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The present contribution presents a comparison between two types of controls,

namely, the optimal linear quadratic regulator (LQR) and the Kalman-LQG

controller using the model order reduction process. Due to numerical

constraints, the models of structures have been reduced so that the design

of controllers and/or estimators could be performed. The proposed method

results in a significant reduction in computational costs for dynamic analysis

without compromising on accuracy. Transforming the full order state-space

resulting from finite element space to a lower model reduces the simulation

time with a few degrees of freedom and helps to implement easily the control

without changes in the dynamics of the structure. The estimator Kalman is used

here in order to estimate the modal states of the system that are used in modal

analysis. In this context, a one-side cantilever Timoshenko beam is chosen with

perfectly bonded piezoelectric layers of actuators and sensors to apply this

comparison. The Monte Carlo simulation was used to improve the number and

location selection of piezoelectric sensors on the chosen beam model.

Neglecting environmental effects, numerical results relating to this

comparison without and with model order reduction are established.

Simulation results are presented to illustrate the effectiveness of the

proposed vibration control algorithm for the studied beam.
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1 Introduction

Themodel order reduction (MOR) process, also called the reduced order model (ROM), is

studied and used in many fields of engineering and mathematics. More precisely, it is used to

reduce the computational cost and the complexity of computations in modeling and control of

structures without changes in their accuracy. Mathematically, the concept of reduced models is
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developed from solving eigenvalue problems that require a

considerable amount of computation. It would be very helpful to

reduce the size of themodelwhile keeping the accuracy of eigenvalues

and vectors.

A wide range of methods, concerning linear and nonlinear

models of reduction, has been reported in the literature. For

example, modal and balanced truncations have been investigated

for linear models and orthogonal decomposition by Hughes and

Skelton (1981) and Willcox and Peraire (2002). The principal

component analysis is analyzed for nonlinear models by Hsieh

(2002). The balanced truncation presented by Willcox and Peraire

(2002) and Hsieh (2002) has used the snapshot matrix for singular

decomposition that is not appropriate with the matrices of full

models. Another frequently used model reduction technique in

linear structural dynamics, investigated by Callahan et al. (1989), is

the system equivalent reduction expansion process (SEREP), which

also allows for the preservation of the modes and dynamics of the

model. It is this last technique that will be used in this study because

of its adaptation to all types of structures.

Regarding the control procedure, increasing the order of the

system increases the order of the controller. A relatively high order of

the controller is complicated to design because of a large number of

states and can cause system instability. The LQR control requires the

measurement of all state variables, while in the linear quadratic

Gaussian LQG controller, this measurement of all states is not

necessary. The LQG-Kalman design is implemented by combining

the optimal regulator and the Kalman filter in one optimal

controller/estimator to obtain the estimated state of the input

vector and the measured output vector (generally unpredictable).

In the last decade, several studies have been conducted in the field of

active vibration control. Many studies investigated procedures to

make control algorithms better and faster [Hsiao et al. (2006), Chen

et al.( 2007), Sharma et al. (2007), Tanaka and Sanada (2007), Kim

et al. (2011), and Hu and Zhu (2012)]. The control of thin

constrained composite damping plates with double piezoelectric

layers has been investigated by Cao et al. (2020). Some procedures

have been proposed in the literature to analyze optimal placements

of sensors and actuators [Rader et al. (2007), Rao andAnandakumar

(2007), and Spier et al. (2009)]. Some examples of the analysis of

thermal effects on smart structures can be found in Sanbi et al.

(2014,2015), Sharma et al. (2016), and Gupta et al. (2012).

In this study, the reduced model is applied to the finite element

method and the control of the dynamics of a piezoelectric cantilever

Timoshenko beam. By applying Hamilton’s principle to obtain the

equation of motion, this process is used to analyze the eigenvalues of

full order model matrices and to reduce their dimensionality. Then,

the robust control check is applied to obtain simplified system

matrices. Control gain matrices are also obtained in a reduced

subspace to evaluate the required control forces in the dynamics

of the full model. Optimal linear quadratic regulator (LQR) and the

regulator-estimator (LQG-Kalman) are then applied to the obtained

reduced modal matrices. The relating gain matrices are further used

in the estimation of required control forces needed to control the

dynamics of the full order model. The unmeasured states of the

Kalman filter are estimated by assuming that noises are non-

Gaussian, from where comes the LQG control. Note here that the

LQG-Kalman control algorithm is used in case of multiple controls

needed to be addressed simultaneously to find control gains that

provide the best possible performance indexes.

