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The maintenance costs can represent about 15%–60% of the cost of produced
goods depending on the type of goods transported. To comply with stringent
emissions regulations, diesel engines are incorporated with complex after-
treatment systems that demand increased maintenance. The availability of
alternative fuels such as natural gas and propane has fostered the natural gas
and propane powertrain systems as well as electrification options for heavy- and
medium-duty vehicles. A critical barrier to adopting alternative fuel vehicles has
been the lack of knowledge on comparative vehicle maintenance/repair costs
with conventional diesel. Moreover, the region of operation, the type of vehicle
operation, and seasonal temperature changes also affect the duty cycle which
impacts the maintenance and repair costs. This study focuses on estimating the
cost-per-mile for heavy-duty vehicles using machine learning models such as
random forest, xgboost, neural networks, and a super-learner model. The super-
learner model achieved an error as low as 0.0068 $/mile for mean absolute error
and 0.0086 $/mile for root mean square error with a coefficient of determination/
R-Squared of 97.28%. Specifically, the paper investigates the data collected from
the maintenance and repair costs associated with delivery trucks using diesel and
natural gas fuels. Since the availability of data is the major constraint, we leveraged
the data collected by West Virginia University and the partnership with fleet
companies. This allows for additional information related to maintenance costs
and fleet-specific maintenance practices of alternative fuel vehicles. This study
promotes clean fuel technologies and enables fleet management companies to
adopt alternative fuel vehicles in case of similar or lower cost of maintenance
compared to diesel vehicles resulting in reduced emissions and total cost of
ownership.
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1 Introduction

The maintenance and repairs costs contribute about 7% of the total cost of ownership
(TCO). Along with the maintenance and repair costs, the cost spent on fuel is another factor
that contributes the most to the total cost of ownership. The choice of fuel plays a key role in
taming the emissions and reducing the maintenance cost as alternative fuels can reduce
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emissions produced by heavy-duty vehicles due to high mileage long
distance travel carrying heavy loads (Kluschke et al., 2019). This in
turn reduces the total cost of ownership based on the activity being
performed by the vehicle as the fuel cost incurred for a commercial
truck contributes about 26% of TCO. Alongside, the
United States—Environment Protection Agency (US-EPA) has
set forth emission standards for heavy- and medium-duty trucks
which contribute about 26% of greenhouse gas emissions (US EPA,
2015). To comply with standards diesel engine heavy-duty vehicles
are equipped with complex after-treatment systems, increasing the
maintenance costs. Hence, the automotive industries are focusing on
alternative fuels such as natural gas and propane for heavy- and
medium-duty vehicles offering soot-free combustion and electric
powertrains for zero emissions. Especially for delivery trucks that
carry heavy loads making frequent stops operating in urban or rural
areas using diesel fuel impacts the performance of vehicles resulting
in more maintenance costs unlike goods movement trucks operating
on highways. Despite the benefits and efforts, the adoption of
alternative fuel vehicles (AFVs) in heavy-duty transportation has
not increased much in global transportation. The main barrier to the
diffusion of AFVs is the lack of understanding of the cost-per-mile
(maintenance and repairs costs) requirements based on the activity
performed by the vehicle. The motivation of this study is to promote
the usage of AFVs such as natural gas when the total cost of
ownership is lower or like that of conventional diesel trucks
based on the activity being performed.

