2 18.002 22.235 11.905 15.180

Mode 3 19.536 24.162 12.898 16.470

Mode 4 23.134 28.387 15.292 19.504

5.00E+08 Mode 1 28.504 32.388 21.687 25.661

Mode 2 28.659 32.576 21.752 25.773

Mode 3 30.581 34.632 22.695 27.309

Mode 4 31.174 35.226 22.932 27.725
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w � Ξ1w01 + Ξ2
∂w01

∂x
+ Ξ3

∂w01

∂y
+ . . . + Ξ10w04 + Ξ11

∂w04

∂x
+ Ξ12

∂w04

∂y
,

(17)
∂w
∂x

� ∂
∂x

Ξ1w01 + Ξ2
∂w01

∂x
+ Ξ3

∂w01

∂y
+ . . . + Ξ10w04 + Ξ11

∂w04

∂x
+ Ξ12

∂w04

∂y
( ),

(18)
∂w
∂y

� ∂
∂y

Ξ1w01 + Ξ2
∂w01

∂x
+ Ξ3

∂w01

∂y
+ . . . + Ξ10w04 + Ξ11

∂w04

∂x
+ Ξ12

∂w04

∂y
( ),

(19)

where ψi is the Lagrangian shape function and Ξi is the Hermitian
function. The components of ψi and Ξi are presented in
Appendix A.

The displacement field of an element is approximated by using
its nodal values:

U0 � ΔΗQe, (20)
where ΔΗ is the shape function matrix; U0 and Qe are expressed as
follows:

U0 � u0, v0, w0,∅x,∅y, w0,x, w0,y{ }T, (21)
Qe � Q1

eQ
2
eQ

3
eQ

4
e{ }T. (22)

The strains of the plate when it is subjected to in-plane pre-
buckling loads may be expressed as

ε
γ

{ } � ε 0( )

γ 0( ){ } + z
ε 1( )

0
{ } + z2

0
γ 2( ){ } + z3

ε 3( )

0
{ } + εGP{ }, (23)

with

ε 0( ) �

∂u0

∂x

∂v0
∂y

∂u0

∂y
+ ∂v0
∂x

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, ε 1( ) � 1

4

5
∂∅x

∂x
+ ∂2w
∂x2( )

5
∂∅y

∂y
+ ∂2w
∂y2( )

∂∅x

∂y
+ 2

∂2w
∂x∂y

+ ∂∅y

∂x
( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

ε 3( ) � −5
3h2

∂∅x

∂x
+ ∂2w
∂x2

∂∅y

∂y
+ ∂2w
∂y2

∂∅x

∂y
+ 2

∂2w
∂x∂y

+ ∂∅y

∂x

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

(24)

FIGURE 3
First four buckling mode shapes of the FG-GPL RC plate with a circular cutout under different loads with/without an elastic foundation (a/b � 1;
b/h � 20; r/b � 0.2, CCCC, and 1.0 wt%).
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γ 0( ) � 1
4

5∅x + ∂w
∂x

5∅y + ∂w
∂y

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, γ 2( ) � −5

h2

∅x + ∂w
∂x

∅y + ∂w
∂y

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
;

εGP �

1
2

∂w
∂x

( )2

+ z2

2
∂∅x

∂x
( )2

+ z2

2

∂∅y

∂x
( )2

1
2

∂w
∂y

( )2

+ z2

2
∂∅x

∂y
( )2

+ z2

2

∂∅y

∂y
( )2

∂w
∂x

∂w
∂y

+ z2
∂∅x

∂x
∂∅x

∂y
+ z2

∂∅y

∂x
∂∅y

∂y

0

0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(25)

By substituting Eq. 15 into Eqs 24, 25, the strain components
may be presented as

ε � Δ1 + Δ2 + Δ3( )Qe, γ � Δ4 + Δ5( )Qe, (26)
with

Δ1 � ∑4
i

ψi,x 0 0 0 0
0 ψi,y 0 0 0
ψi,y ψi,x 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (27)

Δ2 � 1
4
∑4
i�1

0 0 Ξ 3i−2( ),x( ),x 5ψi,x 0 Ξ 3i−1( ),x( ),x Ξ 3i( ),x( ),x
0 0 Ξ 3i−2( ),y( )

,y
0 5ψi,y Ξ 3i−1( ),y( )

,y
Ξ 3i( ),y( )

,y

0 0 2 Ξ 3i−2( ),x( ),y 5ψi,y 5ψi,x 2 Ξ 3i−1( ),x( ),y 2 Ξ 3i( ),x( ),y
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(28)