The contribution of this study is to present an approach to the

implementation of the robust control LQG-Kalman of a smart beam

in a reduced model. In the last decade, many studies were developed

using just the LQR procedure. For example, the implementation of

the LQR control using an improved genetic algorithm (Amini et al.,

2020), topology optimization (Hu et al., 2018), using a modified LQ

terminal controller (Wang et al., 2021), and using the reducedmodel

with the modal truncation method (Vladimír et al., 2021). On the

other hand, to simplify and optimize the control procedure, the

Monte Carlo simulation is used to select just the nodes of the sensors

distributed along the beam that present relatively large amplitudes of

displacements. However, considering that the nodes of all sensors

cause the instability of control, it is very difficult to implement this

setup. This allows to reduce the execution time and save

computational costs. This strategy presents a multitude of choices

in terms of dimensions and the number of sensors to be used. Only

nodes with large displacements are considered, which will minimize

the number of sensors. With this method, it is possible to consider

any position of the disturbance on the beam and not only at its end

(as usually used). The simulation can be elaborated by considering

either the nodes or their relative dofs. Here, it is to be noted that with

the dofs’ selection, the results of the control are more precise because

one can neglect certain displacement nodes.

2 Mathematical modeling

2.1 Timoshenko model

A cantilevered isotropic Timoshenko beam with length L and

a constant cross section is considered and presented in Figure 1.

A coordinate system is defined with x being the longitudinal axis

and y and z being the transverse axes. It is assumed that the

bending-torsion coupling is negligible and the study is restricted

to the x–z plane. For FEM modeling, a regular two-node

Timoshenko beam finite element is considered. The element is

assumed to have two degrees of freedom w, θ. The displacement

relation in the three directions of the beam can be written as

u x, y, z, t( ) � zθ x, t( ) � z
zw

zt
− β x( )( ), (1)

v x, y, z, t( ) � 0, (2)
w x, y, z, t( ) � w x, t( ). (3)

where w and θ are the transverse displacement along the z-axis

and the rotation of the cross section about the y-axis; u and v are,

respectively, the displacements along the x- and y-axis; β(x) is
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corresponding to shear bending neglected here. The strain

components are given by

εxx � zu

zx
� zu

zθ

zθ

zx
� z

zθ

zx
, (4)

εyy � zv

zy
� 0, (5)

εzz � zw

zz
� 0. (6)

where εxx, εyy, and εzz are the longitudinal and the transverse

strain in the directions x, y, and z, respectively.

2.2 Piezoelectric constitutive equations

The constitutive equations of the piezoelectric field and

electromechanical behavior can be expressed by

σ ij � Cijklεkl − ekijEk, (7)
Di � eijkεkl + ϵikEk. (8)

where {ε} and {σ} are the strain and the stress tensors,

respectively, [C] is the elastic constant tensor, [e] is the

piezoelectric stress coefficients, [D] is the electric

displacement, [ϵ] are the electric permittivities, [E] is the

electric field intensity components with E = −ϕ,i, and ϕ is the

electric potential.

2.3 Sensing equations

The output charge produced by the strain in the structure

is deduced from the direct equation of piezoelectricity. The

total charge Q(t) generated by the strain on the surfaces of

sensors produce the total current and is given by

i t( ) � zWe31 ∫
TP

0

NT
a _qdx (9)

where z = tb/2 + ta, e31 is the piezoelectric charge/stress constant,W

is the width of the beam, _q is the time derivative of the modal

coordinate vector, and NT
a is the second spatial derivative of the

mode shape function of the beam. This current is converted into the

open-circuit sensor voltage Vs using a signal conditioning device

with gain Gc and applied to an actuator with the controller gain Kc.

Therefore, the sensor output voltage can be written as

Vs � GczWe31 ∫
TP

0

NT
a _qdx (10)

or as a scalar vector product

Vs t( ) � pT _qdx (11)

where pT is a constant vector. Assuming that the capacitance of

the cable between the sensor and signal conditioning device and

the temperature effects are neglected, the input voltage to the

actuator Va(t) is given by

Va t( ) � KcGczWe31 ∫
TP

0

NT
a _qdx (12)

Note that the sensor output depends on the derivative of the

mode shape.

