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Although the instability of graded elastic cylinders has been analyzed by many researchers,
most of them focused on the core-shell cylinders and film-substrate structures with
inhomogeneous Young’s modulus. For a radially graded elastic cylinder subjected to
the axial compression, the variation of Poisson’s ratio may result in the radial and
circumferential stresses and thereby affects the critical condition of instability. By
assuming linear elasticity with nonlinear kinematics, the governing equation for the
incremental stress field is developed for instability analysis of the cylinder with radially
graded material properties (Young’s modulus and Poisson’s ratio). Considering the
arbitrariness of material properties, the state space technique is implemented and a
semi-analytical solution is acquired. The obtained solution is validated by the finite element
results. Numerical examples show that the critical condition of instability for graded elastic
cylinders is related to whether Poisson’s ratio is assumed to be constant.
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1 INTRODUCTION

The morphology characteristics caused by surface instability are often observed in nature and
biological tissues, such as fruits, vegetables, animal brains, human guts (Dai and Liu, 2014; Budday
et al., 2014; Balbi et al., 2015), and have been exploited for a broad range of applications, e.g., testing
of mechanical properties for ultrathin films (Stafford et al., 2004), active surfaces (Tokarev and
Minko, 2009), micro-optics (Harrison et al., 2004), microfluidic devices (Sugiura et al., 2007), and
soft electronics and actuators (Rogers, et al., 2010; Yang et al., 2010). Due to curiosity about the
natural phenomena and motivation of the development and utilization based on these
configurations, the intrinsic mechanism of surface instability has attracted much attention of a
large number of researchers over the last decades.

For the surface wrinkling instability, there are many previous works on core-shell cylinders and
film-substrate structures. The pioneering work on film-substrate structures originated from the
delamination analysis of such systems with a large unbounded flaw under compressive stress (Evans
and Hutchinson, 1984; Hutchinson and Suo, 1992). The instability of an elastic film on a viscous
substrate was then studied profoundly (Sridhar, et al., 2001; Huang and Suo, 2002a; Huang and Suo,
2002b). The relevant analyses of stiff films on compliant substrates were later presented ceaselessly in
a large numbers. Huang et al. (2005) provided a nonlinear analysis of a film bonded to a substrate
with finite thickness. Using the finite deformation theory, Song et al. (2008) studied the mechanics of
thin buckled films on compliant substrates and obtained an analytical solution. Jia et al. (2012)
investigated the wrinkling problem of a bilayer film on a soft substrate via theoretical analysis and
finite element simulations. Xu et al. (2015) studied the occurrence and evolution of 3D instability
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patterns in thin films on hyperelastic substrates based on a fully
nonlinear 3D finite element model. In comparison with the film-
substrate structure, the stability analysis of cylindrical shells with
soft cores was considered earlier by Seide (1962) using Donnell’s
equations. About the same time a theoretical solution for the
determination of buckling characteristics was presented for a long
cylinder shell with a solid or elastic soft core under axial
compression with the sinusoidal buckling assumption (Yao,
1962). Inspired by optimization of natural structures, Karam
and Gibson (1995) theoretically analyzed the buckling of core-
shell structures and found that the buckling resistance of a hollow
cylindrical shell could be improved significantly by infilling a
compliant elastic core. Hutchinson and He (2000) addressed the
buckling of cylindrical sandwich shells with foamed metal cores
for the optimal design for structural weight and carrying capacity,
and a similar comprehensive analysis was provided by Dawson
and Gibson (2007). By energy method, Arani et al. (2007) studied
the elastic axisymmetric buckling of a thin simply supported
cylindrical shell with an elastic core under axial compression. To
further investigate the effect of the filled core rigidity and
thickness on the buckling behavior, Ye et al. (2011) developed
a simple formula to predict the critical buckling stress by using
the Rayleigh–Ritz approximation. Based on the nonlinear
Donnell-Mushtari-Vlassov shell theory, Zhao et al. (2014)
investigated surface wrinkling of a core-shell cylinder along
the axial and circumferential directions. Recently, the
axisymmetric and non-axisymmetric mode transitions in the
post-buckling regime in axially compressed core–shell
cylinders were investigated based on a nonlinear 3D finite
element model (Xu and Potier-Ferry, 2016) and nonlinear
shell finite element (Lavrencic et al., 2020).