In recent years, the high computational power, big data, and data
storage enabled companies to derive meaningful insights from huge
volumes of real-time noisy data, especially for tasks such as predictive
maintenance (PdM) and remaining useful life (RUL) using machine
learning techniques. Determining the average time until the next
maintenance based on the current state of the automobile/engine
can be useful in scheduling maintenance and lowering maintenance
costs. Predictive maintenance in automobiles using machine learning
requires modeling huge volumes of sensor data, hence a representation
learning to convert high dimensional data to low dimensional and
predicting vehicle faults was proposed by (Revanur et al., 2020) using
parallel stacked autoencoder. Machine Learning techniques such as
support vector machines (SVM) (Hearst et al., 1998), random forest
(RF) (Breiman, 2001), feed-forward neural networks (NN) (Bebis and
Georgiopoulos, 1994), and Gaussian Processes (GP) (Rasmussen and
Williams, 2006) are evaluated for predictive maintenance in
automotive engine components using simulated data (Tessaro et al.,
2020). Several deep learning (DL) algorithms have been used in
identifying faults and estimating remaining useful life (RUL) in
various automobile fields due to their ability to extract features
automatically (Arena et al., 2022). An ensemble approach
combining RUL estimation from a similarity-based curve matching
technique and bidirectional recurrent neural network (RNN) was
proposed by Yu et al. (2020). A multiscale convolutional neural
network was introduced for bearing RUL estimation using the
bilinear interpolation of time-frequency representations as input to
the deep learningmodel (Zhu et al., 2019). Prognosis involves the effect
of time, hence as the time step increases, the accuracy of the prognosis
decreases. Hence a sequence-based recurrent neural network (RNN)
model using the vibration signals of defect rolling bearings was
analyzed by Malhi et al. (2011) with more accurate prediction than
the incremental training. Long Short Term Memory (LSTM) Neural

Networks and Random Survival Forest (RSF) (Ishwaran et al., 2008)
are applied for predicting the component failure probabilities in lead-
acid batteries of heavy-duty vehicles using a few data collected during
workshop visits (Voronov et al., 2020) and LSTM performed
significantly better compared to other techniques. Multi-sensor fault
detection, fault identification, isolation, and health index forecasting
were performed using deep convolutional neural networks (DCNN) in
autonomous vehicles (Safavi et al., 2021). The remaining fatigue life
based on healthmonitoring of automotive suspensionwas estimated in
test cars using LSTM (Hu et al., 2021). The performance of vehicles can
be improved with proper maintenance to reduce downtime and
prevent unnecessary overhead maintenance costs (Arena et al.,
2022). There are many studies related to maintenance prediction,
but studies related to maintenance cost estimation are very limited.

The cost involved in corrective maintenance of replacing the
failed part was studied using the Poisson distribution stochastic
model (Andrzejczak et al., 2018). This study was performed on
urban rail vehicles with 45 vehicles used for 5 years. An artificial
neural network (ANN) model for classifying the faults and
determining the frequency of failure was analyzed (Adekitan
et al., 2018). The model includes six vehicle usage parameters
such as fuel cost, fuel volume in liters, car mileage in km,
normalized fuel cost, normalized fuel volume, and normalized
mileage as input parameters with maintenance cost as output. A
super-learner model for predicting the transient CO2 and NOX was
proposed (Wei et al., 2022). However, the existing studies are limited
to estimating maintenance costs for passenger cars or a specific type
of maintenance cost in vehicles or using OEM-prescribed
maintenance intervals. There are very few studies related to
comparing maintenance costs in alternative fuel vehicles and
estimating maintenance costs as the maintenance of vehicles is
highly impacted by the fuel type, region, and activity. There is a
large gap in adopting alternative fuel vehicles due to the uncertainty
and unavailability of data and information (Ghadikolaei et al., 2021)
even though they produce fewer emissions (Chen et al., 2018). A
study has been presented to estimate fuel consumption and the
maintenance cost in heavy-duty vehicles using a machine learning-
based approach (Katreddi, 2023). The factors influencing the shift
towards natural gas fuel in freight transportation by businesses have
been studied (Cantillo et al., 2022), and was observed that the AFVs
adoption is sensitive to initial purchase cost, environmental factors,
and operational factors using Colombia case study and developed a
model considering marginal rates, tax exemptions, elasticities to
identify implications and develop policy recommendations.

The literature survey revealed a gap in studying cost-per-mile as
a function of vehicle age which is highly variable based on the
activity, fuel type, region of operation, and other factors. Hence to fill
the gap, this study addresses the following.

• Lack of data by collecting real-time and real-world
maintenance records of natural gas and diesel-fueled heavy-
duty delivery trucks from fleet management companies.

• Investigated the machine learning models on the large volume
of maintenance data collected from delivery trucks using
natural gas and diesel to understand the change in cost-
per-mile patterns as the vehicle ages.

