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Thin, elastic sheets are well known to adapt to rough counterfaces, whereby

adhesive interactions and pull-off stresses σp can be significant, yet no generally

applicable, quantitative guideline has been suggested hitherto as to when a

sheet should be considered thin enough to be sticky. Using computer

simulations, we find that the dependence of σp on surface energy γ has a

high and a low-pull-off-stress regime. For randomly rough surfaces, we locate

the dividing line at the point, where γ is approximately half the elastic energy per

unit area needed to make conformal contact, which is the same ratio as for

semi-infinite elastic solids. This rule of thumb also applies to a certain degree for

single-wavelength roughness, in which case the transition from low to high

stickiness occurs when at the moment of maximum tension contact is not only

broken at the height maxima but also at the saddle points.
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1 Introduction

Thin-film adhesion has gained much attention in the scientific community in recent

years, in particular, in the context of biomimetic systems (Autumn et al., 2000, Autumn

et al., 2002; Reddy et al., 2007; Boesel et al., 2010). Understanding what parameters control

adhesion and thus traction can certainly aid the control of adhesive systems. Although

Persson’s contact mechanics theory (Persson, 2001; Persson, 2002; Persson, 2003; Persson

and Gorb, 2003) allows predictions on properties of adhesive systems to be made

(Carbone et al., 2009; Wang and Müser, 2017; Joe et al., 2017; Joe et al., 2018; Joe

et al., 2020), it does not provide any easy-to-evaluate guidelines. Nonetheless, achieving

controllable adhesion in real systems can certainly be aided by an understanding of the

basic detachment mechanism and the parameters controlling pull-off stresses or pull-off

forces (Arzt et al., 2003; Persson, 2003; Kamperman et al., 2010).

Thin elastic layers generally stick better to nominally flat but microscopically rough

surfaces compared to bulk solids. This is because thin sheets can accommodate the long-

wavelength undulations of their counterfaces much more easily than thick solids do

(Carbone et al., 2004). When thick elastomers comply with randomly rough surfaces,

the required elastic energy resides predominantly in deformation modes near the roll-off

wave vector qr, at which the height spectrum C(q) transitions from being approximately
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constant to the self-affine scaling regime. In the latter domain,C(q)

∝ q−2(1+H), where H is called the Hurst exponent, which typically

takes values 0.8 ≲ H ≲ 1 (Majumdar and Tien, 1990; Palasantzas,

1993; Persson, 2014; Jacobs et al., 2017). In the rare cases, when

H ≤ 0.5, the full-contact elastic energy, vfullela , would be dominated by

contributions from short-wavelength undulations, in which case,

thin sheets are not expected to adhere substantially better to

counterfaces than semi-infinite solids do (Carbone et al., 2004;

Violano et al., 2021). Interestingly, Menga et al. (2016) found the

pull-off force of thin elastomers reduced compared to semi-infinite

solids in a numerical study of one-dimensional, single-sinusoidal

contacts. Local stickiness criteria (Pastewka and Robbins, 2014;

Müser, 2016) are not in line with everyday experience either that

thin sheets adhere well to counterfaces: their single-patch contact

mechanics resembles that of semi-infinite solids, as long as the

linear dimension of a patch is not similar to or greater than the

sheet’s thickness t (Carbone et al., 2004). However, the importance

of long-wavelength roughness for the suppression of apparent

adhesion was clearly demonstrated in recent experiments: Tiwari

et al. (2020) found that two surfaces with similar spectra, which

differed mostly at long wavelengths led to similar local geometric

properties but different root-mean-square (RMS) heights hrms, and

the surface with the smaller hrms was sticky while the other showed

no signs of adhesion.

Classical approaches to adhesion, most notably the one by

Dahlquist (1966), assume that adhesion becomes macroscopically

noticeable when the surface energy γ is greater than or similar to the

elastic energy needed to fully conform two surfaces to each other.