The aforementioned literature only involves the film-substrate
and core-shell systems with uniform substrates and cores. In
nature and some engineering problems, the material properties of
substrates and cores are commonly inhomogeneous, and thus the
surface wrinkling of such systems is necessary to be studied.
However, the inhomogeneity of materials makes it difficult to
obtain a completely analytical solution. In the past few years,
some theoretical researches on surface instability have been
devoted to graded elastic materials. Cao et al. (2012a) derived
the critical condition of wrinkling for a stiff thin layer on a semi-
infinite substrate with the power-law and exponential grading
moduli, respectively. For elastic layers with material properties
varying from the surface to the interior, a semi-analytical solution
was obtained by the theoretical analysis combined with the finite
element method (Lee et al., 2008) and the state space method (Wu
et al., 2014); similar semi-analytical solutions for onset of surface
instability of elastic cylinders with radially graded Young’s
modulus were performed by Jia et al. (2014) and Han et al.
(2017). Based on Floquet’s principle, most recently an explicit
semi-analytical isogeometric analysis method was suggested for
predicting wrinkling instability of a stiff film on a graded
compliant cylinder (Li et al., 2020). We note in the existing
studies that Poisson’s ratio in graded elastic layers and cylinders
was commonly assumed to be a constant. In practice, however,
for a radially graded elastic cylinder subjected to the axial
compression, the variation of Poisson’s ratio may result in

radial and circumferential stresses, which must affect the
critical condition of instability.

In addition to be directly subjected to compression, surface
instability of film-substrate or core-shell systems may be induced
by swelling or growing, and surface stability of soft elastic layers
may be also influenced by surface tension (Kang and Huang,
2010a; Wang, 2020). Upon swelling in a solvent, the surface of
thin hydrogel layers on rigid substrates may become unstable and
further evolves into various morphologies (Guvendiren et al.,
2009; Guvendiren et al., 2010; Kang and Huang, 2010b; Wu et al.,
2017). The tubular organ of animals, such as esophagus, can be
seen as cylindrical bilayers with the stiffer outer layer (muscle)
and softer inner layer (mucosa). When the inner mucosa grows,
the outer muscle restricts its expansion, eventually leading to
wrinkling, folding or creasing on the inner surface of mucosa (Jin
et al., 2011; Li et al., 2011; Razavi et al., 2016). Similar instability
was also found on the outer surface of core-shell cylinders as the
outer shell grows or swells on a stiff core Cao et al. (2012b). The
surface instability related to growth and swelling has been
adequately studied in the past 10 years.

In this paper, we focus on an inhomogeneous elastic cylinder and
assume that both Young’s modulus and Poisson’s ratio vary
arbitrarily in the radial direction. A state space method is
employed to investigate the onset of wrinkling for elastic
cylinders under axial compression. The effects of the variation of
Poisson’s ratio on stress distribution and critical condition of
instability are discussed. The rest of this paper is arranged as
follows. In Section 2, the instability theory of elastic cylinders is
introduced. The solution of stress field in fundamental state is
obtained by using the state space method in Section 3. In
Section 4, the instability analysis for elastic cylinders with
material properties varying arbitrarily in the radial direction is
carried out and the critical condition of instability is presented.
Two instability examples, a cylinder covered by a bilayer and a
homogeneous cylinder with a linearly graded stiff layer, are discussed
in Section 5. Concluding remarks are presented in Section 6.

2 INSTABILITY THEORY OF ELASTIC
CYLINDERS

An elastic hollow inhomogeneous cylinder with traction free
surfaces is considered as shown in Figure 1A, where a
Cartesian coordinate system is set up with the reference
coordinates X1 and X2 at one cross-section and X3 along the
axis of the cylinder. The inner and outer radii of the cylinder in
the stress-free state are A and B, respectively. When subjected to
an axial compression, the compressive stress inside the cylinder
may cause surface or internal instability of the cylinder. Prior to
surface or internal instability, the compressed cylinder is seen as
in the fundamental state with the inner and outer radii a and b
(Figure 1B), and the corresponding current coordinates are
denoted as (x1, x2, x3).

In the present study, we consider an elastic cylinder with
material properties varying in the radial direction, especially
emphasizing the influence of Poisson’s ratio on stress
distribution and structural stability. The material is assumed

Frontiers in Mechanical Engineering | www.frontiersin.org June 2022 | Volume 8 | Article 9115702

Zhan et al. Wrinkling of Graded Elastic Cylinders

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


to be linear elastic and isotropic with a quadratic strain energy
density function in terms of Green-Lagrange strain:

W � 1
2
CIJKLEIJEKL (1)

where EIJ = (FkIFkJ − δIJ)/2, FkJ = zxk/zXJ, δIJ is the Kronecker
delta, and the elastic modulus CIJKL is a function of X1 and X2 and
possesses the isotropic symmetry. The first and second
Piola–Kirchhoff stresses PiJ and SIJ are accordingly in the
Cartesian coordinate system as (Wu et al., 2014)

PiJ � FiKSKJ, SIJ � CIJKLEKL (2)
In the fundamental state, the equilibrium equation is

PiJ,J � 0 (3)
and the boundary conditions at the inner and outer surfaces are

PiJNJ � 0, at
�������
X2

1 +X2
2

√
� A and B (4)

where the notation ( ),J stands for differentiation with respect to
XJ in the reference state, NJ represents the direction cosine of the

outer normal relative to the coordinate XJ; the Einstein
summation convention is implied over repeated indices unless
noted otherwise.