2.4 Actuating equations

Theoretically, the actuator strain is derived from the converse

piezoelectric equation. The strain developed by the electric field E

on the actuator layer is given by

FIGURE 1
(A) Smart cantilever beam with the piezoelectric elements and controlling box. (B) Timoshenko two-nodes finite element.
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εA � d31E � d31V
a t( )/ta (13)

When the input to the actuator Va(t) is applied in the

thickness direction; the stress can be written as

σA � d31EV
a t( )/ta (14)

The resultant momentMA acting on the beam is determined

by integrating the stress through the structure thickness as

follows:

MA � Ed31�z∫
lp

NθV
a t( ) (15)

where �z is the distance between the neutral axis of the beam and

the piezoelectric layer and [Nθ]T is the first spatial derivative of

the mode shape function of the beam.

The control force applied by the actuator can be written as

fctrl � Ed31�zV
a t( ) (16)

Using a constant vector hT, the force of control can be

expressed in a scalar product as

fctrl � hVa t( ) (17)

If an external force fext is applied, the total force vector of

control becomes

ftot � fctrl + fext (18)

2.5 Monte Carlo procedure description

The Monte Carlo method is used here to select randomly the

number of sensors and their discrete location under some

criteria. This is accomplished by minimizing the variance

based on randomly chosen points representing the sensor’s

location. The method is not detailed in this study. One can

find some detailed formulations in Swann and Chattopadhyay

(2006). These points, assigned randomly, generated

measurements based on a specified distribution. First, it is

necessary to define some variables such as structure

dimensions, the grid division, the nodal density, and the

number of repetitions in the Monte Carlo algorithm. The

division map depends on the predefined dimensions of the

structure. The data are randomly produced for each grid

point established from the defined statistical criteria of the

model. Random grid points are chosen from the grid map

and the analysis is accomplished based on the respective

locations of these points. The mean-variance results are

calculated and stored as optimization variables. These steps

are reproduced and repeated until the minimum mean

variance is found. The sensor locations that generated the

minimum mean variance are therefore the most optimal

sensor placement based on the chosen number of repetitions.

3 Reduced order model

A two-node beam element with two mechanical (ω, θ) and

one electric (ϕ) dof at each node is considered (Figure 1). The

beam has been decomposed into 100 elements of 30 cm length.

The finite element model of the beam is derived using Hamilton’s

principle, and the compact equation of motion for undamped

system with electromechanical coupling can be written as

Mqq€q +Kqqq +Kqϕϕ − F � 0 (19)
Kϕqq +Kϕϕϕ − Qa � 0 (20)

where Kqϕ and Kϕϕ are the global stiffness matrix due to

electromechanical coupling and the global stiffness matrix due

to the electric dof, respectively; ϕ is the electric potential vector

corresponding to the piezoelectric actuators; Qa is the vector of

electric charge. Using back substitution for ϕ from Eq. 20 into Eq.

19 and taking into account the damping effect, the governing

second-order differential equation for the damped system in a

compact form is given by

M €X t( ) + C _X t( ) + KX t( ) � F t( ) (21)

where M, C, and K denote the mass, Rayleigh damping, and

stiffness matrices of a full order system of size n × n, respectively.

Also, X(t), same as (q(t)), _X(t) and €X(t), represent the

displacement, velocity, and acceleration vector of size n × 1,

respectively. To apply the reduced model, Eq. 21 will be used in

all next theoretical equations and numerical simulations.

The reduced process is a global reduction algorithm that is

based on the eigenvalue analysis of the FEMmodel. There are two

reduction process levels; reduction in the number of modes and

reduction in dofs. The transformation matrix obtained using this

algorithm transform the full model to a lower subspace using

selected eigenmodes with few arbitrary dofs. With this modal

matrix, a system can be written in terms of modal coordinates

and for nm eigenmodes as

X t( ) � ψ n×nm( )q̂ nm×1( ) t( ) (22)

If only n1 eigenmodes are considered, the solution can be

written as

X t( ) � ψ n×n1( )q n1×1( ) t( ) (23)

By classifying the full order system into master and slave dofs and

retaining only “nm” eigenmodes in Eq. 23, we get in terms of

active dofs

X t( ) � Xm t( )
Xs t( ){ } ≈ ψm t( )

ψs t( ){ }.q̂j t( ) (24)

where q̂nm is the modal matrix having “nm” modes, and

superscripts m and s correspond to master and slave,

respectively. Also here, ψmϵRm×nm and ψsϵRn−m)×nm
.

Considering only the master dofs, the modal response can be

given as
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q̂nm t( ) � ψm
TX

m t( ) (25)

where ψm
T is the generalized inverse of ψm. Since the matrix ψm

T

may not be a square, the number of modes and number of dofs in

the analysis may be the same and depends on the problem and

hence the matrix. We can find in the study of Lal et al. (2017) the

different possible cases of the selection of modes and dofs.