• Developed a Super-Learner Model on real-world real-time
data for predicting the Cost-Per-Mile.
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To our knowledge, this is the first work to develop an ensemble
super-learner model for the real-time maintenance data collected
from heavy-duty delivery trucks. The work helps in the diffusion of
natural gas delivery trucks and policymakers to develop policies
based on the total cost of ownership.

2 Methodology

The maintenance needs for a vehicle vary based on the vehicle
type, usage, activity, fuel type, engine, and many other factors. This
study possesses a large volume of data collected from different
medium- and heavy-duty trucks using different fuel types such as
diesel, natural gas, propane, and electric vehicles which are then
further categorized per vocational categories as goods movement,
delivery, school bus, refuse, and other vocational applications. The
vehicles undergo different types of maintenance strategies such as
periodic—periodically scheduled maintenance,
preventative—checking for potential failures and eliminating
them, and finally corrective—after the failure occurred. The cost
associated with this maintenance varies drastically based on the type
of maintenance, the part of maintenance, the age of the vehicle, and
other factors such as region, weather, and the duty cycle of the
vehicle. The workflow for this study is shown in Figure 1.

2.1 Data collection and pre-processing

One of the key challenges in studying the influence of different
affecting parameters—vocation, fuel type, and other parameters on
maintenance cost is the lack of real-world data. This study leverages
the data collected from developing data-sharing agreements with various
fleets through which, information related tomaintenance cost (MC) and
fleet-specific maintenance practices of diesel-powered and alternative-
fueled vehicles were collected. The team collected data related to the
maintenance of diesel and alternative fuel vehicles from fleets operating
in various regions of the country. The current data collected contains
5,128 instances for delivery trucks. The data collected has the features
shown in Table 1 along with derived features such as Road Congestion
Index (RCI), Maintenance Number, Time Between Maintenance
(TBM), Miles Per Day, Vehicle Age, Cumulative Cost, and Cost Per

Mile. The data is related to three types of maintenance, namely, periodic,
preventative, and corrective for different parts are collected. Corrective
maintenance is performed to fix or replace a failed or non-performing
component whereas preventative maintenances are done to prevent the
downtime of the vehicle by proactively checking for failures. The regular
inspections recommended by the manufacturer and inspections by law
are considered periodic maintenance. Medium- and heavy-duty vehicles
are built withmany heavy components for safety. For ease of analysis, the
parts of the truck are grouped into five major part types: engine and
transmission, exhaust and emissions, tire and brake, fuel system, and
chassis. Maintenance is categorized as engine and transmission if the
maintenance such as repair or replacement is performed on the engine,
transmission, and/or any of their subcomponents such as a radiator,
turbocharger, solenoids, etc. The exhaust and emissions include the
after-treatment system and components such as hangers, clamps, bolts,
etc. This part of the truck might have a significant change in the
maintenance of the vehicle as the system depends on the fuel type
used and the combustion process. The tire and brake group included the
replacement of tires, brakes, brake shoes, or fitting new tires and brakes.
The fuel system group includes maintenance related to the fuel tank, fuel
lines, fuel filter, and wear and tear of the fuel tank and pipes. The
preventive maintenance (PM) categorized as PM A, PM B, PM C, and
PM D are classified as chassis. These services consisted of PM A:
performing a safety check on the entire vehicle and adding lubricants
to major components, PM B: PM A plus oil change and inspection of
driveline, PM C: PM B plus alignment verifications, annual inspection,
PMD: scheduled rebuild or major component replacement (“Preventive
Maintenance Programs”; Keller, 2023).

To understand the correlation of features, the correlation scores
for features are calculated and plotted as a feature association matrix
shown in Figure 2. The correlation score tells association strength
which is how accurately one feature can be determined based on the
other. Features partitioned into groups based on the similarities are
clustered by different colors. The opacity of color indicates the level
of co-occurrence from 0 to 1. A correlation score of 0 means the
features are independent and a correlation score of 1 indicates
perfect correlation. Ideally, multicollinearity should be avoided, as
the high degree of correlation can cause a problem in fitting a model.
The target variable is shown as a bolded white variable. With
numerical data, different features have different ranges of values
as the features are not unified. To protect data integrity,

FIGURE 1
Data processing workflow.
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normalization is performed. The dataset is then divided into train
and test datasets. The data is then randomized to make machine
learning models capture patterns in data. Without randomization,
the ordering of data might just pick up the initial maintenance well
but not the one that has higher vehicle age with larger mileage.
Therefore, the randomization of data is important in the machine-
learning process.