This explains why themore quantitative Persson theory also finds the

effective surface energy to vanish when the surface spectrum of the

rough surface has sufficient intensity at small wave vectors (Persson,

2002). Recent simulations by Wang and Müser (2022) identified a

rather abrupt transition between high and lowmaximum tension at a

reduced surface energy, or generalized Johnson parameter (Ciavarella

and Papangelo, 2018), of ~γ � γ/vfullela ≈ 1/2. Since the mechanics, in

particular, the local detachment of thin sheets differs from that of

semi-infinite solids, there is no a-priori reason that this simple

stickiness criterion generalizes to thin sheets. Investigating to what

extent the simple ~γ � 1/2 criterion also applies to thin sheets is the

content of this study.

In this study, we systematically study the effect of sheet thickness

on the pull-off stress and other quantities defining the adhesive contact

between elastic solids of varying thicknesses and a stiff counterface.

The model and method used for our study are sketched in Sec 2,

results are presented in Sec 3, and conclusions are drawn in Sec 4.

2 Model and method

2.1 Model

The definition of the model has three main aspects: the

geometry of the rough substrate, which is fixed in space, the

elastic properties of the flat elastic layer including the boundary

conditions acting on it, and the interaction between substrate and

layer.

2.1.1 Substrate geometry
In this study, the counterface topography is modeled in terms

of either single- or multiscale-wavelength roughness. The profile

of single-wavelength roughness is defined as a square-lattice

pattern according to

h x, y( ) � 2 + cos 2πx/λ( ) + cos 2πy/λ( ){ }hrms, (1)

where hrms is the root-mean-square deviation of the height from

its mean, while the wavelength λ is set equal to the linear

dimension of the simulation L, which is periodically repeated,

parallel to the interfacial directions x and y.

Randomly rough surfaces are modeled with a typical height

spectrum of the form (Majumdar and Tien, 1990; Palasantzas,

1993; Persson, 2014; Jacobs et al., 2017)

C q( ) � 〈|~h q( )|2〉 (2)

� C 0( )Θ qs − q( )
1 + q/qr( )2{ } 1+H( ). (3)

Here, ~h(q) is the Fourier transform of the (periodically repeated)

height h(r), λr = 2π/qr is the roll-off wavelength, and λs = 2π/qs is

the short-wavelength cutoff. The latter is used so that a well-

defined continuum limit exists at small scales. The Hurst

exponent H, which has already been introduced in Sec 1, is

set to H = 0.8 throughout this work. The height topography is

always normalized by selecting C (0) such that the root-mean-

square height gradient of the surface satisfies �g � 1.

For the sake of simplicity, we assume C(q) to depend only

on q, which makes the surfaces statistically isotropic, and

neglect any potential correlation between the phases of the

complex ~h(q), which leads to statistically homogeneous

surfaces. While the random-phase approximation

occasionally draws criticism, we see its use as the most

meaningful default assumption as long as there is neither

recipe nor reason for how to correlate the phases. See also

the discussions by Persson (2014) and Müser (2018).

Our random topography is characterized by the ratios λr/λs =

64 and L/λr = 4, which results in a mean local radius of curvature

of Rc ≈ 0.0057λr and �h � 3.27λs forH = 0.8. A “typical” number to

be used for λr could be a few dozen microns for a highly polished

surface. By default, the surface is discretized into 2, 048 × 2, 048

identical square mesh points.

2.1.2 Properties of the elastic layer
The elastic layer is treated to have a finite thickness t. On the

side opposite to the substrate, the stress is assumed to be constant

and normal to the original, undeformed surface. The elastic

energy as a function of the displacement field u(r), whose

Fourier transform is ~u(q), then reads
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vela � A

4
∑ c qt( )qEp|~u q( )|2, (4)

in mechanical equilibrium. Here, E* is the contact modulus

defined as E/(1 − ]2) with E being the Young’s modulus and ]
the Poisson’s ratio. The thickness-dependent factor c (qt) is given

by Carbone et al. (2009).

c qt( ) � cosh 2qt( ) − 2 qt( )2 − 1
sinh 2qt( ) + 2qt

. (5)

E* is used as unit for pressure, which corresponds to the usual

choice of [p] � E*/�g, since all surfaces are normalized such that
�g � 1. Figure 1 depicts a typical relaxed configuration of an

adhesive, elastic layer of finite width in contact with a rigid,

randomly rough substrate.