Substituting Eq. 25 in Eq. 24, we get

X t( ) � ψψm
TX

m t( ) � TrX
m (26)

where ψψm
T is the transformation matrix (Tr) that transforms the

full system into the reduced system model. With this

transformation matrix, the full order system matrices in the

reduced model become

Mr � TT
rMTr ; Kr � TT

r KTr ; Cr � TT
r CTr (27)

Here, Mr, Kr, and Cr represent, respectively, the reduced

mass, the reduced stiffness, and the reduced damping

matrices. Note that the selection of modes and dofs are

governed by the type of the structure and the conditions of

external charges.

4 Active control implementation

4.1 Optimal and robust controls

There is a significant difference between optimal and

robust control strategies. Optimal control seeks to optimize

a performance index over a span of time, while robust control

seeks to optimize the stability and quality, and robustness of

the controller given the uncertainty in the plant model,

feedback sensors, and actuator outputs. Optimal control

assumes that the model is perfect and optimizes the

provided data. If the model is imperfect, the controller is

not necessarily optimal. It is only optimal for a provided

functional and specific cost. The LQR control is only truly

optimal for a completely linear plant and a quadratic cost

index. Robust control assumes that the model is imperfect. For

example, some parameters in the s system model are believed

to be in a certain range but are not surely known. Controllers

H2, H∞, or others can be used in this case to decide which

signals of control are admissible based on the level of

uncertainty in basic parameters.

4.2 Active control in the reduced model

Using reduced representation, the dynamic equations of the

structure are given by

Mr
€X
m

t( ) + Cr
_X
m

t( ) +KrX
m t( ) � Fr t( ) (28)

For MIMO systems, Eq. 28 in the state space form can be

written as

_X
m � AmXm + Bmum (29)

where

Am � 0 I
−M−1

r Kr −M−1
r Cr

[ ], Bm � 0
M−1

r Fr
[ ] (30)

and Xm is (m × 1) state vector.

4.3 LQR control

The linear quadratic regulator (LQR) controller is used

and implemented on the proposed reduced model as shown in

Figure 2. The optimal control input to the actuator for

vibration suppression is obtained through LQR, which

minimizes the cost function (J) defined by

J � lim
τ→∞

1
τ

∫
∞

0

Xm( )TQ Xm( ) + um( )TR um( ){ }dt⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (31)

whereQ and R are weighting matrices of system states Xm and the

control input um.

The minimization of the quadratic cost function defined in

Eq. 31, subjected to the equation of motion, gives the state

feedback in form of required control input um given by

um � −KsX
m (32)

where Ks is the (m × r) gain matrix obtained through the

proposed reduced model. The closed-loop optimal gain is

calculated by solving the reduced-matrix Riccati equation.

With this gain matrix, the control input needed for

controlling the full model dynamics of the structure is

estimated. The capacitance of the sensor patch at ambient

temperature Zs can be written as

Zs � �K
e

ϕϕ � Ke
ϕϕ[ ] + ~K

e

ϕϕ[ ]( ) (33)

where [Ke
ϕϕ] is the capacitance of piezoelectric patch at

reference temperature and [ ~Ke
ϕϕ] is change in the

capacitance of the piezoelectric patch at a temperature

other than reference temperature. For a given temperature,

the voltage generated across the piezoelectric patch and the

modal force are as follows:

V � Ke
ϕϕ[ ]−1 Qe

ext + Ke
ϕϕ[ ] ue{ }[ ] (34)

Fc{ } � U[ ]T Ke
uϕ[ ] Ke

ϕϕ[ ]−1Qext{ } (35)

If the identical sensor and actuator patches function at the

same temperature, the modal control force becomes

Fc � − U[ ]T Ke
uϕ[ ]Vext (36)
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4.4 LQG control and kalman filtering

Generally, the Kalman filter is a computational algorithm

that aims to update the sequence of time and measurement in

order to estimate the responses of a given system. Some works are

studied using this filtering for optimal control (Simon et al.,

2003) and for fuzzy discrete-time dynamic systems (Anderson

and Moore, 1979). Figure 3 shows the design and the

implementation of the LQG-Kalman scheme in the reduced

model. The filter has been added to the LQG regulator and

process and measurement noises are introduced. The state space

can be represented as the following linear stochastic difference

equation:

_x{ } � Ad[ ] x{ } + Bd[ ]u + wd (37)

