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This article describes the propagation of free waves in a two-dimensional periodic plate
using the finite element (FE) method. The advantage of periodic structure analysis is that all
the dynamic properties of a finite structure are derived from a single phase-frequency curve
or surface. Infinite plates are considered as a combination of periodic plates on an
orthogonal array of simple, evenly spaced line supports. A single periodic unit of the
system is represented by a more accurate high-precision arbitrary triangular shallow shell
FE model to find the plane wave frequency in terms of the propagation constants of the 2D
periodic plate. Only the purely propagating waves with no attenuation are considered here.
The natural frequency of the infinite plate was obtained for different propagation constants
in the two directions of the plate. The results are compared with the literature data. The
bounding frequency of the propagation surface is compared to the data published from
single square and rectangular plates with different edge boundary conditions. In addition,
the natural frequency of the plate supported by finite line support with spans Nx

(x-direction) and Ny (y-direction) is compared with the frequency obtained from the
propagation curve by the discretization principle. The comparison is seen to be very
close. It is found that the current PS-FEM approach can be used to generate dispersion
relations with reasonable accuracy.

Keywords: periodic plate, wave propagation, frequency, propagation surface, bounding frequency, finite plate, finite
element method

1 INTRODUCTION

The application of the wave propagation approach to the dynamics of periodic lattices has been
originated by solid state physicists (Brillouin, 1953). In particular, the consequences of periodicity at
the movement of electromagnetic waves were significantly studied and that they were carried out by
many optical and electromagnetic devices. The capacity of periodic configurations to create electron/
photonic band gap in semiconductors and crystals is much similar to the structural/acoustic band
gap of elastic media. Due to their high rigidity-to-weight ratio and good value cost, stiffened plate and
shell systems are applied widely in extraordinary designing applications like bridges, ship hulls and
decks, and aircraft and launch vehicle structures. Within few decades, many researchers have
mentioned the overall performance of stiffened plates/shells under dynamic loading, which may
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motive an excellent implementation in the area of vibration and
noise control. Determining the free vibration characteristics of a
structural systemmay be a fundamental task in dynamic analysis.
In aerospace structures, periodically corrugated boundaries are
formed by friction-stir-welding. In civil engineering structures,
railway lines have periodicity in one-dimension, and rebars used
in reinforced concrete foundations, beams, and slabs have a
periodic surface. Periodic structural systems are also getting
used to create desired acoustic band gaps. For health
monitoring of these structures, a good understanding of the
elastic wave propagation through such periodic structures is
necessary. The method was extended to the study of flexural
wave motion in engineering periodic structures (Heckl, 1964;
Mead, 1970; Mead, 1973). This approach differs from other
techniques where the natural frequencies of the system are
calculated by initially considering the propagation constants of
a single bay of the structure. In periodic structure analysis, the
whole structure is considered as number of periodic elements
joined end to end or side by side to form a whole structure. The
natural frequencies of a finite periodic structure can be obtained
by discretizing the dispersion curve in the propagation bands
(Gupta, 1970). Based on the periodic structure theory, extensive
work on flexural wave motion in periodically supported beams
and plates was carried out (Gupta, 1970; Mead, 1970; Mead, 1973;
Orris and Petyt, 1974; Mead and Parthan, 1979; Abdel-Rahman
and Petyt, 1980). In the case of propagation bands of periodically
supported beams, there are alternate bands of free wave
propagation and decay. The upper bounding frequency of each
of the propagation bands corresponds to that of a single periodic
beam element vibrating with fixed ends, and the lower bounding
frequency of each of the propagation bands corresponds to that of
a single periodic beam element vibrating with simply supported
ends. Mead (1973) has presented a general theory for harmonic
wave propagation in one-dimensional periodic systems with
multiple coupling. Harmonic wave propagation has studied
the infinite beam and skin rib structure by Orris and Petyt
(1974) and free and forced wave propagation in the two-
dimensional periodic plate by Abdel-Rahman and Petyt (1980)
using a finite element (FE) method. Mead and Parthan (1979)
have applied beam functions and polynomial function, combined
with the periodic structure theory to two-dimensional plates. In
case of a periodic plate, the lowest bounding frequency of the first
propagation band corresponds to that of a single flat rectangular
panel with all its four edges simply supporting and vibrating in
the first axial and the first transverse modes. The highest
bounding frequency in the first propagation band corresponds
to that of a single rectangular panel with all its four edges fixed.

The advantage of periodic structural (Gupta, 1970; Mead,
1970; Mead, 1973; Orris and Petyt, 1974; Mead and Parthan,
1979; Abdel-Rahman and Petyt, 1980) analysis is that all dynamic
properties of finite structures are derived from a single phase-
frequency curve or surface. An extensive review of the existing
literature on the vibration analysis of periodic structures is
presented by Mead (1996). A simple smearing method has
been presented for calculating the natural frequencies, mode
shapes, and forced vibrations of simply supported doubly
curved and cross-stiffened thin rectangular shells (Luan et al.,