Δ4 � 5
4
∑4
i�1

0 0 Ξ 3i−2( ),x ψi 0 Ξ 3i−1( ),x Ξ3i,x

0 0 Ξ 3i−2( ),y 0 ψi Ξ 3i−1( ),y Ξ3i,y
[ ], (29)

Δ5 � − 5
h2
∑4
i�1

0 0 Ξ 3i−2( ),x ψi 0 Ξ 3i−1( ),x Ξ3i,x

0 0 Ξ 3i−2( ),y 0 ψi Ξ 3i−1( ),y Ξ3i,y
[ ]. (30)

The stress–strain relationships based on Hooke’s law are as
follows:

σ � Dm ε 0( ) + zε 1( ) + z3ε 3( )( ), τ � Ds γ 0( ) + z2γ 2( )( ), (31)
with

σ � σx, σy, τxy{ }T, τ � τxz, τyz{ }T, (32)

Dm � E

1 − v2

1 v 0

v 1 0

0 0
1 − v( )
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,Ds � E

2 1 + v( )
1 0
0 1

[ ]. (33)

The elastic strain energy of the plate and Winkler elastic
foundation is written as follows:

U � 1
2
∑NE ∫

Ve

εTσ dV + 1
2
kw∑NE ∫

Se

w2dS (34)

or in the matrix form

U � 1
2
∑NE

QT
eK

p
eQe + 1

2
∑NE

QT
e K

w
e Qe, (35)

where the stiffness matrices corresponding to the strain energy of
deformation of element Kp

e and elastic foundation Kw
e are given as

Kp
e � ∫

Se

ΔT
1AΔ1 + ΔT

1BΔ2 + ΔT
1 EΔ3 + ΔT

2BΔ1 + ΔT
2DΔ2 + ΔT

2 FΔ3 + ΔT
3EΔ1+

ΔT
3 FΔ2 + ΔT

3 FΔ2 + ΔT
3HΔ3 + ΔT

4A′Δ4 + ΔT
4B′Δ5 + ΔT

5B′Δ4 + ΔT
5D′Δ5

[ ]dS,
(36)

Kw
e � ∫

Se

ΔT
6 kwΔ6dS, (37)

Δ6 �

0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0
0 0 Ξ1 0 0 Ξ2 Ξ3 ... 0 0 Ξ10 0 0 Ξ11 Ξ12

0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0
0 0 Ξ1,x 0 0 Ξ2,x Ξ3,x ... 0 0 Ξ10,x 0 0 Ξ11,x Ξ12,x

0 0 Ξ1,y 0 0 Ξ2,y Ξ3,y ... 0 0 Ξ10,y 0 0 Ξ11,y Ξ12,y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
7*24

,

(38)
where

A,B,D,E, F,H( ) � ∫
h/2

−h/2
1, z, z2, z3, z4, z6( )Dmdz, (39)

A′,B′,D′( ) � ∫
h/2

−h/2
1, z2, z4( )Dsdz. (40)

The geometric strain energy due to in-plane pre-buckling loads
is obtained as

UG � 1
2
∑NE ∫

Ve

σ̂T0 ε
G
PdV. (41)

By substituting the geometric strain into Eq. 41, we obtain

UG � 1
2
∑NE ∫

Se

�εGP )Tσ0�εGPdS,( (42)

where

�εGP �

w0,x

w0,y

∅x,x

∅x,y

∅y,x

∅y,y

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
�

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0
∂
∂x

0 0 0

0 0 0
∂
∂y

0 0 0

0 0 0 0
∂
∂x

0 0

0 0 0 0
∂
∂y

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u
v
w
∅x

∅y

w0,x

w0,y

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
� ΔG

PQe,

(43)
σ0 � diag h~σ,

h3

12
~σ,
h3

12
~σ( ), ~σ � σ0xτ

0
xy; τ

0
xyσ

0
y[ ]T. (44)

Then, Eq. 42 becomes

UG � 1
2
∑NE

QT
eK

Gp
e Qe, (45)

with

KGp
e � ∫

Se

ΔG
P( )Tσ0ΔG

PdS. (46)
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For the buckling problem, after assembly of element matrices,
we derive the following equation:

KP +Kw − λb KGP( ){ }Q � 0, (47)
where KP, Kw, and KGP are the global stiffness matrix, stiffness
matrix of the elastic foundation, and global geometric stiffness
matrix, respectively. Eq. 47 should be solved to obtain the
buckling mode shapes and buckling forces λb.