2.2 Machine learning analysis

In this work, machine learning algorithms: random forest (RF),
extreme gradient boosting (XGB) (Chen and Guestrin, 2016), neural
network (NN), and a super-learner model are developed and
compared for predicting continuous variables. The general
process of machine learning prediction models is shown in
Figure 3. The selected features from the data collected, the

derived features along with the target label, i.e., cost-per-mile are
passed to the machine learning model for training. Based on the
machine algorithm the hyperparameters are chosen and trained for
many iterations. The resulting generated model is then used to make
predictions on unseen test data.

2.2.1 Neural network (NN)
Neural Networks are referred to as the system of human brain

neurons. A neural network or a multi-layer perceptron (MLP) is a
base architecture of deep learning typically containing an input
layer, hidden layers, and an output layer with multiple neurons
called perceptron (Rosenblatt, 1958). The network learns by
updating the weights of neurons through the backpropagation
(Rumelhart et al., 1986) technique. NNs might become
computationally expensive and require lots of hyperparameter
tuning such as the number of neurons, number of layers,
learning rate, batch size, etc. A 6-layer fully connected dense
network with 4 hidden layers containing 15 neurons in each
layer is developed (shown in Figure 4). The input layer contains
10 inputs, and the output layer contains single neurons. All the
neurons are activated with an activation function called ReLU
(Rectified Linear Unit) and an Adam optimizer with a learning
rate of 0.001 and batch size of 64 is trained for 200 epochs. All the
hyper-parameters are selected after several tests and grid searches.

2.2.2 Random forest (RF)
Random Forest is an ensemble machine-learning technique that

uses decision trees to build a model. The model fits several decision
trees parallelly considering subsets of data. The final decision is
based on the average for regression tasks. Since it internally performs
cross-validation, over-fitting is minimized. The key hyper-
parameter in the performance of random forest is the number of
trees which is set to be 25 in the model developed.

2.2.3 Extreme gradient boosting (XGB)
Like Random Forest, Extreme Gradient Boosting is another

ensemble learning algorithm that considers more detailed
approximations to build the final model based on a series of decision
trees. The over-fitting is handled by minimizing the loss using gradients.
XGB performs well with large datasets, and the training is fast due to
parallel processing. The model uses the learning rate and the number of
trees as the key parameters which are set to 0.1 and 100, respectively.

TABLE 1 Features in the raw data collected.

Feature Description Feature Description

VIN Vehicle Identification Number Engine Engine model used in the vehicle

Unit Number Unique Vehicle Number Engine Year Year of Engine Manufactured

Date Date Maintenance happened Make Make of the Engine

Fuel Type Type of fuel used in vehicle Region Region of Operation of Truck

Mileage Mileage at which the maintenance has occurred Repair Shop Name Name of the shop where maintenance has taken place

Part of Truck Part of Truck Comments Type of Maintenance

Total Cost Cost of the maintenance during that visit Season The season during the vehicle maintenance

Owner of truck Owner of the operating truck Vocation Activity performed by the vehicle

FIGURE 2
Feature association matrix.
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2.2.4 Super-learner model
The Super-Learner model (Laan et al., 2007) is developed by

stacking multiple base algorithms to improve the performance of the
model. In this work, a super-learner model based on the predictions
from base models such as random forest (RF) and XGBoost (XGB)
and a linear regression meta-model is developed. The framework for
super-learner is shown in Figure 5. The training of the super-learner
model involves various steps. The dataset is initially divided into
training and validation datasets without overlap. A 5-fold cross-
validation approach is used during the training of base models.
During 5-fold cross-validation, the training dataset is further divided
into five folds of data without overlap, of which 4-folds are used as
train folds to train the base models and 1-fold is used as a test fold to
validate the performance of base models. Thus, the base models are
trained on four train folds and the remaining fold is used for testing
the base model. This process is repeated five times, where each of the

five folds is used as a test fold exactly once. Each time the predictions
from each of the base models on the test fold are stacked to form a
new training set. The base models are then used to make predictions
on the entire validation dataset. The base models are then evaluated
on the entire validation dataset. The weighted average of predictions
on the validation dataset is stacked to form a new validation set. The
new training set is used to train the linear regression meta-model
and validated using the new validation set. Given a set of training
data points represented as (xi, yi), i = 1, 2, . . . . . . , N, where xi are the
input features and yi is the target label, the super learner ensemble
mode is represented as:

ŷ � ∑wkfk x( ), k � 1, 2, . . . .K (1)

Where ŷ is the predicted output by the super-learner model, wk

is the weight assigned to the kth machine learning model, fk(x) is

FIGURE 3
Machine learning model process.

FIGURE 4
Neural network.
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the functional form of the machine learning model (RF and XGB),
and K is the total number of individual learning algorithms in the
ensemble model. The weights are calculated based on the meta-
learning algorithm optimizing the performance of the super-learner
model on the validation dataset.

Eachmachine learningmodel has hyper-parameters that need to
be determined to achieve the best-performing model. A grid search
has been performed for each of the algorithms to identify the hyper-
parameters. Since the amount of data is limited, k-fold cross-
validation is performed to prevent overfitting and to understand
how well the model generalizes for unseen data. To compare the
performance of models, the error metrics such as Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), and Coefficient of
Determination (R2) are widely used in regression tasks. The
mathematical expressions for RMSE, MAE, and R2 are given below.

RMSE �
�����������∑n

i�1 xi − x̂i( )2
n

√
(2)

MAE � ∑n
i�1 xi − x̂i| |

n
(3)

R2 � 1 − ∑n
i�1 xi − x̂i( )2∑n
i�1 xi − �x( )2 (4)

where xi is the actual value, x̂i is the predicted value, n is the number

of data, �x is the mean of data given by
∑n

i�1xi
n .

3 Results

The data used in this study included 18 delivery trucks fueled
by diesel and 12 delivery trucks fueled by natural gas. The diesel

trucks ranged in mileage from 2,896 to 895,592 miles while the
natural gas trucks ranged in mileage from 756 to 563,249 miles.
The model year of diesel trucks was in the range of
2010–2022 while that of natural gas was in the years
2014–2017. The data includes various types of maintenance
such as periodic, corrective, and preventative for major parts
such as chassis, engine and transmission, tire and brake, exhaust
and emission, and fuel system. Natural gas vehicles have a lower
cost per mile ranging from 0.000285–0.152489 $/mile with few
outlier points whereas diesel fuel vehicles have an average cost per
mile ranging from 0.000851–0.456851 $/mile. The higher value is
the indication of corrective maintenance for replacing the failed
larger or complex parts such as transmission, exhaust system, etc.
that have incurred a very large amount. Since these data points are
important for calculations, they are included in the analysis.
Diesel vehicles include an after-treatment system that consists
of multiple catalytic systems that require increased maintenance
to reduce vehicle downtime. Whereas natural gas vehicles
compared to diesel have only a single catalytic system in the
form of a three-way catalyst (TWC) offering lower maintenance
costs, especially the corrective maintenance cost as shown in
Figure 6.

The machine learning models are trained on pre-processed train
data. The 5-fold cross-validation scores for the Neural Network,
Random Forest, XGBoost, and Super-Learner models are presented
in Figure 7. The cross-validation scores represent the average ±
standard deviation of the results from models trained by randomly
splitting the dataset five times. The model performance is evaluated
byMAE and RMSE while R2 explains how well the variability in data
is explained by the model. The lower values of MAE and RMSE
quantify how well the model can predict. From Figure 7, the Super-
Learner model has the smallest mean absolute error (MAE), root

FIGURE 5
Super-learner model.
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mean squared error (RMSE), and a high value of the coefficient of
determination (R2) for both the train and validation datasets
followed by random forest. The super-learner ensemble model
achieved an R2 of 97.28% with MAE 0.0068 $/mile and root
mean square error 0.0086 $/mile on the test folds and R2 of
98.8% with mean absolute error as low as 0.0073 $/mile and root
mean square error as low as 0.0092 $/mile on the train folds data
approximating the complex functional relationships with the meta-
learning.