2011). Experimental investigation (Kundu et al., 2006) has been
carried out to study the guided wave propagation through plates
with periodic boundaries and compared with theoretical
predictions. The experimental results clearly showed that
elastic waves can propagate through the corrugated plate
(waveguide) for certain frequencies called “pass bands” and
find it difficult to propagate for some other frequencies called
“stop bands.” Stop bands are found to increase with the degree of
corrugation. Wang et al. (2012) presented an improved FE model
for the periodic stiffened plate structures with any number or
orientation of stiffeners. Using the model, we analyzed flexural
vibration band gaps and studied the physical mechanism for their
formation in these periodic structures. These band gaps primarily
correspond to the frequency ranges of vibration attenuation. Jin
et al. (2017) studied the vibration band gap properties of periodic
rectangular plate structures with general boundary conditions
and are using the spectral-dynamic stiffness method. Manconi
et al. (2021) studied the free and forced wave motion in a two-
dimensional plate with radial periodicity using the wave FE
approach. Pany and Parthan (2002) have studied free wave
propagation in an unsupported ring using the periodic
structure theory. The bounding frequencies and modes are
identified. The natural frequencies of multi-span curved beams
forming the portion of the ring and some frequencies of the
stiffened ring on any number of equi-spaced, identical, radial
supports are found out from dispersion curves using the
discretization scheme (Gupta, 1970). The dispersion curve
does not change whether it is an open structure or a closed
structure. The basic method of computing the free wave motion
in any one-dimensional or quasi-one dimensional continuous
periodic systems has been applied to uniform cylindrical shells.
Free wave propagation has been studied in the unsupported shell
(Pany et al., 1999; Pany et al., 2002), axial line simple support
infinitely curved panels (Pany and Parthan, 2003a), and
orthogonal line simple support curved panels (Pany et al.,
2003) using the periodic structure theory with FEM (PS-FEM).
In the case of a circular cylindrical shell, each periodic element is a
segment of the shell between two consecutive nodal positions.
The optimum periodic angle is proposed in this study, which is to
be considered for the periodic shell analysis. The periodic element
corresponding to the optimum angle is named the optimum
periodic curved panel, which is the most logical insight to choose
in periodic structure analysis of the shell structure. The frequency
factor corresponding to this optimum periodic subtended angle is
the lowest frequency of the curved panel dimension oscillating in
the first axial and circumferential modes. Furthermore, this will
be the lowest frequency of a full circular cylindrical shell. One-
dimensional axial wave propagation in an infinitely long
periodically supported cylindrically curved panel subjected to
supersonic airflow has been presented using the PS-FEM
approach (Pany and Parthan, 2003b).

Recently, Jeon et al. (2021) have presented the analytic method
to envisage the wave transmission at joints linking two semi-
infinite periodic stiffened plates and the response of a finite
periodic structure using Fourier transform and the Floquet’s
theorem to a harmonic external point force. It is told that the
property of periodic structures influences the stiffened plates’
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energy transmission and the vibration response as well.
Muzaffaruddin and Peter (2019) presented a new finite
element–based design method for the geometrical periodic
beam structures to aim a particular wanted attenuation
frequency band. Jin et al. (2021) have demonstrated and
analyzed the difference in band structures between lattice
structures (an array of straight and infinite cylinders) of 2D
acoustic metamaterials (AMMs) and 3D specimen models using
FEM. It is found that there are variations in the physical
characteristics (energy bands) between 2D AMMs and the 3D
specimen model due to the changes in the mode shapes. Maxit
et al. (2020) proposed a semi-analytical method to model the
vibro-acoustic dynamic behavior of the submerged cylindrical
shells periodically stiffened by axisymmetric frames through the
circumferential admittance approach by FEM. The impact of
Bloch–Floquet’s waves and the support spacing on the noise
radiation are brought out. Chenge et al. (2020) applied a
symplectic wave-based approach to know the vibro-acoustic
outcome of the submerged ring-stiffened cylindrical shells,
considering the hydrostatic pressure and acoustic-structure
reciprocity.

Assessing the structural integrity with mechanical wave is an
established nondestructive method for performing structural
health monitoring (SHM). In this case, knowledge of the
interaction between the wave propagation and the shape of the
waveguide is essential. Groth et al. (2020), for offshore oil
industry applications, they have studied the propagation
(dispersion curve) of mechanical waves determined by a
rectangular waveguide.

Thierry et al. (2018) have presented vibrational acoustics and
ultrasonic wave propagation analysis of the highly anisotropic
textile composite materials on a mesoscopic scale using the wave
finite element method. Band gap behavior within a particular
frequency range was predicted using a mesoscale model but not
observed in a macroscale model. The propagation of elastic or
acoustic waves in artificial periodic composite structures, known
as phononic crystals (PCs), has received a great deal of attention
(Kushwaha et al., 1993; Sigalas and Economou, 1994; Liu et al.,
2000; Wang et al., 2004). One of the most attractive
characteristics of PCs is that the propagation of sound and
other vibrations is forbidden in their elastic wave band gaps.
PCs are essentially periodic structures, and they have inherent
relations with the periodic structures widely used in traditional
engineering. Introducing the theoretical and calculation methods
of PCs into the investigation of dynamic behavior of periodic
structures in engineering will provide a new technique for the
control of vibration and noise.

Waveguides, like transmission lines, are structures used to
guide electromagnetic waves from point to point.
Electromagnetic waves in a rotationally symmetric and
perfectly conducting waveguide with a periodically varying
cross section are considered by Bostrom (1983). Using the
T-matrix approach, the axial wave number is derived. For a
waveguide where the radius varies sinusoidal with the axial
coordinate, the pass band and stop band modes are
numerically computed. It is reported that when the axial wave
numbers of two modes differ by a multiple of the wave number of

the wall corrugations, the result is a stop band in the following
cases for two TE (transverse electric) modes propagating in
opposite directions, for a TE and a TM (transverse magnetic)
mode in the same direction and sometimes for two TM modes in
opposite directions.