3 Parametric and comparison studies

A FG-GPL RC plate, as shown in Figure 1, with width b � 1m is
considered. As studied in Song et al. (2017), Thai et al. (2019), and
Jafari and Kiani (2021), results and values for free vibration and
buckling analysis of a functionally graded multilayer GPL RC plate
with a total number of layersNL ≥10 provide accurate and acceptable
results. In the present study, to achieve more accurate results, the total
number of layers is considered to be NL = 20. Other required data,
geometric ratios, and boundary conditions are given in each table. GPL
nanofillers considered in this paper have a length of aGPL = 2.5 μm,
width of bGPL = 1.5 μm, and thickness of tGPL = 1.5 nm. The other
required material properties such as elastic modulus and Poisson’s
ratio of epoxy matrix and GPL reinforcement are provided in Table 1.

Three boundary conditions for different loadings are considered:

Clamped for normal loads:
At x � 0, a: v � w � ∅x � ∅y � w0,x � w0,y � 0,
At y � 0, b: u � w � ∅x � ∅y � w0,x � w0,y � 0,{

(48)

Simply − supported for normal loads:
At x � 0, a: v � w � ∅y � w0,y � 0,
At y � 0, b: u � w � ∅x � w0,y � 0,{

(49)
Clamped for shear loads:

At x � 0, a: u � w � ∅x � ∅y � w0,x � w0,y � 0,
At y � 0, b: v � w � ∅x � ∅y � w0,x � w0,y � 0.

{
(50)

3.1 Verification of results

In order to validate the accuracy of the results of the present
study, the critical buckling load ratios (NC

cr/N
M
cr ) are recalculated

and compared as shown in Table 2 with those from Song et al.
(2017). A comparative study is carried out for the critical buckling
load ratios of a simply supported FG-GPL RC plate without
cutouts and with the same material properties listed in Table 1.
Here,NC

cr andN
M
cr are critical buckling loads of the plates with and

without GPLs, respectively. Geometric dimensions of the plate are
a � 0.45m, a/b � 1, and a/h � 10. The number of layers, N � 10,
and 1.0 wt% GPLs are used for comparing results. It can be seen
that the present results are in good agreement with those obtained
by Song et al. (2017).

FIGURE 4
First four buckling mode shapes of the FG-GPL RC plate with a circular cutout under different loads with/without an elastic foundation (a/b � 2;
b/h � 20; r/b � 0.2, CCCC, and 1.0 wt%).
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3.2 Numerical results and discussion for
buckling loads of an FG-GPL RC plate with
circular/elliptical cutouts

In this section, several numerical examples are demonstrated to
study the effects of different factors on the buckling behavior of an
FG-GPL RC plate with a cutout.

The effect of different thickness ratios (b/h) and GPL patterns on
the buckling response of a multilayered FG-GPL RC plate with a
circular cutout under uniaxial compression is shown in Table 3. The
cutout radius is assumed to be r/b � 0.2 and the plate aspect ratio is
a/b � 1, while the plate is fully clamped at all edges. The first four
buckling loads are reported in Table 3. This table reveals that with
the same volume fraction and same width-to-thickness ratio, the
FG-X distribution pattern results in the highest buckling values,
while the FG-O distribution pattern results in the lowest values.
Hence, UD and FG-V distribution patterns result in intermediate
values. In addition, results show that when the plate slenderness
ratio increases, the buckling loads decrease, as expected. The
influence of GPL weight fraction and distribution pattern of
nanofillers on the buckling loads of the FG-GPL RC plate with a
circular cutout is provided in Table 4. The buckling loads of the pure

epoxy plate are tabulated for comparison purposes. As can be seen in
the table, by dispersing only a low amount of GPL nanofillers, the
buckling loads can remarkably improve. By dispersion of only 0.5 wt
% and 1.0 wt% GPLs for the FG-X plate, the buckling load enhanced
2.97 and 4.84 times, respectively. The effects of two different
boundary conditions and GPL patterns on the buckling loads of
the plate under uniaxial compression are compared in Table 5. This
table shows the first four buckling loads of the plate for a/b � 1,
b/h � 20, and circular cutout radius r/b � 0.2. As can be seen in this
table, buckling forces are higher for the boundary conditions that
restrict more degrees of freedom (DOFs). Values tabulated in
Table 6 are provided to indicate the effect of the a/b ratio and
GPL pattern on the buckling load results of the FG-GPL RC clamped
plate with a circular cutout under uniaxial load. Results denote that
by increasing the plate aspect ratio from 1 to 2, the buckling loads
enhanced up to 99.6% for the FG-X plate, but by changing the aspect
ratio from 2 to 4, the buckling loads decreased by 7.8%. This can be
justified by investigating the pre-buckling stresses of the plates with
different aspect ratios. In this case, for plates with a/b = 4, the
magnitude of the compressive stresses around the hole is more than
the plates with a/b = 2. Results of Tables 3–6 denote that the stiffness
of the outer layers generally has the most remarkable effect on the