In order to control the response of the structure, we need to

convert uncoupled equations into a state-space model. The

general modal equation can be written as

_s{ } � A[ ] s{ } + B[ ]Vext + G[ ] (38)

The output of the system is a function of s and is given by

y{ } � C[ ] s{ } (39)

The first modal control force, the control voltage, and the

sensor voltage output are, respectively, given by

Fc1 � − U[ ]T Ke
uϕ[ ] Vext{ }), (40)

Vext � U[ ]T Ke
uϕ[ ]( )−1k _ηest, (41)

Vsens � Ke
ϕϕ[ ]−1 Ke

uϕ[ ] ue{ }[ ]. (42)

where _ηest is estimated using the Kalman observer.

Modal displacements and velocities are estimated using the

Kalman observer/estimator and can be constructed as follows:

_ηest{ } � Ad[ ] ηest{ } + Bd[ ]Vext + L[ ] Vsens − X[ ] ηest{ }( ), (43)
_ηest{ } � ηest{ } + M[ ] Vsens − X[ ] ηest{ }( ). (44)

where ηest is the estimated full state vector and [Ad] and [Bd] are

discretized forms of matrices of the state equation; [L] and [M]

are Kalman filter gain matrices; Vsens is the sensor voltage; and X

is the sensor location vector. Matrices [B], [X], [L], and [M] and

the state vector _ηest all depend upon electromechanical and

permittivity coefficients of the used piezoelectric material.

The external control voltage that gets applied on the

piezoelectric actuator patch “i” placed on the element number

“i” corresponding to the modal control force is given by (Garrido

et al. ,2014)

Vctrl � −Gv _ηest
U[ ]TfcZact

(45)

where Gv is the gain of the velocity feedback controller, U is the

modal matrix of the first three modes, Zact is the capacitance of

the actuator, and fc is the vector of the electromechanical constant

of the actuator.

FIGURE 2
The LQR control design diagram in the reduced model.

FIGURE 3
The LQG control with the Kalman filter design in the reduced model.
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5 Discussion

To implement the control process and to establish a

comparison between the two methods of control already

detailed, a smart structure is considered and shown in

Figure 1. The structure consists of a cantilever Timoshenko

beam modeled and multiple pairs of piezoelectric patches

bonded on both sides of the beam. Piezoelectric elements

are distributed symmetrically along the top and bottom of the

beam covering one or more finite elements. Graphite-epoxy

(T300-976) is chosen as the beam material and PZT (G1195N)

as the piezoelectric material. The patches of actuators have

been placed at the top side of the beam while sensors are at the

bottom for high sensitivity to deformations. Geometric and

material properties are given in Table 1. The beam is

discretized by the finite element method in the full and

reduced model with 100 elements distributed over six

regions along the length. Each element has two nodes with

two mechanical dofs and one electrical dof. The full model has

in total of 100 FEs with 302 dofs and therefore 404 control

states. Considering modal analysis and retaining just the first

modes, the Monte Carlo simulation process is used to obtain

statistical results to get the probabilistic description of the

desired response values of the model.

To establish the control comparison, a practical example of

distribution based on the location of sensors is considered. To do

this, different sizes and numbers of FE by sections are distributed as

follows:

Section 1 with 17 elements of 1 (mm) size, section 2 with

25 elements of 3 (mm) size, section 3 with one element of 8

TABLE 1 Material and physical properties of piezoelectric elements and the host beam.

Properties Piezoceramic
elements (PZT-G1195N)

Host beam (Graphite-Epoxy) (T300-976)

Length L(m) — 0.3

Width W(m) 0.04 0.04

Thickness h(m) ha = hs = 0.0002 0.01

Piezoelectric constant d31 = d32 254 × 10–12 (m/V) —

Electric constant 11.5 × 10–3 (Vm/N) —

Electric permittivity 254 × 10–12 (F/m) —

Density 7,500 (kg/m3) 1,600 (kg/m3)

Young’s modulus 1.49× 1011(N/m2) 1.5× 1011 (N/m2)

FIGURE 4
Frequencies of the three first modes in full and reduced models using the LQR control with 46 dofs of 10 distributed sensors.
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(mm) size, section 4 with 25 elements of 4 (mm) size, section 5

with 20 elements of 6 (mm) size and, and section 6 with

12 elements of 15 mm size.