Earlier, the FE method in wave propagation analysis using the
periodic structure (PS) theory has been applied to multispan curved
panel rests on orthogonal array of the equi-spaced simple line
support by Pany et al. (2003) to determine the propagation
surface of circular cylindrical shells. In this method, the basic
periodic unit (i.e., any of the repeating units of curved panel) is
modeled by using the arbitrary triangular shallow shell FEM of
Cowper et al. (1970) and Sinha et al. (1992). The periodic structure
(PS) concept is then used to take into account the coupling between
the adjacent units. The capabilities of the combined FEM-PS theory
can, therefore, be exploited for the cost-effective prediction of
dynamical properties of the system by modeling only one bay of
such a system. These numerical methods enable high accuracy up to
high frequencies with very little computational effort and are the
recommended choice for predicting waves in one-dimensional and
two-dimensional single waveguides (beams, plates and shells, and
cylindrical structure).

Albeit these phenomena are well comprehended, most literature
reports on the periodic engineering structures are dedicated to the
development of theoretical and numerical approaches to know its
wave propagation behavior and characteristics. The purpose of this
work was to extend the approach (Abdel-Rahman and Petyt, 1980;
Pany et al., 2003) to analyze the wave propagation characteristics
(propagation surfaces) in 2D periodic (orthogonal line supported)
plate structures. Here, the shallow shell FE is employed to model a
periodic plate unit considering infinite radius of curvature. Only the
purely propagating waves with no attenuation are considered here.
Also, there is not much literature related to the current work (free
vibration of multi-supported flat panels) available. The first
propagation surface is plotted in a three-dimensional plot for a
2D periodic plate (rectangular and square plates) for plane wave
motion. It is observed that the three-dimensional plot of the first
propagation surface obtained from current PS-FEM is compared
well to that of Mead and Parthan (1979). The wave propagation
results are identified in the propagation surface along μx and μy,
respectively. Bounding frequencies of the first propagation surface of
multi-supported flat panels are compared. The frequency of a flat
finite plate (part of a periodic flat plate) with any number of spans
both axially and transversely is determined from the propagation
surface.

2 THEORY AND MODEL DEVELOPMENT
FOR FREE WAVE PROPAGATION IN AN
ORTHOGONAL LINE-SUPPORTED
PERIODIC PLATE

2.1 Stiffness and Mass Matrix of a Single
Curved Panel by Finite Element
A two-dimensional infinite uniform plate system is considered
resting on a grid of orthogonal simple line support composition of
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identical flat panels joined together in an identical manner at
equal intervals, a in the x-direction and b in the y-direction
(Figure 1). The “plane wave” type of motion is considered here.
The problem is attempted using a numerical method based on
Floquet’s PS theory and the FE discretization of a single periodic
unit of the periodic structure. Only a single periodic unit of the
structure is analyzed, which is approximated by using the FE
method. The periodic structure (PS) concept is then used to take
into account the coupling between the adjacent units. The wave
characteristics of each unit are obtained by the theory of wave
propagation in the periodic structure.

The basic periodic unit of a two-dimensional periodic plate
system (an assembly of periodic flat plates joined by on all sides
and corners) is identified by the two integers n=(n1, n2). This
represents the position of the unit within the periodic structure
(Figure 2).

Using the FE method, a periodic unit can be represented by a
model with the internal and boundary degrees of freedom (Pany
et al., 2003). Each periodic unit is joined to its adjacent units at all
sides and corners. Let {qI}, {FI}, {qL}, {FL}, { qR}, {FR}, {qB}, { FB},
{qT}, {FT}, {qLB}, {FLB}, {qRB}, {FRB}, {qLT}, {FLT}, { qRT}, and {FRT}

be the degrees of freedom and forces at the inside, left, right,
bottom, top, and corner of the cell (Figure 3).

The linear equation of motion of an undamped periodic unit or
cell is given by (Mead, 1973; Orris and Petyt, 1974; Pany et al., 2003)

([K] −Ω2[M]){q} � {F}, (1)
where [K] and [M] are the stiffness and inertia matrices for the

periodic unit, respectively. {q} and {F} are the generalized
displacements and forces, respectively, of the periodic unit. Ω
is the non-dimensional frequency (Ω � ω a2

π2

��
ρ
D

√
). a is the length

of the periodic unit. ω is the radian frequency in Hertz. D is the
bending stiffness (� Eh3

12(1−]2)), E is Young’s modulus of elasticity, ν
is Poisson’s ratio, and h is the thickness of the plate.

{q} � ⌈ qI qL qR qB qT qLB qRB qLT qRT⌉T, (2)
{F} � ⌈FI FL FR FB FT FLB FRB FLT FRT⌉T. (3)

These can be partitioned according to the interior, left, right,
bottom, top, and corner degrees of freedom (Abdel-Rahman and
Petyt, 1980; Pany et al., 2003); hence,

[K] �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KI,I KI,L KI,R KI,B KI,T KI,LB KI,RB KI,LT KI,RT

KL,I

KR,I

KB,I symmetric
KT,I

KLB,I

KRB,I

KLT,I

KRT,I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

A similar expression can be written for [M]. The element stiffness
(Cowper et al., 1970) and mass matrices (Sinha et al., 1992; Pany
et al., 2003), which are used in this work, are presented elsewhere.
For brevity, it is described in Supplementary Material. The degrees
of freedom at the nodes consist of out of plane displacements
w,w,x,w,y,w,xx,w,xy,w,yy and in-plane displacements
u, u,x, u,y, v, v,x, v,y.The triangular FE with 12 degrees of freedom
per node (Cowper et al., 1970) is shown in Figure 4.