Under the axial compression, the imposed axial nominal
strain ε0 = F33–1 is identical everywhere in the fundamental
state. In the process of instability analysis, it is assumed that an
incremental displacement Δui (i = 1, 2, 3) occurs from the
fundamental state, then the corresponding incremental stress
field must satisfy the following equilibrium equation and
boundary conditions:

ΔPiJ,J � (FiKΔSKJ + SKJΔFiK),J � 0 (5)
ΔPiJNJ � 0, at

�������
X2

1 +X2
2

√
� A and B (6)

where ΔFkJ � FiJΔuk,i, ΔSIJ � CIJKLΔEKL, ΔEIJ � 1
2 (FkIFiJ +

FiIFkJ)Δuk,i.
Assuming that the strain in the fundamental state is small, we

have FiK ≈ δiK and the equilibrium Eq. 5 and boundary condition
(6) may be translated as that

ΔPij,j � (CijklΔuk,l + PkjΔui,k),j � 0 (7)

FIGURE 1 | Schematic illustrations for an elastic hollow cylinder: (A) in the stress-free reference state; (B) in the fundamental state subjected to axial compression;
(C) in the axial wrinkling state; (D) and (E) divided into n cylindrical subshells in the reference and fundamental states for the state space analysis.
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ΔPijnj � 0, at
������
x2
1 + x2

2

√
� a and b (8)

where ( ),j denotes differentiation with respect to xj in the current
state, and nj represents the direction cosine of the outer normal
relative to the coordinate xj.

Considering axisymmetry of the problem, the cylindrical
coordinates in the reference state (R, Θ, Z) and in the current
state (r, θ, z) are applied as shown in Figure 1. With the
coordinate transformation from the Cartesian coordinates to
the cylindrical coordinates, the equilibrium Eq. 3 in the
fundamental state for radially graded elastic cylinders can be
converted into the following form:

zPrR

zR
+ PrR − PθΘ

R
� 0 (9)

where

PrR � CrRRR
zuR

zR
+ CrRΘΘ

uR

R
+ CrRZZε0 (10)

PθΘ � CθΘRR
zuR

zR
+ CθΘΘΘ

uR

R
+ CθΘZZε0 (11)

with uR representing the radial displacement component. The
axial stress in the fundamental state is then determined by

PzZ � CzZRR
zuR

zR
+ CzZΘΘ

uR

R
+ CzZZZε0 (12)

The boundary condition (4) becomes

PrR � 0, atR � A andB (13)
In general, Poisson’s ratio changes with the change of

Young’s modulus of graded elastic materials. Poisson’s ratio
commonly changes very little and thus it is often approximated
as a constant for convenience. When the radially graded elastic
cylinder is subjected to axial compression, the axial compressive
stress is generated definitely. However, the radial and
circumferential stresses do not necessarily occur, which
depend on Poisson’s ratio. If Poisson’s ratio remains constant
in the radial direction, transversely homogeneous strain
generates and no radial and circumferential stresses occur. In
contrast, if Poisson’s ratio varies in the radial direction, the
radial and circumferential strains are inhomogeneous and
corresponding stresses must be produced, which will
inevitably affect the axial and circumferential stabilities of
cylindrical structures. The instability analysis for Poisson’s
ratio fixed as a constant has been carried out by many
researchers (Jia et al., 2014; Han et al., 2017). In the present
study, we assume that Poisson’s ratio varies in the radial
direction as that of Young’s modulus. By the coordinate
transformation, the equilibrium equation of the incremental
stress field in Eq. 7 can be converted into the following form in
the cylindrical coordinate system:

zΔPrr

zr
+ zΔPrθ

rzθ
+ zΔPrz

zz
+ ΔPrr − ΔPθθ

r
� 0 (14)

zΔPθr

zr
+ zΔPθθ

rzθ
+ zΔPθz

zz
+ ΔPθr + ΔPrθ

r
� 0 (15)

zΔPzr

zr
+ zΔPzθ

rzθ
+ zΔPzz

zz
+ ΔPzr

r
� 0 (16)

where

ΔPrr �(Crrrr + Prr) zΔur

zr
+ Crrθθ(zΔuθ

rzθ
+ Δur

r
)

+ Crrzz
zΔuz

zz

(17)

