AUTHOR=Beach Benjamin , Chapin William , Chapin Samantha , Hildebrand Robert , Komendera Erik
TITLE=Force-controlled pose optimization and trajectory planning for chained Stewart platforms
JOURNAL=Frontiers in Mechanical Engineering
VOLUME=9
YEAR=2023
URL=https://www.frontiersin.org/journals/mechanical-engineering/articles/10.3389/fmech.2023.1225828
DOI=10.3389/fmech.2023.1225828
ISSN=2297-3079
ABSTRACT=
Introduction: We study optimization methods for poses and movements of chained Stewart platforms (SPs) that we call an “Assembler” Robot. These chained SPs are parallel mechanisms that are stronger, stiffer, and more precise, on average, than their serial counterparts at the cost of a smaller range of motion. By linking these units in a series, their individual limitations are overcome while maintaining truss-like rigidity. This opens up potential uses in various applications, especially in complex space missions in conjunction with other robots.
Methods: To enhance the efficiency and longevity of the Assembler Robot, we developed algorithms and optimization models. The main goal of these methodologies is to efficiently decide on favorable positions and movements that reduce force loads on the robot, consequently minimizing wear.
Results: The optimized maneuvers of the interior plates of the Assembler result in more evenly distributed load forces through the legs of each constituent SP. This optimization allows for a larger workspace and a greater overall payload capacity. Our computations primarily focus on assemblers with four chained SPs.
Discussion: Although our study primarily revolves around assemblers with four chained SPs, our methods are versatile and can be applied to an arbitrary number of SPs. Furthermore, these methodologies can be extended to general over-actuated truss-like robot architectures. The Assembler, designed to function collaboratively with several other robots, holds promise for a variety of space missions.