FIGURE 1 | Two-dimensional multispan flat panels on simple orthogonal
line supports.

FIGURE 2 | Basic particular unit is identified by the two integers n=(n1,
n2), which represent the position of the unit within the structure ( two
dimensional periodic plate) as an assembly of the periodic flat panel joined
together on all sides and corners.

FIGURE 3 | One periodic unit showing interior and boundary degrees of
freedom (generalized forces and displacements of a single periodic unit).
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2.2 Incorporation of Floquet’s Principle to
Stiffness and Mass Matrices
The nodal forces {F} arise from all external forces acting on the
system and internal forces between the periodic unit and its
adjacent units. For free wave motion, {FI} = 0. However, the
force at the boundary of an element (the force of interaction
between one element and its neighbors) is not zero because it
transmits waves from one element to the next. This wave is
characterized by associating the degrees of freedom and
equivalent nodal forces of one unit (n1, n2) with the
corresponding degrees of freedom and forces in adjacent
units by relationship (Abdel-Rahman and Petyt, 1980; Pany
et al., 2003) (Figures 2, 3). The propagation constant μ (μr +
iμi) is generally complex. In this work, free wave propagation is
considered with a purely imaginary propagation constant μ =
iμi. This means that the current approach can predict the
dispersion relation of “pure propagation band without
attenuation” and does not produce “attenuation but no
propagation band” or pure “attenuation but non
propagating band”. This is based on the a priori assumption
of the imaginary propagation constant (μr = 0), which is
generally not true.

The propagation constants are represented by iμx and iμy in
the axial direction (x direction of the plate) and transverse
direction (y-direction of the plate), respectively. This condition
is met when a “plane wave” of frequency ω propagates across the
line reinforcement plate at an angle θ with respect to the x-axis,
and each periodic unit of the plate oscillates in the same complex

mode w (x, y) eiωt, but there is a phase difference of μx in the x
direction and μy in the y direction between the motion of one bay
and the motion immediately next to it (Mead and Parthan, 1979;
Pany et al., 2003). This phase difference is the same for all pairs of
adjacent bays and is the “propagation constant” of the wave. The
relation between the nodal forces can be expressed of the form

{FL}n1+1,n2 � e−iμx {FL}n1 ,n2; {FB}n1 ,n2+1 � e−iμy {FB}n1 ,n2,{FLT}n1+1,n2 � e−iμx {FLT}n1 ,n2; {FRB}n1 ,n2+1 � e−iμy {FRB}n1 ,n2,
{FLB}n1+1,n2+1 � e−i(μx+μy){FLB}n1 ,n2.

(5a − e)
The nodal degrees of freedom can be related as follows.

{qL}n1+1,n2 � e−iμx{qL}n1 ,n2; {qB}n1 ,n2+1 � e−iμy{qB}n1 ,n2,{qLB}n1+1,n2 � e−iμx{qLB}n1 ,n2; {qLB}n1 ,n2+1 � e−iμy{qLB}n1 ,n2,
{qLB}n1+1,n2+1 � e−i(μx+μy){qLB}n1 ,n2.

(6a − e)
At the common boundaries between the periodic unit or cell

(n1 and n2) and its neighboring periodic units, displacements
must be equal, with interconnecting forces being in equilibrium,

{FR}n1 ,n2 + {FL}n1+1,n2 � 0,
{FT}n1 ,n2 + {FB}n1 ,n2+1 � 0,
{FRT}n1 ,n2 + {FLT}n1+1,n2 + {FRB}n1 ,n2+1 + {FLB}n1+1,n2+1 � 0.

(7a − c)
The displacements can be related as follows:

{qL}n1+1,n2 � {qR}n1 ,n2,{qB}n1 ,n2+1 � {qT}n1 ,n2,{qLB}n1+1,n2 � {qRB}n1 ,n2; {qLB}n1 ,n2+1 � {qLT}n1 ,n2,{qLB}n1+1,n2+1 � {qRT}n1 ,n2.
(8a − e)

Substituting Eq. (5) into Eq. (7) gives

{FR}n1 ,n2 + e−iμx {FL}n1 ,n2 � 0,
{FT}n1 ,n2 + e−iμy {FB}n1 ,n2 � 0,

{FRT}n1 ,n2 + e−iμx {FLT}n1 ,n2 + e−iμy {FRB}n1 ,n2 + e−i(μx+μy){FLB}n1 ,n2 � 0.

(9a − c)
Similarly using Eq. (6) into Eq. (8) gives

{qR}n1 ,n2 � e−iμx{qL}n1 ,n2; {qT}n1 ,n2 � e−iμy{qB}n1 ,n2,{qRB}n1 ,n2 � e−iμx{qLB}n1 ,n2; {qLT}n1 ,n2 � e−iμy{qLB}n1 ,n2,
{qRT}n1 ,n2 � e−i(μx+μy){qLB}n1 ,n2.