2.1.3 Interactions between substrate and elastic
layer

The local surface energy between elastic sheet and rigid

substrate takes the recently suggested form of (Wang et al., 2021):

v Δz( ) � −γ ×

0 Δz>gc

−1 + πΔz/gc( )2/4 Δz< 0
1
2

1 + cos πΔz/gc( ){ } else,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
, (6)

where γ is the surface energy that is gained per unit area when

two parallel surfaces make contact, while gc is the range of the

interaction. This “cohesive-zone model” (CZM) is designed such

that the interaction between elastomer and counterface is twice

differentiable, which eases an efficient energy minimization.

Typical values for γ with relevance to tribology range from O

(10 mJ/m2) for chemically passivated solids, for example, those

formed by many common polymers, to O (1 J/m2) for non-

passivated metals or ceramics.

The specific choice for gc depends on the investigated system,

as explained next in Sec 2.1.4. However, we always ensured to

increase the discretization with reference to the default to ensure

smooth displacements near the contact lines. This was achieved

by choosing the local elastic stiffness, defined as πE*/Δa to be at

least 2.5 times the maximum curvature of the CZM, which is

π2γ/(2g2
c). Herein, Δa is the linear size of a single mesh element.

2.1.4 Dimensionless parameters
Several dimensionless quantities characterizing the interface

can be defined. One way of undimensionalizing the surface

energy is to use [γ] � E*Rc �g3 as unit for the surface energy

(Pastewka and Robbins, 2014; Müser, 2016), which will be

marked with a prime, that is,

FIGURE 1
Cross-section of an adhesive, elastic layer of the finite
thickness (qrt = 0.5) in contact with a rigid, randomly rough
substrate. The shown cross-section, which contains the highest
point of our default topography, is not to scale.

FIGURE 2
Displacement of selected modes, ~u(q, τ), as a function of
time step τ during the first instability on approach for qt = 2, γ′ =
0.41 leading to ~γ � 0.32. u0 is the constrained center-of-mass
mode, which is ramped to its new value over 50 time steps
and then kept constant for another 400 time steps. Two additional
modes are shown, that is, one with a small wave vector, q = 2π/L,
and the other with a large wave vector, q = 2π/Δa. Displacements
are rescaled for better visualization.

FIGURE 3
Dimensionless interfacial stress σ0/σmax as a function of the
dimensionless displacement d/dp during approach and retraction
for elastomers of different thicknesses t, that is, qt = ∞, 2, and 1,
where q = 2π/λ. Here, dp is the displacement required to
break the contact in the JKR limit. The surface energy γ is kept
constant at vfullela(t � ∞)/4 leading to the thickness-dependent
reduced surface energies stated in the labels. The inset highlight
the hysteresis associated with the height maxima.
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γ′ � γ/ EpRc �g
3( ). (7)

Individual contact patches are found to be locally sticky if γ′ ≳ 1.

An advantage of this measure is that it does not depend on the

sheet thickness. However, little is learned about the number of

contact patches from γ′. The reduced surface energy,

~γ � γ/vfullela , (8)

introduced already in Sect. 1 holds promise to provide a more

meaningful measure for the interfacial surface energy.

Another important quantity is the (local) Tabor parameter,

defined as

μT � R1/3
c

ρ

γ

Ep
( )2/3

, (9)

which characterizes the range of the interaction. Large and small

μT reflect short- and long-range adhesion, respectively.

Throughout this article, μT = 4 is assumed. In single-asperity

contact, this choice is sufficient to make the retraction curve be

close to the continuum limit (Müser, 2014), while larger numbers

are required in order to properly reflect the approach curve for

short-range adhesion (Ciavarella et al., (2017); Wang et al.,

(2021)). However, the Tabor parameter is a scale-dependent

quantity (Persson and Scaraggi, 2014) so that the Tabor

parameter at coarse scales used here is clearly greater than its

local default value. The only exceptions to this claim pertain to

the hysteresis of the load-displacement curve in situations, where

only the final maximum of the counterfaces touches the

elastomer. Fortunately, this limit is well understood from the

Johnson–Kendall–Roberts (JKR) theory (Johnson et al., 1971).