In this example, all figures in the study are obtained with

10 distributed sensors. This gives 160 mechanical dofs and the

selection is limited to 46 and 112 dofs. The dimensions of

sensors by nodes are chosen as follows:

04 sensors with 04 nodes (32 dofs), 03 sensors with 08 nodes

(48 dofs), 02 sensors with 12 nodes (48 dofs), 01 sensors with

16 nodes (32 dofs).

Note here that the number of dofs can be selected

automatically for a given number of sensors. The number

and the position of sensors can be modified easily in the

software script. Therefore, the control quality can be

FIGURE 5
Frequencies of the three first modes in full and reduced models using the LQR control wth 112 dofs of 10 distributed sensors.

FIGURE 6
Impulse response in the full model case using LQR control and considering 112 dofs of 10 distributed sensors.

Frontiers in Mechanical Engineering frontiersin.org08

El Khaldi et al. 10.3389/fmech.2022.912545

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2022.912545


improved by taking the few numbers of dofs (or nodes)

concerning the nature of the beam mode vibration. For a

higher number, the control response will not change even

after adding sensors and consequently the number of

selected dofs. For the first modes, the reduced modal space

is established and the desired response values are determined.

This allows to reduce the execution time and save

computational costs.

To illustrate vibration modes, the three first mode shapes

of the beam having, respectively, frequencies 7.37, 43.6, and

125.41Hz, are deduced. Figures 4 and 5 show frequency

responses in Bode diagrams of uncontrolled and

FIGURE 7
Impulse response in the reduced model case using LQR control and considering 46 dofs of 10 distributed sensors.

FIGURE 8
Impulse response in the reduced model case using LQR and LQG-Kalman controls with 112 dofs of 10 distributed sensors.
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controlled responses corresponding to full and reduced

models. Figures 6 and 7 illustrate the impulse responses of

displacement in full and reduced models using the LQR

control. Figure 8 shows a comparison of the impulse

response in the reduced model between the two

procedures of control considering 112 dofs of

10 distributed sensors. The variation of electric input of

the actuators applying the LQR control is verified and

shown in Figures 9–11 with selections of 46 and 112 dofs.

The Monte Carlo simulation is performed to select the

active dofs and dominant modes to be used in the reduced

model. The selection depends on the geometry of the

FIGURE 9
Voltage response in the full model case using LQR and considering 46 dofs of 10 distributed sensors.

FIGURE 10
Voltage response in the reduced model case using the LQR Control and considering 46 dofs of 10 distributed sensors.
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structure, the nature of distribution, and the values of the

desired responses. Two cases of selection are retained in this

application; the first with 112 dofs and the second 46 with

10 distributed sensors. The results of simulations are

presented to compare the responses of control under

multiple configurations. Figure 12 gives the response of the

full model without control considering the selections of

46 and 112 dofs. In the full model case, Figure 13 shows

the responses of the LQG-Kalman control under the same

conditions as in Figure 12. Figure 14 presents a comparison in

the reduced model case of LQR and LQG-Kalman controls

considering only the selection of 46 dofs.

FIGURE 11
Voltage response in full and reduced models using the LQR control with 112 dofs of 10 distributed sensors.

FIGURE 12
Response of the full model without control considering the selections 46 and 112 degrees of freedom.
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6 Conclusion

In this study, a discretized FEM in a reducedmodel applied to

a Timoshenko beam is formulated and presented. A control

analysis based on LQR and LQG-Kalman algorithms is detailed.

State spaces of the two methods of control are adapted and

transformed in the reduced design. In order to optimize the

number of active nodes (or their relative dofs), the Monte Carlo

simulation is introduced and exploited in the control setup. An

example of the distribution and selection of sensors is detailed

and presented. Mode shapes, displacements, actuator inputs, and

sensors outputs are simulated and plotted.

FIGURE 13
Responses of the LQG-Kalman control considering the selections of 46 and 112 degrees of freedom (the full model case).

FIGURE 14
Comparison of LQR and LQG-Kalman controls considering only the selection of 46 degrees of freedom (the reduced model case).
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In comparison with the LQR control, it is observed that the

reduced LQG-Kalman design coupled with Monte Carlo

simulation gives good results for low voltages of electric

actuation and a large number of selected active dofs. The

reduced model is based on the eigenvalue analysis of the full

model to constitute the relative transformation matrices. This

analysis is a costly process and a necessary step in

computation. With the present scheme, it is observed that

compilation time, in the two studied cases of selected nodes,

was reduced by 30–50 percent. For optimal control, the model

reduction must be accompanied by an appropriate technique

of selection of dofs for a significant optimization in time and

cost of computation.
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