However, to understand the model performance, the models
need to be evaluated using the test datasets which are not seen

during the training or validation phase. Two vehicles using diesel
and natural gas fuels operated with 5 years of maintenance records
are used as test data. The average cost-per-mile distribution of the
test data for diesel and natural gas is shown in Figure 8. Like train
data distribution, the original test data shows that natural gas has a
lower average cost per mile than diesel fuel trucks. The natural gas
vehicles have a lower cost per mile ranging from 0.011543–0.106729
$/mile with few outliers whereas the diesel fuel vehicles have an
average cost per mile ranging from $0.037794 - $0.268725 $/mile.

The model evaluation results for the test data are shown in
Figure 9. From the results, the tree-based ensemble model performs

FIGURE 6
Distribution of cost per mile ($/mile) vs. fuel type for train data.

FIGURE 7
Cross-validation result (A) Mean Absolute Error, (B) Root Mean Square Error, (C) Coefficient of Determination comparison for all models.
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better on the tabular data compared to neural networks. The super-
learner model with random forest and XGBoost as base models and
linear regression as meta-model achieved the best performance
compared to the individual tree-based and neural network
models. The 96.78% coefficient of determination of the super
learner model indicates the percentage of variation in data
captured those results in the prediction of the output with mean
absolute error as low as $0.071 $/mile and root mean square error as
low as 0.085 $/mile.

To see the generalization of the super-learner model for each fuel
type, the scatter plot for actual and predicted cost-per-mile for the

test dataset showing uncertainty in predictions is plotted in
Figure 10. The red diagonal line is where the actual value and
predicted value are equal. The blue data points along with the blue
line represent the data with the regression fit. The closer the red line
is to the blue line, the better the model predicts.

The actual and predicted average cost-per-mile over the
vehicle duration of operation using the super-learner model
for diesel and natural gas in delivery trucks is shown in
Figure 11. The comparison shows that for a given duration of
operation, the maintenance cost involved with natural gas fuel is
lower than with diesel fuel.

FIGURE 8
Distribution of cost per mile ($/mile) vs fuel type for test data.

FIGURE 9
Model performance evaluation (A) Mean Absolute Error, (B) Root Mean Square Error, (C) Coefficient of Determination for unseen test data.
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4 Discussion

The major difference in the maintenance cost for natural gas
and diesel trucks is seen in the exhaust and emissions and fuel
system which had almost half the maintenance cost for a diesel
vehicle system. Though the natural gas vehicle needs frequent
periodic maintenance for engine and transmission, the cost
involved is less than the periodic maintenance cost for diesel
engines and transmission. Diesel vehicles require more
maintenance because the aftertreatment system, which is
expensive should be operated under optimal combustion to
reduce emissions. Though there is an almost equal number of
corrective and periodic maintenance for a diesel vehicle, the
average cost per mile for both types of maintenance is almost
equal to 0.18 $/mile. Whereas for a natural gas vehicle, the

number of periodic maintenance is more than twice the
number of corrective maintenance but the average cost per
mile for periodic maintenance is less than the average cost per
mile for corrective maintenance.

The cost per mile over years of operation for a vehicle gives
the fleet management companies the average cost of maintenance
based on the vehicle age, mileage, activity type, and fuel type
helping in making the procurement decision easy. This study
helps in promoting alternative fuel vehicles that incur the same or
lower cost of maintenance. Based on previous studies, opting for
alternative fuel vehicles reduces emissions by almost 16% (Speirs
et al., 2020). A study on medium and heavy-duty vehicles (Boyce,
2022) compared the maintenance costs using LPG and diesel fuel
and observed a reduction in the maintenance cost of delivery
trucks by 62% using LPG over the life of vehicles.

FIGURE 10
Scatter Plot for uncertainty analysis of model on the test data.