Finally, while the stress is usually defined in units of E*�g, we

will usually undimensionalize the pull-off stress σp with the

maximum stress of the CZM, that is, according to

~σp � σp/σmax, (10)

with σmax = πγ/(2gc).

2.2 Mass-weighted GFMD

Green’s function molecular dynamics (GFMD) (Campaná

and Müser, 2006) is used, which has been discussed several times

in the past. See in particular Appendix 2 in Prodanov et al.

(2013). This is why we only provide a brief summary of the

method. The main idea is to solve the equations of motion

resulting from the total energy and, if present, constraints using

the usual molecular-dynamics toolbox. Dynamics are formulated

in terms of the Fourier representation of the displacements,

which makes it possible to implement efficient methods for

energy minimization, such as the mass-weighting (MW)

algorithm (Zhou et al., 2019). MW-GFMD assigns less inertia

to soft modes, which is utterly beneficial for the simulation of

thin sheets, where long-wavelength modes are particularly soft

compared to those at small scales.

In this work, we study quasi-static dynamics and thus

disregard viscoelastic forces. To this end, we use a ramp as in

Ref. (Wang et al., 2021). Specifically, we change the thin-sheet’s

center of mass over Δτ = 50 time steps according to Δ~u(q) �
Δ~u0 2 + 2 cos[2π(t − t0)/Δτ]{ } with ~u0 � hrms/200 and then let

the system relax toward its minimum over another 400 time

steps. Figure 2 depicts the dynamics of a relaxation process that

occurred for a sheet of thickness qt = 2 during the first approach-

to-contact instability.

FIGURE 4
Stress-displacement dependence as in Figure 3, however,
this time for ~γ � 1. Inset depicts the stress field of the first JKR-like
jump into contact (A) and the second saddle-point contact near
the moment where two patches merge. (B) The color blue
indicates tensile stress while red represents repulsive stress.

FIGURE 5
Pull-off stress normalized to that obtained in the JKR limit, σp/
σJKR, as a function of the reduced surface energy ~γ with the elastic
layer thickness qt—0.5, 1, and ∞. The dashed black line indicates
the JKR limit. The flat, low σp lines correspond to JKR-like
snap-off, while the curved, high σp reflects saddle-point
instabilities. Endpoints of qt = 0.5, 1, and ∞ are located at ~γ �
1.07, 1.7 and 2.0, at which point jump-into-full-contact instabilities
are unavoidable even under displacement driving.
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3 Results and discussion

3.1 Single-wavelength roughness

We first studied the load-displacement, or rather stress-

displacement, dependence in the limiting case of single-

wavelength roughness. In contrast to previous numerical

studies by, for example, Zilberman and Persson (2002) or

Menga et al. (2016), we investigate a two-dimensional (2D)

rather than a one-dimensional (1D) interface so that our

topography contains saddle points in addition to maxima and

minima. Figure 3 shows the equilibrium relation between the

mean interfacial stress σ0 and the displacement d for a reduced

surface energy ~γ � 1/4, which is small enough for a semi-infinite

solid to be on the low-traction branch, for which the ultimate

failure of the contacts happens when only the highest peak is in

contact.

The typical loading-unloading process of a semi-infinite

body with short-ranged adhesion for single-sinusoidal, 2D

roughness (Wang et al., 2021) is clearly revealed in Figure 3: a

hysteresis related to the primary contact formation of the height

maxima at negative stress (highlighted in the inset) and the later

hysteresis at positive stresses associated with the coalescence of

previously disconnected (but periodically repeated) contact

FIGURE 6
(A) Full-contact elastic energy per mode as a function of q/qr. (B) Relative, cumulative full-contact elastic energy for thicknesses satisfying qrt =
∞, 1, and 0.1.