FIGURE 5
First four buckling mode shapes of the FG-GPL RC plate with an elliptical cutout under different loads with/without an elastic foundation (a/b � 1;
b/h � 20; c/b � 0.3; d/b � 0.133, CCCC, and 1.0 wt%).
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stiffness of the composite structure. Therefore, as shown previously,
the structure with the FG-X gradient pattern shows the highest
stiffness and buckling capabilities, and UD, FG-V, and FG-O
patterns in the sequence have lower values.

Table 7 presents the buckling loads for three different radiuses of
the circular cutout of the FG-GPL RC plate under uniaxial load. As
expected, with the reduction in the cutout radius, the buckling loads
are increased. For example, by increasing the cutout radius-to-width
ratio (r/b) from 0.1 to 0.3, the buckling loads are decreased by 22.3%.
This is due to the fact that for larger cutouts, the pre-buckling
compressive stresses are more than smaller cutouts. Table 8 lists the
first four buckling loads for the FG-GPL RC plate under uniaxial
load with a circular cutout resting on the Winkler-type elastic
foundation. Values are provided for several elastic foundation
stiffness parameters and a plate with CCCC supports. The
comparison of the values in Table 8 with those without an elastic
foundation (Table 3) denotes that applying an elastic foundation
postpones the buckling phenomenon. For example, the buckling
loads are increased by 42.6% for the FG-GPL RC plate when the
elastic foundation stiffness is increased from 0 to 1 (GN/m3).

Buckling loads of the FG-GPL RC plate under uniaxial and
biaxial normal loads are compared with those resting on an elastic
foundation in Table 9 for two different plate aspect ratios and four
GPL patterns. As can be seen in the table, for the plate aspect ratio of
1, the buckling loads of uniaxial and biaxial compressions are almost
identical for the plate without an elastic foundation. For the higher
plate aspect ratios (a/b � 2), the buckling load of the plate under
biaxial load is considerably lower compared to those under uniaxial
load. For all aspect ratios, by adding an elastic foundation to the
plate, the buckling loads are increased for both uniaxial and biaxial
compressions. Values provided in Table 10 are tabulated with the
intent of comparing the critical buckling loads of the FG-GPL RC
plate under uniaxial load with different shapes of cutout with/
without an elastic foundation. The effect of the elliptical cutout
orientation of the plate under uniaxial load is also investigated. The
elliptical cutout is considered to have the same area as the circular
cutout with r/b � 0.2. Here, c and d are the semi-major and semi-
minor radius of the elliptical cutout, and their radius-to-width ratios
are assumed to be 0.3 and 0.133, respectively. As seen in Table 10, if
the major radius of the elliptical cutout is parallel to the direction of
the applied load, the critical buckling load of the UD pattern is
approximately 2.39 times lower compared to those when the semi-
major radius of the elliptical cutout is perpendicular to the applied
load. Furthermore, in this case, the buckling loads are lower than the
case of the plate with the circular cutout. Results show that the
influence of the elastic foundation on the plate with an elliptical
cutout is more remarkable compared to the plate with a circular
cutout. For example, when the plate with an elliptical cutout is
embedded in an elastic foundation, the critical buckling load of the
plate with the UD pattern is approximately 1.73 times greater
compared with the plate without an elastic foundation, while for
the plate with a circular cutout, it is approximately 1.37 times higher.
Buckling loads of the FG-GPL RC plate under shear loads are
compared with those resting on the elastic foundation, as shown
in Table 11, for two different plate aspect ratios, different shapes of
cutouts, and four GPL patterns. By increasing the aspect ratio from
1 to 2, the critical shear buckling load of the plate without an elastic
foundation and for the UD pattern reduces by 1.83 times, while that

of the plate resting on an elastic foundation reduces by 1.55 times. As
can be seen from this table, the shear buckling loads of plates with
circular and elliptical cutouts are almost identical. Figure 3, Figure 4,
and Figure 5 show the first four buckling mode shapes of the full-
clamped FG-GPL RC plate discussed in previous numerical tables.
Mode shape results indicate that the elastic foundation with higher
stiffness generates more slender and local buckling waves.