ΔPθθ �Cθθrr
zΔur

zr
+ (Cθθθθ + Pθθ)(zΔuθ

rzθ
+ Δur

r
)

+ Cθθzz
zΔuz

zz

(18)

ΔPzz �Czzrr
zΔur

zr
+ Czzθθ(zΔuθ

rzθ
+ Δur

r
)

+ (Czzzz + Pzz) zΔuz

zz

(19)

ΔPrθ � Crθθr
zΔuθ

zr
+ (Crθrθ + Pθθ)(zΔur

rzθ
− Δuθ

r
) (20)

ΔPθr � (Cθrθr + Prr) zΔuθ

zr
+ Cθrrθ(zΔur

rzθ
− Δuθ

r
) (21)

ΔPθz � Cθzzθ
zΔuz

rzθ
+ (Cθzθz + Pzz) zΔuθ

zz
(22)

ΔPzθ � (Czθzθ + Pθθ) zΔuz

rzθ
+ Czθθz

zΔuθ

zz
(23)

ΔPzr � (Czrzr + Prr) zΔuz

zr
+ Czrrz

zΔur

zz
(24)

ΔPrz � Crzzr
zΔuz

zr
+ (Crzrz + Pzz) zΔur

zz
(25)

The boundary condition of the incremental stress field in Eq. 8
becomes

ΔPrr � ΔPθr � ΔPzr � 0, at r � a and b (26)
Equations 9–12 and Eqs 14–25 constitute the governing

equations of instability analysis for radially graded elastic cylinders,
which together with the boundary conditions (13) and (26) lead to
an eigenvalue problem. If there is a nontrivial solution for the
incremental displacement field, the critical condition for onset of
instability is obtained successfully.

It should be noted that if the cylindrical structure is a solid
cylinder, the boundary condition (13) at R = A needs to be
replaced with

uR � 0, atR � 0 (27)
and the boundary condition (26) at r = a replaced with

ΔPθr � ΔPzr � 0 andΔur � 0, at r � 0 (28)

3 SOLUTION OF STRESS FIELD IN
FUNDAMENTAL STATE

Considering arbitrariness of the material properties varying in the
radial direction, it is impossible to obtain the analytical solution of
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stress field in the cylinder, and the state space technique is thereby
employed in this paper.

From Eq. 10, we have

zuR

zR
� − λ

λ + 2μ
uR

R
+ 1
λ + 2μ

PrR − λ

λ + 2μ
ε0 (29)

Substituting Eq. 29 into Eq. 11 and then into Eq. 9, we get

zPrR

zR
� 4(λ + μ)μ

λ + 2μ
uR

R2
− 2μ
λ + 2μ

PrR

R
+ 2λμ
λ + 2μ

ε0
R

(30)
and the circumferential and axial nominal stresses are,
respectively,

PθΘ � 4(λ + μ)μ
λ + 2μ

uR

R
+ λ

λ + 2μ
PrR + 2λμ

λ + 2μ
ε0 (31)

PzZ � 2λμ
λ + 2μ

uR

R
+ λ

λ + 2μ
PrR + 4(λ + μ)μ

λ + 2μ
ε0 (32)

where λ and μ are Lame’s constants of isotropic elasticity, relating
to Young’s modulus E and Poisson’s ratio ] as follows:

λ � E]
(1 + ])(1 − 2]), μ � E

2(1 + ]) (33)

Combining Eqs 29, 30, a set of inhomogeneous differential
equations are obtained in a matrix form as

z

zR
{ uR

PrR
} � D{ uR

PrR
} + K (34)

where the coefficient matrix D and the inhomogeneous item K
are, respectively,

D �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− λ

λ + 2μ
1
R

1
λ + 2μ

4(λ + μ)μ
λ + 2μ

1

R2 − 2μ
λ + 2μ

1
R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, K �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− λ

λ + 2μ

2λμ
λ + 2μ

1
R

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ε0, (35)

Since the coefficient matrix and inhomogeneous item in Eq. 35
contain the radial coordinate R and the radially varying material
parameters, the analytical solution to Eq. 34 cannot be obtained
directly. For this reason, we first divide the hollow cylinder into n
subshells and number them from the inner subshell to the outer
subshell. The thickness of the ith subshell is denoted by Hi (i � 1,
2, ···, n) as illustrated in Figure 1D, and its inner and outer radii
are Ri−1 and Ri, respectively. Thus there are
Ri � A +H1 +H2 +/ +Hi, R0 � A and Rn � B. The material
parameters are accordingly dispersed into each subshell as
piecewise constant functions Ei, ]i. In each subshell, the
material parameters are assumed as their corresponding values
at its mid-surface, i.e., Ei � E[(Ri−1 + Ri)/2] and
]i � ][(Ri−1 + Ri)/2]. When n → ∞ and Hi → 0, the virtual
laminated cylinder with material properties varying as
piecewise constant functions infinitely approaches the
originally graded cylinder. Taking R � (Ri−1 + Ri)/2 in Eq. 35,
a set of the first-order inhomogeneous differential equations with
constant coefficients for the ith subshell, i.e. the state equation, are
obtained as

z

zR
{ uRi

PrRi
} � Di{ uRi

PrRi
} + Ki (36)