(10a − e)

One can use relationship (Eq. 10) to remove { qB }, { qT }, { qRB
}, { qLT }, and { qRT} at the boundaries of the periodic cells. Using
degrees of freedom and forces (Eqs (8) and (10)) on the free
vibration (Eq. 1), one can obtain the following equations:

([ �K(μx, μy)] −Ω2[ �M(μx, μy)])
⎧⎪⎪⎪⎨⎪⎪⎪⎩

qi
qL
qB
qLB

⎫⎪⎪⎪⎬⎪⎪⎪⎭ � 0, (11)

where

FIGURE 4 | Geometry of the arbitrary triangular shallow shell element
(Cowper et al., 1970)
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[ �K(μx, μy)] � [W′][K][W], (12a)
[ �M(μx, μy)] � [W′][M][W]. (12b)

[W’] = [Wp]T, and p denotes the complex conjugate.

[W] �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0
0 I 0 0
0 e−iμx 0 0
0 0 I 0
0 0 e−iμy 0
0 0 0 I
0 0 0 e−iμx
0 0 0 e−iμy

0 0 0 e−i(μx+μy)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

Equation (11) represents an eigenvalue problem in Ω for the
given values of μx and μy.

[ �K] and [ �M] are Hermitian, i.e., [ �Kp]T � [ �K], [ �Mp]T � [ �M].
Equation (11) can be solved for different values of real

propagation constants μ x and μy to find the corresponding
frequencies of propagation and associated wave forms. μ x and
μy are varied from 0 to π (3.142).

3 RESULTS AND DISCUSSIONS

3.1 Model Simulation
Current numerical (FE) codes have been developed using the
arbitrary triangular high-precision shallow shell finite element
method (FEM), taking into account the periodic structure (PS)
theory. The code is used in the plate periodic units where the
radius of curvature tends to be infinite. The FE discretization is
selected based on the convergence studies to evaluate reasonably
accurate results and uses a 4 × 4 mesh (Figure 5) to derive the

wave characteristics (the propagation surface) of periodic square
and rectangular plates. The eigenvalues of Eq. (11) were
calculated from the FE mass and stiffness matrix using the
Floquet’s principle (the periodic structure theory) for thin
square and rectangular line simply supported periodic unit
plate. The natural Ω of the flat panel is obtained for various
propagation constants using the current PS-FEM code. This can
significantly reduce the number of DOFs involved in the
calculation and significantly reduce the calculation time (Pany
et al., 2003) compared to other traditional FE approaches (Pany
et al., 2001).

3.2 Validation
3.2.1 Propagation Surface of the Periodic Square Plate
The propagation surfaces comprised nondimensional frequency
Ω and propagation constants (μx and μy) for the first propagation
surface of the square plate, as shown in Figure 6. The variation of
nondimensional frequency versus axial (μx) and transverse (μy)
propagation constants is presented in Table 1. The variation of
frequencies shows a symmetric pattern for the square plate. The
trend of the propagation surface generated using the present
periodic FE is similar to that of Mead and Parthan, (1979), and
nondimensional frequencies values are compared well. It may be
noted that Mead and Parthan (1979) have used beam functions
and polynomial function, combined with the periodic structure
theory to find the propagation surface of two-dimensional plates.

3.2.2 Propagation Surface of the Periodic Rectangular
Plate
The propagation surface of the rectangular plate is shown in
Figure 7. The variation of the nondimensional frequency versus
axial (μx) and transverse (μy) propagation constant is presented in
Table 2 and Figure 7. The trend of the propagation surface
generated using the present PS-FEM is similar to that of Mead
and Parthan, (1979), and nondimensional frequencies values are
compared well.

3.3 Bounding Frequency of the Propagation
Surface
The displayed frequency (Figures 6, 7; Tables 1, 2) can be
identified by the natural frequency of each square or
rectangular plate. The modes and boundary conditions are
described as follows. The highest point in the propagation
surface is μx = μy = 0. In this state, all the adjacent elements
oscillate in phase with each other. The frequency (Ω) at this point
is the same as the natural frequency of a single periodic element
with all its edges fixed (CCCC) boundary conditions and is the
upper bounding frequency of the first propagation band of the 2D
periodic plate. The lowest point of the propagation surface is at μx
= μy = π (3.142). In this state, the adjacent bays of the plate
oscillate in antiphase to each other, the corresponding frequency
(Ω) is the same as the natural frequency of a single periodic
element, and all its edges are simply supported (SSSS) boundary
conditions. This frequency is the lowest bounding frequency of
the first propagation band of the 2D periodic plate. In the
directions of μx = μy = π, the waves propagate at the lowest

FIGURE 5 | FE model (triangular mesh (4 × 4)) for one periodic unit
showing nodes corresponding to left(L), left bottom (LB), bottom (B), right
bottom (RB), right(R), right top (RT), top(T), and left top (LT).
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possible free wave frequency. Also, if the periodic plate is
subjected to a plane harmonic pressure field that convicts in
that direction, and at that frequency the largest possible plate
response is elicited (Mead and Parthan, 1979). The boundary
conditions are shown in Figure 8.

Furthermore, the other two bounding points of the
propagation surface are in between the lowest (μx = μy = π)
and highest (μx = μy = 0) points. The two points are
corresponding to propagation constants (i) (μx = π, μy = 0)
and (ii) (μx = 0, μy = π), respectively. These two points’
frequencies are corresponding to a finite square plate with (i)
axially fixed and simply supported transverse direction (CSCS)
and (ii) axially simply supported and fixed in a transverse
direction (SCSC). The bounding frequencies and modes are
tabulated and presented in Table 3.