4 Conclusion

A set of numerical studies has been conducted to describe the
buckling behavior of a functionally graded multilayer GPL-
reinforced composite plate with circular/elliptical cutouts resting
on a Winkler-type elastic foundation under uniaxial and biaxial
normal and shear loads. Formulations are proposed based on the
third-order shear deformation plate theory and finite element
procedure. A broad range of factors such as plate aspect ratio,
plate width/thickness ratio, size of the circular cutout, applying
uniaxial and biaxial normal and shear loads, several Winkler elastic
foundation stiffness parameters, different displacement boundary
conditions, circular and elliptical cutouts, orientation of the elliptical
cutout, and influence of the GPL weight fraction have been
investigated for four GPL distribution patterns to analyze the
buckling behavior of the FG-GPL RC plates. The main
conclusions of the present study are summarized as follows:

➢ In general, the stiffness of the outer layers has the most
remarkable effect on the stiffness of the composite structure.
Therefore, as described previously, the structure with the FG-
X gradient pattern presented the highest stiffness and
buckling capabilities, and UD, FG-V, and FG-O patterns
in the sequence have lower values.

➢ By dispersing a low content of GPL nanofillers to the matrix,
the buckling loads can remarkably improve. For example, by
dispersion of only 0.5 wt% and 1.0 wt% GPLs in the epoxy
matrix, the FG-X plate buckling load enhanced 2.97 and
4.84 times, respectively.

➢ By increasing the cutout radius-to-width ratio (r/b ) from 0.1
to 0.3, the buckling loads decreased by 22.3%.

➢ Buckling loads increased by 42.6% for the FG-GPL RC plate
when the elastic foundation stiffness increased from 0 to
1 (GN/m3).

➢ If the major axis of the elliptical cutout is parallel to the
direction of the applied load, the critical buckling load for the
plate with the UD pattern is approximately 2.39 times lower
than that when the semi-major radius of the elliptical cutout is
perpendicular to the applied load.

➢ The influence of the elastic foundation on the plate with an
elliptical cutout is more remarkable compared to the plate
with a circular cutout. When the plate with an elliptical cutout
is embedded in an elastic foundation, the critical buckling load
of the plate with the UD pattern is approximately 1.73 times
greater compared with that of the plate without an elastic
foundation, while for the plate with a circular cutout, it is
approximately 1.37 times higher.

➢ By increasing the plate aspect ratio from 1 to 2, the critical
shear buckling load of the plate without an elastic foundation
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for the UD pattern reduces by 1.83 times, while that of the
plate resting on an elastic foundation reduces by 1.55 times.

➢ The shear buckling loads of the plates with circular and
elliptical cutouts with an equal area are almost identical.
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Appendix

A four-noded Lagrangian quadrangular element is used. The
associated linear Lagrangian interpolation functions in terms of the
natural coordinates (ξ, η) are as follows:

ψ1

ψ2

ψ3

ψ4

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ � 1

4

1 − ξ( ) 1 − η( )
1 + ξ( ) 1 − η( )
1 + ξ( ) 1 + η( )
1 − ξ( ) 1 + η( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭. (A1)

In addition, the Hermitian interpolation functions in terms of
the natural coordinates (ξ, η) are as follows:

Ξ1

Ξ2
Ξ3

Ξ4
Ξ5

Ξ6
Ξ7

Ξ8
Ξ9

Ξ10

Ξ11

Ξ12

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� 1
8

1 − ξ( ) 1 − η( ) 2 − ξ − η − ξ2 − η2( )
ξ + 1( ) 1 − η( ) 1 − ξ( )2
η + 1( ) 1 − ξ( ) 1 − η( )2

1 + ξ( ) 1 − η( ) 2 + ξ − η − ξ2 − η2( )
ξ − 1( ) 1 − η( ) 1 + ξ( )2
η + 1( ) 1 + ξ( ) 1 − η( )2

1 + ξ( ) 1 + η( ) 2 + ξ + η − ξ2 − η2( )
ξ − 1( ) 1 + η( ) 1 + ξ( )2
η − 1( ) 1 + ξ( ) 1 + η( )2

1 − ξ( ) 1 + η( ) 2 − ξ + η − ξ2 − η2( )
ξ + 1( ) 1 + η( ) 1 − ξ( )2
η − 1( ) 1 − ξ( ) 1 + η( )2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A2)
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