The relation between the state vectors at outer surface and the
inner surface of the ith subshell is determined as

{ uRi(Ri)
PrRi(Ri)} � eDiHi{ uRi(Ri−1)

PrRi(Ri−1)} + ∫Ri

Ri−1

eDi(Ri−ξ)Kidξ (37)

Thanks to the continuity of the state vector across all interfaces
between the adjacent subshells, the relationship between the state
vectors at the outer and inner surfaces of the cylinder can be
acquired as

{ uRn(Rn)
PrRn(Rn)} � ∏1

i�n
eDiHi{ uR1(R0)

PrR1(R0)} +∑n−1
j�1

× ∏j+1
i�n

eDiHi ∫Rj

Rj−1

eDj(Rj−ξ)Kjdξ + ∫Rn

Rn−1

eDn(Rn−ξ)Kndξ

(38)
By using the boundary condition (13), i.e.

PrR1(R0) � PrRn(Rn) � 0 (39)
or Eq. 27 together with Eq. 13 at R = B, i.e.

uR1(0) � 0 andPrRn(Rn) � 0 (40)
the state variables at the inner and outer surfaces are subsequently
obtained as functions of the axial strain ε0, and uRi and PrRi
(i � 1, 2, /, n) at any interface may be calculated successively by
Eq. 37. The other two stress components PθΘi and PzZi are in turn
computed from Eqs 31, 32. As a result, all displacement and stress
components in fundamental state are determined as functions
of ε0.

4 INSTABILITY ANALYSIS

To acquire the critical condition of instability for cylinders with
material properties varying arbitrarily in the radial direction, the
virtual dividing model in the prior section is still demanded in the
following solving process.

From Eqs 14–25, we can get the differentiations of
incremental displacements and stresses with respect to the
radial coordinate r as follows:

zΔur

zr
� − λ

λ + 2μ + Prr
(zΔuθ

rzθ
+ Δur

r
) − λ

λ + 2μ + Prr

zΔuz

zz

+ 1
λ + 2μ + Prr

ΔPrr (41)
zΔuθ

zr
� − μ

μ + Prr
(zΔur

rzθ
− Δuθ

r
) + 1

μ + Prr
ΔPθr (42)

zΔuz

zr
� − μ

μ + Prr

zΔur

zz
+ 1
μ + Prr

ΔPzr (43)
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zΔPrr

zr
� (λ + 2μ + Pθθ − λ2

λ + 2μ + Prr
) Δur

r2

− (μ + Pθθ − μ2

μ + Prr
) z2Δur

r2zθ2
+ (λ − λ2

λ + 2μ + Prr
) zΔuz

rzz

−(1 − λ

λ + 2μ + Prr
) ΔPrr

r
− μ

μ + Prr

zΔPθr

rzθ

− μ

μ + Prr

zΔPzr

rzθ
− (μ + Pzz − μ2

μ + Prr
) z2Δur

zz2
+

(λ + 3μ + 2Pθθ − λ2

λ + 2μ + Prr
− μ2

μ + Prr
) zΔuθ

r2zθ
(44)

zΔPθr

zr
� −(λ + 3μ + 2Pθθ − λ2

λ + 2μ + Prr
− μ2

μ + Prr
) zΔur

r2zθ

+(μ + Pθθ − μ2

μ + Prr
) Δuθ

r2
− (λ + 2μ + Pθθ

− λ2

λ + 2μ + Prr
) z2Δuθ

r2zθ2
− (μ + Pzz) z2Δuθ

zz2
−

(λ + μ − λ2

λ + 2μ + Prr
) z2Δuz

rzθzz
− λ

λ + 2μ + Prr

zΔPrr

rzθ
−

(1 + μ

μ + Prr
) ΔPθr

r
(45)

zΔPzr

zr
� − (λ − λ2

λ + 2μ + Prr
) zΔur

rzz

− (λ + μ − λ2

λ + 2μ + Prr
) zΔuθ

rzθzz
− (μ + Pθθ) z2Δuz

r2zθ2

− (λ + 2μ + Pzz − λ2

λ + 2μ + Prr
) z2Δuz

zz2

− λ

λ + 2μ + Prr

zΔPrr

zz
− 1
r
ΔPzr

(46)
With the assumption of small strain in the fundamental state, we have
Prr ≈ PrR, Pθθ ≈ PθΘ, and Pzz ≈ PzZ, they are functions of the axial
strain ε0 and determined by the state space method in Section 3.
According to Eqs 41–46, the incremental displacements and stresses
may be assumed to predict the axial and circumferential instabilities as