3.3.1 Single Square Plate (a/b = 1)
The highest bounding point in the propagation surface is μx = μy
= 0. The frequency (Ω) at this point is the same as the natural
frequency of a single periodic element with all its edges fixed. The
current PS-FEM analysis shows that the nondimensional
frequency (Ω) is 3.75 (Table 3). The value of the
nondimensional frequency of all edges fixed of a square plate
is 3.6586 (Mead and Parthan, 1979) and vibrating in the first (m =
1) axial (x-direction) and first (n = 1) transverse (y-direction)
modes. The similar values Ω = 3.690, Ω = 3.66, and Ω = 3.65 are
reported by Kolarevic et al. (2016) using DSM based on the HSDT
by KrishnaBhaskar and MeeraSaheb (2017) using couple
displacement field energy formulation and by Kalita and
Haldar (2018) using the 9-noded finite element, for a four
edge-fixed square single plate, respectively. The vibration
modes are corresponding to m = n = 1. Here, the frequency
values reported by Kolarevic et al. (2016) and KrishnaBhaskar
and MeeraSaheb (2017) are converted to the present
nondimensional frequency form.

Similarly, the lowest bounding point of the propagation
surface is at μx = μy = π. The frequency (Ω) at this point is
the same as the natural frequency of a single periodic element
with all its edges simply supported. The present PS-FEM analysis
shows the nondimensional frequency (Ω) of 2.0 (Table 3). The
value of the nondimensional frequency (Ω) of all edges simply
supported square plate is 2.0 (Mead and Parthan, 1979) and
vibrates in the first (m = 1) axial (x-direction) and the first (n = 1)
transverse (y-direction) modes. The nondimensional
frequency(Ω) values of 2.1, 1.99, and 2.00 are reported by
Kolarevic et al. (2016), KrishnaBhaskar and MeeraSaheb
(2017), and Kalita and Haldar (2018) for four-edge simply
supported square single plates, respectively. The vibrating
mode is m = n = 1.

FIGURE 6 | Comparison of the present propagation surface of the periodic square plate using PS-FEM with (Mead and Parthan, 1979).

TABLE 1 | Nondimensional frequencies (Ω) for a periodic plate (orthogonal line-
supported) with the square element.

μy 0 π/5 2π/5 3π/5 4π/5 π

μx (0.628) (1.257) (1.885) (2.513) (3.142)

0 3.7504 3.6944 3.5257 3.2785 3.1147 3.0580
3.6586 3.5584 3.3439 3.1334 2.9889 2.9380

π/5 (0.628) 3.6944 3.5844 3.3687 3.1148 3.0419 2.9944
3.5584 3.4553 3.2341 3.0160 2.8658 2.8127

2π/5 (1.257) 3.5257 3.3687 3.1283 2.8929 2.7143 2.6592
3.3439 3.2341 2.9976 2.7628 2.5994 2.5414

3π/5 (1.885) 3.2785 3.1148 2.8929 2.5886 2.3877 2.3281
3.1334 3.0160 2.7628 2.5091 2.3307 2.2668

4π/5 (2.513) 3.1147 3.0419 2.7143 2.3877 2.1611 2.0886
2.9889 2.8658 2.5994 2.3307 2.1398 2.0709

π (3.142) 3.0580 2.9944 2.6592 2.3281 2.0886 2.0000
2.9380 2.8127 2.5414 2.2668 2.0709 2.0000

Upper values are present PS-FEM; lower values of (Mead and Parthan, 1979).
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Again, the other two bounding points of the propagation
surface are in between the lowest (μx = μy = π) and highest
(μx = μy = 0) points and are corresponding to propagation
constants (i) (μx = 0, μy = π) and (ii) (μx = π, μy = 0),
respectively. These two points’ frequencies are corresponding

to a single square plate with SCSC and CSCS boundary
conditions. In case of a square plate, in both conditions, the
frequency will be same. The nondimensional frequency (Ω)
reported by Mead and Parthan (1979) is 2.938 and vibrates in
the first axial mode and first transverse mode. The
nondimensional frequency values (Ω) calculated in Kolarevic
et al. (2016) and Monterrubio and Ilanko (2015) are 3.025 and
2.933, respectively, in the isolated panel, which is close to the
bounding frequency value (Ω = 3.058) of the current PS-FEM
approach (Table 3).

It can be concluded that the propagation surface or band
obtained using the combined FEM with PS approach can be used
to find the frequency of the single plate for various extreme edge
boundary conditions. However, when using the traditional FE
approach, the HSDT and couple displacement field approach, to
analyze the free vibrations of a finitely isolated single plate,
requires a large amount of memory and more analysis time in
the computer.

3.3.2 Single Rectangular Plate (a/b = 0.5)
The highest point inside the propagation surface is μx = μy = 0.
The frequency (Ω) at this point is the same as the natural
frequency of a single periodic element with all its edges
absolutely fixed (Figure 9). The present PS-FEM shows that
the nondimensional frequency (Ω) is 2.5662 (Table 3). The value
of the nondimensional frequency (Ω) of all edges fixed to a
rectangular plate is 2.497 (Mead and Parthan, 1979) and vibrates
in the first (m = 1) axial (x-direction) and first (n = 1) transverse
(y-direction) modes. The comparable values 2.5603 and 2.493 are
reported by KrishnaBhaskar and MeeraSaheb (2017) and Kalita
and Haldar (2018) for the four-edged rectangular plate and
vibrates in a mode identical to that of the present approach.
Here, the frequency value reported by KrishnaBhaskar and
MeeraSaheb (2017) is converted to the current
nondimensional frequency form.