FIGURE 11
Comparison of Predicted Average Cost Per Mile over Vehicle Age for Natural Gas and Diesel Delivery Trucks using the Super-Learner Model.
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The super-learner model approximates the true function well
when the base learning algorithms cannot capture the
relationship well. The current study is limited to delivery
trucks due to less availability of data for trucks performing
activities such as goods movement, school buses, and refuse
trucks that use alternative fuels. We would further like to
extend this study to vehicles using diesel and alternative fuels
such as natural gas, propane, etc. Though alternative fuels are
gaining popularity, their usage has not reached the expectation
yet. With the current data capturing technologies, companies
should concentrate on logging the maintenance data frequently
for a given duration or mileage which would help in
understanding the performance and maintenance of vehicles
with different duty cycles using different fuel engines. This
would help promote the usage of alternative fuels where
feasible to offer soot-free emissions and environmentally
reduce pollution.

5 Conclusion

Maintenance Cost is one of the important considerations
for fleet companies. Understanding how the maintenance cost
is changing over the years given the vehicle operation, fuel
type, region of operation, etc., would enable the fleet
companies to make data-driven decisions on the
procurement of vehicles that reduce their overall total cost
of ownership. The study conducted an extensive literature
survey on the topic of data-driven fleet maintenance
solutions that have been published in the recent past, for
the commercial vehicle industry. One of the major gaps
found in the literature is the availability of real-world
maintenance datasets from a diverse set of vocational
applications, which has limited the validation of algorithms
developed using machine learning techniques.

The present study aims to address this gap by using real-
world datasets collected from a variety of fleet companies. In this
work, an investigation study based on real-world maintenance
data collected using machine learning algorithms to predict the
average cost per mile is shown. Four different machine learning
algorithms, neural networks, random forest, XGBoost, and
super-learner models were applied to the well-pre-processed
data. A 5-fold cross-validation technique is performed to
understand the generalization of the model with
comprehensive results. To evaluate the performance of models
several regression metrics such as mean absolute error (MAE),
root means square error (RMSE), and coefficient of
determination (R2) was used.

The Super-learner model has given promising results on the
given data and the comparison of predicted values for delivery
trucks using diesel and natural gas fuel types is shown. The super-
learner works by training the meta-learning algorithm by
creating an optimal weighted average of the level one base
learner per k-fold cross-validation to approximate complex
relationships. Super-learner eases the issue of selecting the
right learners for learning a function. The super-learner model
achieved the cross-validation performance with errors as low as

0.0068 $/mile for mean absolute error (MAE) and 0.0086 $/mile
for root mean square error (RMSE) with a coefficient of
determination (R2) as 97.28%. On unseen test data, the model
achieved an MAE of 0.0071 $/mile, RMSE of 0.0085 $/mile, and
R2 of 96.78%.

This study is important as it fills the gap by performing the
study on real-world maintenance and vehicle activity data and
shows the comparison of natural gas alternative fuel with diesel
fuel in delivery trucks. The results indicate lower maintenance
costs for natural gas delivery trucks, hence opting for alternative
fuel vehicles offers a low cost of ownership along with reduced
emissions. The outcome of the solution developed in this study
could potentially pave the way for creating a cloud-based
application, that can ingest the data from fleet companies, run
the deployed machine learning model in the cloud, and enable the
companies in making data-driven decisions for procurement of
newer fleet that will have a positive impact on meeting their TCO
targets and sustainability goals, by adopting alternative fuel
vehicles.
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Nomenclature

Abbreviations

AFV Alternative fuel vehicle

CO2 Carbon dioxide

DL Deep learning

GP Gaussian process

HDV Heavy-duty vehicle

LSTM Long short-term memory

MAE Mean absolute error ($/mile)

MC Maintenance cost

ML Machine learning

MLP Multi-layer perceptron

NN Neural network

NOx Nitrous oxide

PdM Predictive maintenance

PM Preventative maintenance

R2 R-Squared/Coefficient of determination

RCI Road congestion index

RF Random forest

RMSE Root mean square error ($/mile)

RNN Recurrent neural network

RSF Random survival forest

SVM Support vector machine

TBM Time between maintenances

TCO Total cost of ownership

TWC Three way catalyst

US-EPA United States environmental protection agency

XGB eXtreme gradient boosting
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