FIGURE 7
Stress distribution of an elastic sheet squeezed a rigid,
randomly rough substrate: (A) thick slab without adhesion, (B)
thick slab with adhesion, and (C) thin sheet with adhesion. All three
configurations are simulated to obtain 10% relative contact
area. Red and yellowmark compressive stress, while blue indicates
attraction. Substrate specification: p/E*�g � 0.05 (A,D), 0.013 (B,E),
and 0.001 (C,F) and γ′ = 0 (A,D) and 0.6 (B,E,C,F). The latter
number becomes ~γ � 0 (A,D), 0.205 (B,E), and 0.525 (C,F). The
thickness of (C,F) gives qrt = 0.5.

FIGURE 8
(A) Pull-off stress σp/σmax, (B) relative contact area ar, (C)work
of adhesion W (black squares), and energy hysteresis ΔW (grey
circles) for one realization of the default surface. Herein, solid
symbols indicate the semi-infinite solid while open symbols
refer to a thin sheet with a thickness of t = 1/(2qr).

Frontiers in Mechanical Engineering frontiersin.org05

Wang and Müser 10.3389/fmech.2022.965584

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2022.965584


patches, bringing the saddle points of the height profile in contact

with the elastomer. Due to the small value of ~γ, the saddle-point

hysteresis is located at compressive stresses in the semi-infinite

case. When reducing the thickness of the elastomer, the saddle-

point hysteresis moves to smaller stresses, however, the pertinent

stresses near the saddle-point instability are still larger than those

of the maxima as long as ~γ≲ 0.4. The respective load-

displacement curves, highlighted in the inset of Figure 3,

reveal that thinner sheets have smaller pull-off stress, as in the

line contact discussed by Menga et al. (2016). However, once
~γ≳ 0.5, the absolute stress minimum occurs when the saddle

point loses contact and not when an isolated contact patch near

the height maximum detaches. In this case, the thin-sheet pull-off

stress exceeds that of the semi-infinite body.

The just-discussed simulations were repeated for a larger

reduced surface energy, that is, for ~γ � 1. Now, larger stress is

required to break contact near the saddle points than of the

height maxima, even for the semi-infinite sheet, as is revealed in

Figure 4. Trends are similar as before in that reducing sheet

thickness increases the pull-off stress needed to break contact of

the saddle points. The thinner the sheet, the more closely the

pull-off stress approaches its theoretical maximum σmax.

The results presented so far were obtained under

displacement control of the layer facing the rigid counterface.

Such boundary conditions would be difficult to establish

experimentally. Instead, real systems can be assumed to be

closer to a load-driven situation. For example, the back layer

of an elastomer could be charged uniformly and exposed to an

electric field, which would play the role of the external driving

force. Under such load driving, it might be impossible to measure

experimentally those portions of the σ0(d) relation with a

negative slope because the system would be mechanically

unstable on those branches, yet not all of those branches are

necessarily accessible. For example, the part of the σ0(d) branch

of the qt = ∞, ~γ � 1 curve in Figure 4 located near d = 1, can be

reached neither on approach, since the contact jumps right to d ≈
2.1dp on approach with σ = 0+, nor on retraction because contact

is lost completely once the saddle point has detached under a

sufficiently large, constant tensile stress.

Despite the difficulty to access experimentally all branches of

the σ0(d) curve, small parameter windows exist, in which the

sheets can act like a pressure-sensitive adhesive. For example, for

qt = 1 and 0.4≲ ~γ≲ 0.5, the saddle-point detachment stress

exceeds that associated with the height maxima while both

detachment conditions are separated by a positive

compressive stress. However, for most parameter choices,

there is a unique (maximum) detachment stress. Very thin or

very adhesive sheets can even jump into full contact without

requiring a compressive stress. This behavior is summarized in

Figure 5 for a few selected thicknesses, which shows that the

range in which interfaces with single-wavelength roughness can

be used as a pressure-sensitive adhesive is quite narrow.