FIGURE 7 | Comparison of the present propagation surface of the periodic rectangular plate using PS-FEM with (Mead and Parthan, 1979).

TABLE 2 | Nondimensional frequencies (Ω) for a periodic plate (orthogonal line-
supported) with the rectangular element.

μy 0 π/5 2π/5 3π/5 4π/5 π

μx (0.628) (1.257) (1.885) (2.513) (3.142)

0 2.5662 2.5419 2.5219 2.4933 2.4595 2.4324
2.4974 2.4865 2.4619 2.4368 2.4195 2.4134

π/5 (0.628) 2.3912 2.3810 2.3599 2.3324 2.3198 2.2852
2.3478 2.3362 2.3099 2.2830 2.2644 2.2579

2π/5 (1.257) 2.1342 2.0912 2.0521 2.0118 1.9982 1.9698
2.0330 2.0198 1.9898 2.0118 1.9377 1.9302

3π/5 (1.885) 1.7858 1.7249 1.6964 1.6728 1.6653 1.6280
1.7148 1.6995 1.6647 1.6289 1.6041 1.5954

4π/5 (2.513) 1.5522 1.5114 1.4202 1.3696 1.3689 1.4000
1.4814 1.4640 1.4243 1.3835 1.3550 1.4000

π (3.142) 1.3891 1.3784 1.3345 1.3162 1.2911 1.2980
1.3944 1.3760 1.3340 1.2908 1.2606 1.2500

Upper values are present PS-FEM; lower values of (Mead and Parthan, 1979).

FIGURE 8 | Periodic unit (square plate, a/b = 1) with different edge
boundary conditions (A) simply supported (SSSS), (B) axially fixed and simply
supported transverse direction (CSCS), (C) axially simply supported and fixed
transverse directions (SCSC), and (D) all edges fixed (CCCC).
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Similarly, the bottompoint of the propagation surface is at μx = μy
= π. The frequency (Ω) at this point is the same as the natural
frequency of a single periodic element or isolated plate with all its

edges simply supported (Figure 9). The present FEM solution shows
a value (Ω) of 1.3 (Table 3). The nondimensional frequency (Ω)
value of 1.25 is reported by Mead and Parthan, (1979) with all edges
simply supported for the rectangular plate and vibrating in the first
(m = 1) axial (x-direction) and first (n = 1) transverse (y-direction)
modes. The nondimensional frequency (Ω) values of 1.25, 1.251 are
reported by KrishnaBhaskar andMeeraSaheb (2017) and Kalita and
Haldar (2018) for the four-edged simply supported single
rectangular plate, respectively, and vibrating in the identical mode
to present analysis i.e., m,n = 1,1 and (Mead and Parthan, 1979).

The other two boundary points of the propagation surface are
in between the lowest point (μx = μy = π) and the highest point (μx
= μy = 0), corresponding to the propagation constant (i) (μx = 0,
μy = π) and (ii) (μx = π, μy = 0). The nondimensional frequency
(Ω) values for the SCSC (μx = 0, μy = π) and CSCS (μx = π, μy = 0)

TABLE 3 | Nondimensional bounding frequencies and bounding modes of the periodic plate.

Propagation constant
(μx, μy)

Bounding non-dimensional frequencies of the
first propagation surface

Bounding modes of the first propagation surface
(Figures 6, 7) (m = 1; n = 1)

Square
plate (a/b = 1.0)

Rectangular
plate (a/b = 0.5)

Square
plate (a/b = 1.0)

Rectangular
plate (a/b = 0.5)

(0, 0) 3.7504 2.5662

(π, 0) 3.0580 1.3891
(3.142, 0)

(π, π) 2.0000 1.2980
(3.142, 3.142)

(0, π) 3.0580 2.4324
(0, 3.142)

FIGURE 9 | Periodic unit (rectangular plate, a/b = 0.5) with different edge boundary conditions(A) SSSS, (B) CCCC, (C) CSCS, and (D) SCSC.

FIGURE 10 | Finite (6 equal span) 2D periodic line supported rectangular
plate with fixed edge boundary conditions.

Frontiers in Mechanical Engineering | www.frontiersin.org July 2022 | Volume 8 | Article 9265599

Pany Wave Propagation in Periodic Plate

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


boundary conditions are the result of the current PS-FEM
approach, 2.4324 and 1.3891, respectively (Table 3). These are
well compared to Mead and Parthan, (1979).

3.4 Identification of the Lowest Frequency
of the Multi-Span Flat Panel in the
Propagation Surface
Xiang et al. (2002) conducted a study to determine the free vibration
frequencies of multispan rectangular and square Mindlin plates in
exact solutions. An isotropic plate that is simply supported by the

two edges parallel to the x-axis (y = 0 and y = a) is considered. There
are internal line supports (n-1) in the x direction that divide the plate
into n spans. The internal line support imposes a zero lateral
displacement (w) along the line support of the plate. The exact
frequency parameters of a rectangular Mindlin plate with two equal
spans are presented using the Levy solution method (Xiang et al.,
2002), and the four equal spans are presented using the receptance
method. The first mode nondimensional frequency (Ω) parameters
for these cases with simply supported parallel to x-axis of plates
(Xiang et al., 2002) and four edges simply supported (Azimi et al.,
1984) is reported of 2.0. It corresponds exactly to the current PS-

TABLE 4 | Nondimensional frequencies of the 6 × 1 span finite periodic plate (fixed on four edges) obtained from the propagation surface of the square periodic plate.