Δur � Ur(r) cosω1θ cosω2, zΔuθ � Uθ(r) sinω1θ cosω2z,

Δuz � Uz(r) cosω1θ sinω2z

(47)
ΔPrr � Tr(r) cosω1θ cosω2z,ΔPθr � Tθ(r) sinω1θ cosω2z,

ΔPzr � Tz(r) cosω1θ sinω2z

(48)
where ω1 and ω2 refer to the wave number along the circumferential
and axial directions, respectively. Substituting Eqs 47, 48 into Eqs
41–46, we obtain a set of homogeneous differential equations in the
matrix form as

dG(r)
dr

� MG(r) (49)

where the state vectorG(r) = [Ur(r)Uθ(r)Uz(r)Tr(r)Tθ(r)Tz(r)]
T, and

M is a 6×6 coefficient matrix with the following nonzero elements:

M11 � −1
r

λ

λ + 2μ + Prr
,M12 � −1

r

λω1

λ + 2μ + Prr
,M13 � − λω2

λ + 2μ + Prr
,M14 � 1

λ + 2μ + Prr

M21 � 1
r

μω1

μ + Prr
,M22 � 1

r

μ

μ + Prr
,M25 � 1

μ + Prr
,M31 � μω2

μ + Prr
,M36 � 1

μ + Prr

M41 � 1

r2
[(λ + 2μ + Pθθ − λ2

λ + 2μ + Prr
) + (μ + Pθθ − μ2

μ + Prr
)ω2

1] + (μ + Pzz − μ2

μ + Prr
)ω2

2

M42 � 1

r2
(λ + 3μ + 2Pθθ − λ2

λ + 2μ + Prr
− μ2

μ + Prr
)ω1 ,M43 � 1

r
(λ − λ2

λ + 2μ + Prr
)ω2

M44 � −1
r
(1 − λ

λ + 2μ + Prr
),M45 � −1

r

μ

μ + Prr
ω1 ,M46 � − μ

μ + Prr
ω2

M51 � 1

r2
(λ + 3μ + 2Pθθ − λ2

λ + 2μ + Prr
− μ2

μ + Prr
)ω1

M52 � 1

r2
[(μ + Pθθ − μ2

μ + Prr
) + (λ + 2μ + Pθθ − λ2

λ + 2μ + Prr
)ω2

1] + (μ + Pzz)ω2
2

M53 � 1
r
(λ + μ − λ2

λ + 2μ + Prr
)ω1ω2 ,M54 � 1

r

λ

λ + 2μ + Prr
ω1 ,M55 � −1

r
(1 + μ

μ + Prr
)

M61 � 1
r
(λ − λ2

λ + 2μ + Prr
)ω2 ,M62 � 1

r
(λ + μ − λ2

λ + 2μ + Prr
)ω1ω2

M63 � 1

r2
(μ + Pθθ)ω2

1 + (λ + 2μ + Pzz − λ2

λ + 2μ + Prr
)ω2

2 ,M64 � λ

λ + 2μ + Prr
ω2 ,M66 � −1

r

Taking E � Ei, ] � ]i, and r � (ri + ri−1)/2 in the coefficient
matrixM, the state equation for the ith subshell can be obtained as

dGi(r)
dr

� MiGi(r) (50)

Integrating two sides of Eq. 50, the state vector of the outer
surface relating to that of the inner surface is derived as

Gi(ri) � Ni(hi)Gi(ri−1)
� eMihiGi(ri−1) (no Summation over i), (51)

By means of the continuity of the state vector across all
interfaces, the relationship between the state vectors for the
outer and inner surfaces of the whole cylinder is
determined as

Gn(rn) � NG1(r0) (52)
where N � ∏1

i�nNi(hi).
Corresponding to Eq. 52, the boundary condition Eqs 26, 28

can be rewritten as that

Trn(rn) � Tθn(rn) � Tzn(rn) � 0, Tr1(r0) � Tθ1(r0) � Tz1(r0)
� 0

(53)
and

Ur1(0) � 0, Tθ1(0) � Tz1(0) � 0 (54)
Since the coefficient matrix Mi includes the wave numbers ω1

and ω2, and the stress components PrRi, PθΘi, and PzZi
(i � 1, 2, /, n) are functions of the axial strain ε0, the
relationship between the state vector Gn (rn) and G1 (r0) by
Eq. 52 therefore depends on ω1, ω2 and ε0. Using the boundary
conditions Eqs 53, 54, the critical strain for onset of instability of
radially graded elastic cylinders can be found and eventually
written in the following form:
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εc � f(ω1, ω2, Ei, ]i; i � 1, 2, /, n) (55)