In the case of single-wavelength roughness, reaching a

saddle-point contact for a thin sheet using constant-load

driving will be generally difficult. For example, for qt = 1 and
~γ � 1, a compressive load is required to reach contact in the

saddle point, but this load is sufficient to make the system

advance straight into the full-contact condition. Irrespective of

this, the transition between high and low adhesion occurs near,

actually slightly above, a value of ~γ≳ 0.5.

3.2 Randomly rough surface with H = 0.8

Before presenting numerical results on a randomly rough

surface, we find it instructive to study which wave numbers

matter the most for the total elastic energy per unit area,

vfullela t( ) � ∑
q

c qt( )qEp

4
C q( ) (11)

required to bring the elastomer into conformal surface. When

transitioning to a continuum description, the sum over wave

vectors must be replaced with an appropriate integral. Individual

summands or integrands are shown in Figure 6A for a ratio λr/

λs = 1, 000. They reveal a maximum near a “representative” wave

vector of qrep �
���������
4/λ2r + 9/t2

√
for the investigated Hurst exponent

ofH = 0.8. The sum or integral over all wave vectors accumulates

by more than 70% over a relatively narrow wave vector range,

that is, a decade of wave vectors, as is revealed in panel (b) of

Figure 6. This is why it may be legitimate to expect similar trends

for randomly rough as for single-wavelength roughness.

Another way of rationalizing the enhanced adhesion of thin

sheets to substrates is given by the concept of contact splitting

(Kamperman et al., 2010). To this end, it is instructive to visualize

FIGURE 9
Normalied pull-off force (A) relative contact area at zero load
(B) work of separation (C) and energy loss (D) in a function of
reduced surface energy for a broader range of sheet thicknesses
from qr = 2, 0.5 and 0.25.
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the interfacial stress of different models at identical relative contact

areas, as is done in Figure 7. Panel (a) shows the contact topography

for a purely, repulsive, semi-infinite solid at a relative contact area of

ar ≈ 0.1, and panel (d) a zoom into a selected domain within that

structure. If a similar contact area is induced by adhesion

(~γ � 0.526) rather than by load, see panel (b) and its zoom-in in

panel (e), the contact zones densify although locations of high

compressive remain in place. At finite thickness, depicted in

panel (c) with a zoom-in in panel (f), the contact decomposes

into smaller, yet compact contact patches, whereby the adhesive

regions marked in blue color, are about to percolate across the entire

domain. Here, the relative contact area was still kept near 10%,

which was achieved by further reducing the load.

When changing ~γ for our default system, a transition between

a high-traction and a low-traction domain is found, which is

located near ~γ � 0.5, as can be seen Figure 8. This value is rather

close to that of semi-infinite solids. Moreover, the dependence of

quite a few quantities, that is, pull-off stress in panel (a), relative

contact area in panel (b), work of adhesion, and energy hysteresis,

both in panel (c), all reveal a strikingly similar dependence on the

reduced surface energy for the sheet as for the semi-infinite solid.

This is a non-trivial result since the full-contact elastic energy for

the sheet was reduced by a factor of 50 compared to that of the

semi-infinite case.

The just reported trends remain robust upon further

lowering of the sheet thickness, as conveyed in Figure 9. For

the smallest investigated thicknesses, the cross-over regionmoves

to a slightly smaller ~γ, but shifts are small compared to the relative

reduction of vproela by a factor of 400 compared to the semi-

infinite case.

3.3 Randomly rough surfaces with H = 0.3

The analysis shown in Figure 6 revealed that the main

contributions to the full-contact elastic energy move to

smaller wavelengths as the thickness is reduced. A similar

effect occurs when using smaller H exponents. In fact, when

using H < 0.5, the main contributions to vela come from the

wavevectors near qs. This is why thickness effects at qrt = 0.1 are

quite marginal in our random system for H = 0.3 but already

substantial for H = 0.8 despite λr/λs being merely 128. Thus, for

the study of adhesion with a H = 0.3 substrate, thickness effects

are marginal, unless the thickness clearly falls below the inverse

roll-off wavevector. Such thin layers, however, may rarely exist in

applications.