μx Present non-dimensional natural
frequencies (Ω) obtained
from discretization of
the propagation curve
(Figure 11) with (μx = 0

to π), μy = 0
of the propagation
surface (Figure 6) of
the periodic square

plate

Kim and Dickinson (1987) % Diff with
Kim and Dickinson

(1987)

0 3.750 3.738 0.315992
0.5236 (π/6) 3.708 3.646 1.668174
1.0472 (2 π/6) 3.585 3.483 2.841888
1.5708 (3π/6) 3.379 3.258 3.603985
2.0944 (4π/6) 3.205 3.081 3.860265
2.6180 (5π/6) 3.085 2.970 3.697253

FIGURE 11 | Propagation band A-B (at A, Ω = 3.750 and μx = 0; at B, Ω = 3.058 and μx = π (3.142)) of the propagation surface (Figure 6) of the periodic square
plate using present PS-FEM.
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FEM solution frequency (Ω) values of 2 vibrating in the first axial
and transverse modes (m = n = 1) and is simply supported by a
square panel with four edges. It also shows the exact frequency
parameters of the two, three, and four equi-span rectangularMindlin
plates with internal line support and simply supported by two edges
parallel to the x axis (y = 0 and y = a), using the Levy solutionmethod
(Xiang and Wei, 2002). The nondimensional frequency (Ω)
parameter of the first mode in these cases, where parallel to the
x-axis of the plate is simply supported, does not change.

Kim and Dickinson (1987)’s free vibration frequency uses the
Rayleigh–Ritz method’s considering polynomial functions for
displacement, with five internal line supports and six equal-
span thin rectangular plates (a/b = 6) fixed to four edges
(Figure 10), for the flexural vibration. They (Kim and
Dickinson, 1987) showed the first six natural frequency
parameters (Table 4 of Kim and Dickinson (1987)’s study) for
the six equal-span thin rectangular plates, fixed on four edges.
The lowest frequency (Ω) in this case is 3.738, and the current PS-
FEM value of the periodic square plate match is Ω = 3.7504 (μx =
0, μy = 0) (Tables 1, 3).

Therefore, one more advantage of this approach is that the
same propagation surface can be used to find the lowest frequency
of multi-supported flat panels with the internal line supports.

3.5 Estimation of Natural Frequencies of 2D
Finite Periodic Plates on Simple Line
Supports From the Current Propagation
Surface or Band
Now consider a rectangular periodic plate with Nx elements in the
x-direction and Ny elements in the y-direction (Figure 10). Here, Nx

is 6, Ny = 1, and a = b. The total length and width of the plate are Nxa
(= 6 a) and Nyb (= a), respectively. As mentioned earlier, the plate is
assumed to be on simple line supports, even if the outermost
boundaries are completely fixed. If the finite plate has rigid edges
that impede the movement of the edges, free vibrations can occur at
the natural frequencies of μx = i π/Nx and μy = j π/Ny because there is
no phase change in the reflection process. This is a direct extension
of Sen Gupta’s (1970) method for finding the natural frequency of
the one-dimensional periodic beams.

For a particular quadrant (Figure 6) of a propagation surface
between the two bounding frequencies (propagation band A-B
as shown in Figure 6 obtained using the present FEM and
plotted in Figure 11), all the distinct natural frequencies of a
finite plate (extreme boundary fixed, Figure 10) can be read off
in this frequency range from the propagation surface
corresponding to μx = iπ/Nx (i = 0,1,2, . . . , Nx -1) and μy =
0. The results obtained from the present PS-FEM approach
using the aforementioned discretization scheme of Gupta,
(1970) is shown in Table 4.

4 CONCLUSION

The purpose of this studywas to apply a numericalmethod combined
with Floquet’s theory (periodic structure concept) to the periodic

plate structure. Here, the FE discretization of a single periodic unit is
performed using the arbitrary high-precision triangular element. The
periodic structure (PS) concept is then used to take into account the
coupling between the adjacent units. This method can predict the
dispersion relation of the “pure propagation band without
attenuation” and does not generate the “propagation band with
attenuation”. In this study, it was shown that the propagation
surface of the periodic line-supporting orthogonal plate can be
obtained from the present developed PS-FEM code (combination
of the conventional FE method with the periodic structure theory).
The current approach provides the naturalΩ of the flat periodic plate
for various propagation constants. The upper and lower bounding
frequencies of the propagation band can be identified by the natural
frequency of the well-known normal mode type of the single plate
element. The current numerical results are compared well to the
available literature.

From this study, it is demonstrated that one can use the
propagation surface or band obtained by the combined PS and
FEM approach to find single plate frequencies for various edge
boundary conditions. However, analyzing the free vibrations of a
finite plate with the extreme edge boundary conditions, using the
traditional FE approach without the PS theory, requires a large
amount of memory and computer analysis time. Another
usefulness of this approach is that one can use the
propagation surface to find the natural frequencies of a finite
multi-supported flat panel with internal line supports through
discretization of the propagation band.
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