5 RESULTS AND DISCUSSION

For a validation of the present study, we first analyze the stress
distribution for a graded elastic cylinder under axial compression,
and then discuss the critical condition of instability for a soft
homogeneous cylinder covered by a bilayer or including a linearly
graded stiff layer, respectively. The numerical simulation is
computed by the finite element analysis code ABAQUS. The
stress field and the critical condition of instability for graded
elastic cylinders with a varied Poisson’s ratio are addressed and
compared to that with a fixed Poisson’s ratio.

5.1 Validation of Stress Field in Fundamental
State
For a radially graded elastic cylinder subjected to axial
compression, from the theoretical analysis we know that the

radial and circumferential stresses will be induced due to the
variation of Poisson’s ratio. Consider a solid cylinder with the
outer radius B = 100 mm, both Young’s modulus and Poisson’s
ratio are assumed to vary linearly in the radial direction, i.e.

y � y0 + (yB − y0) R

RB
(56)

where y stands for Young’s modulus E or Poisson’s ratio ], y0 and
yB represent E or ] at R = 0 and B, respectively.

Figure 2 depicts the radial displacement uR, radial stress PrR,
circumferential stress PθΘ, and axial stress PzZ as functions of the
radial coordinate R for a solid cylinder with E0 = 1 MPa and EB =
100 MPa, comparing with the numerical results by ABAQUS.
From Figure 2, it is observed that the present results are in
excellent agreement with the results by ABAQUS. Figures 2A,D
reveal that both the varied Poisson’s ratio (]0 = 0.45 and ]B = 0.35)
and the fixed one (]0 = 0.4 and ]B = 0.4) have little effectiveness on
the radial displacement and the axial stress. However, the
variation of Poisson’s ratios has significant influence on the
radial and circumferential stresses (Figures 2B,C). When

FIGURE 2 | (A) Radial displacement, (B) radial stress, (C) circumferential stress, and (D) axial stress varying in the radial direction, obtained by the present method
(PRE), for a solid cylinder under an axial strain ε0 = −0.01, in comparison with the results by ABAQUS (ABA).
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Poisson’s ratio is varied and ranges from 0.45 to 0.35, the radial
and circumferential compressive stresses increase firstly and then
decrease in the radial direction. The radial stress is consistently
compressive within the cylinder and equal to zero at the surface,
satisfying the traction free boundary condition, whereas the
circumferential stress turns to be tensile as r> 60 mm, and the
maximum tensile stress reaches 0.035 MPa. Comparatively, when
Poisson’s ratio is fixed as 0.4, the radial and circumferential
stresses are equal or very close to zero, consisting with the
theoretical analysis results. During the following instability
analyses, Poisson’s ratio is assumed to be varied, and thus the
radial and circumferential stresses will affect the critical condition
of instability.

5.2 Surface Instability for a Cylinder
Covered by a Bilayer
As an example for surface instability analysis for a graded elastic
cylinder, we consider a soft cylinder covered by a bilayer as shown
in Figure 3. Similar to the example in Jia et al. (2014) and Han
et al. (2017), the radius of the inner soft cylinder is hs = 90 mm,
the thicknesses of the surface shell and the intermediate shell are
hf = 1 mm and hi = 10 mm, respectively. Young’s moduli for the
surface shell and the inner cylinder are Ef = 1 GPa and Es = 1 MPa.
However, in this paper Poisson’s ratios for three different layers
are not fixed as 0.4. We here assume that Poisson’s ratios for the
surface shell and the inner cylinder to be ]f = 0.4 and ]s = 0.48,
and that for the intermediate shell varies with its Young’s
modulus and is given by

]i � ]s + Ei − Es

Ef − Es
(]f − ]s) (57)

where Ei is Young’s module for the intermediate shell.
The critical strain for onset of surface instability εc and the

corresponding wavelength λc � 2π/ωc, normalized by hf, are
plotted in Figure 4 for such a cylinder with the modulus ratio
of the intermediate shell to the soft cylinder Ei/Es varying from 1