For the just-mentioned reasons, we also investigated the

dependence of the pull-off stress on the reduced surface

energy for a semi-infinite solid in contact with an adhering

H = 0.3 counterface. The results presented in Figure 10 reveal

once more a transition near ~γ � 0.5, which, however, differs in

nature from the transitions observed so far, in that there is a

cross-over in scaling rather than an almost discontinuous drop in

the maximum tensile load.

4 Discussion and conclusions

In this work, we investigated the question to what extent thin

elastic sheets—with a constant pressure condition on the back

layer—adhere more strongly to rough counter faces than bulk

elastomers. On one hand, thin sheets are readily separated from a

substrate due to their large compliance, resulting in a process

reminiscent of peeling. This explains why Menga et al. (2016)

found smaller pull-off stresses for them than for semi-infinite

solids. On the other hand, they accommodate long-wavelength

undulations of their counterfaces quite easily, facilitating contact

formation, which correlates with our experience that thin food

wrap clings better to surfaces than thick sheets of the same

material. Unsurprisingly, we find that the “peeling argument”

keeps the upper hand at a small relative contact area, which, in

the case of single-wavelength roughness, coincides with the

FIGURE 10
(A) Normalized full-contact elastic energy in a function of thickness with H = 0.3 and 0.8. (B) Normalized pull-off force in a function of
normalized surface energy with H = 0.3. Here, qrt = ∞ and same parameter setting as Figure 8.

Frontiers in Mechanical Engineering frontiersin.org07

Wang and Müser 10.3389/fmech.2022.965584

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2022.965584


situation that only the height maxima but not the saddle points

are in contact. Once saddle points are in contact, peeling-like

separation is strongly suppressed and the pull-off stress, the work

of adhesion, and the adhesion hysteresis grow with decreasing

thickness. For 2D, single-wavelength roughness, a narrow

window of surface energies exists at which a pull-off

instability can be associated with a saddle-point instability,

irrespective of the sheet’s thickness. Trends for randomly

rough surfaces were similar to those with single-wavelength

roughness, which we rationalize with the observation that the

elastic energy for conformal contact is located in a relatively

narrow wave-number window. The pertinent wavelengths are

located near the roll-off wavelength of the randomly rough

surface for semi-infinite solid and move to smaller

wavelengths having the order of magnitude of the sheet

thickness t otherwise. Nonetheless, it seems somewhat easier

to reach a state of saddle-point contact for randomly rough than

for single-wavelength indenters, since the latter have an extreme

propensity to form full contact, once the saddle points touch the

elastomer.

This work, like our previous one (Wang and Müser, 2022),

supports the idea of the possibility of energy loss due to contact

hysteresis even without viscoelasticity (Dalvi et al., 2019; Li et al.,

2019; Sanner and Pastewka, 2022). While these works were

concerned with a semi-infinite elastomer interacting with a

nominally flat Hertzian indenter, Li et al. (2019) found, as we

did, a relative sharp transition between sticky and unsticky when

a “Johnson adhesion parameter” α* took a value near 0.25. Their

parameter correlates with but is not identical to our reduced

surface energy ~γ. While both parameters show convincing

correlation regarding the transition between large and small

adhesion, ~γ has already proven useful to determine the

stickiness of thin sheets in addition to that of semi-infinite

solids, while the Johnson adhesion parameter must most

certainly be generalized to be applicable for finite thickness,

since in its current form α* is insensitive to it.

Interestingly, we found ~γ � 0.5 to also separate the high- and

low-adhesion conditions for randomly rough surfaces with a

Hurst exponent as small as H = 0.3. However, for the H = 0.3

surfaces, we did not observe a quasi-continuous drop in the pull-

off force near ~γ � 0.5 but rather a change in scaling, that is, a

very quickly decaying pull-off force with decreasing γ.

This qualitatively different behavior may be due to the fact

that the full-contact elastic energy resides predominantly in

short-wavelength undulations for H < 0.5 but in long-

wavelength undulations for H > 0.5.
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