to 1,000, and the varied Poisson’s ratio ]i from 0.48 to 0.4
according to Eq. 57. In comparison with the results by Han
et al. (2017) in which Poisson’s ratio is fixed as νi = ]f = ]s = 0.4, it
is found that the critical strain for the varied Poisson’s ratio is very
close to that for the fixed one, and their corresponding critical
wavelengths are also close to each other in most part of the
interval of modulus ratio. Both of the critical wavelengths for the
two cases have a sudden rise. The sudden rise point for the varied
Poisson’s ratio happens at Ei/Es = 11.502, the dimensionless
wavelength increases from 24.7 to 37.1, different from Ei/Es =
17.025 for the fixed Poisson’s ratio with the dimensionless
wavelength from 18.0 to 57.5. Obviously, the increase
amplitude of the wavelength for the varied Poisson’s ratio is
greatly reduced in comparison with that for the fixed one. The
results show that the radial and circumferential stresses induced
by the variation of Poisson’s ratio inside the cylinder have little
effect on the critical strain, but have some effect on the critical
wavelength, especially on the point of critical wavelength
switching for such a system.

It should be noted that during searching for the critical stain,
there are two local minimums for the candidate of the critical
strain εc, corresponding to a short wavelength and a long
wavelength (see Han et al., 2017). The smaller local minimum
strain and the corresponding wavelength are the true critical
strain and critical wavelength. The dotted lines in Figures 4A,B
illustrate the bigger local minimum strain and the corresponding
wavelength for the system with varied Poisson’s ratio at a possible
metastable state of surface instability.

To verify the correctness of the theoretical solution, we select
two computation models with two different lengths for numerical
simulation: one has the length 162.8 mm with a varied Poisson’s
ratio, equivalent to four times of the wavelength at Ei/Es = 12.0;
the other has 175.28 mm with a fixed Poisson’s ratio, equivalent
to three times of the wavelength at Ei/Es = 17.5. Figures 5A,B
present the surface wrinkling patterns for the cylinder with a
varied Poisson’s ratio, and their modulus ratios are Ei/Es = 11.0
and 12.0, respectively. Figures 5C,D provide the surface
wrinkling patterns for the cylinder with a fixed Poisson’s ratio
and their Ei/Es = 16.5 and 17.5. It can be found that the wave
numbers are 6.5 in Figures 5A, 4 in Figure 5B, respectively,
indicating that the modulus ratio for critical wavelength
switching must be within 11.0 and 12.0 for the varied
Poisson’s ratio. In Figures 5C,D, the wave numbers are 8.5
and 3, respectively, illustrating that the modulus ratio for
critical wavelength switching is within 16.5 and 17.5 for the
fixed Poisson’s ratio. The numerical simulation manifests that the
modulus ratios 11.502 and 17.025, predicted for critical
wavelength switching by the theoretical analysis, are correct
and enough accurate.

5.3 Instability of a Homogeneous Cylinder
With a Linearly Graded Stiff Layer
Next we consider a homogeneous soft hollow cylinder containing
a linearly graded stiff layer with the thickness hg = 1 mm as shown
in Figure 6. The inner and outer radii of the cylinder are A =
40 mm and B = 100 mm, Young’s modulus and Poisson’s ratio are

FIGURE 3 | A cross-section of a soft cylinder covered by a bilayer.
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Eh = 1 MPa and ]h = 0.48 for the homogeneous soft material,
respectively. Young’s modulus and Poisson’s ratio of the stiff layer
are assumed to be linear in the radial direction, and the maximum
Young’s modulus is denoted as Em, corresponding Poisson’s ratio
as ]m. In the numerical analysis, the stiff layer is considered to be
the inner layer (Figure 6A), the middle layer (Figure 6B), and the
outer layer (Figure 6C) of the cylinder, respectively. For the first
case, Young’s modulus and Poisson’s ratio of the stiff layer vary
linearly from Em and ]m at R = 40 mm to Eh and ]h at R = 41 mm;
for the second case, from Eh and ]h at R = 69.5 mm to Em and ]m
at R = 70 mm, and then to Eh and ]h at R = 70.5 mm; for the third
case, from Eh and ]h at R = 99 mm to Em and ]m at R = 100 mm.

Figure 7 presents the critical strain and the corresponding
wavelength versus the modulus ratio Em/Eh ranging from 102 to
105 for soft cylinders with an inner, a middle, and an outer stiff
layers. ]m = 0.4 and ]m = ]h = 0.48 are used for the stiff layer with
the varied Poisson’s ratio and fixed Poisson’s ratio, respectively. It
is seen that the critical strains for the stiff cylinder with varied and
fixed Poisson’s ratios are very close to each other in each case and
even indistinguishable, while the critical wavelength for varied
Poisson’s ratio is obviously less than that for the fixed Poisson’s

ratio, showing that the change of Poisson’s ratio mainly affects the
critical wavelength. In addition, from the results for the three
different cases we can find that the critical strain of the cylinder
with an outer stiff layer is always less than that with an inner or a
middle stiff layer, and the corresponding wavelength is greater
than that of the other two cases overall. For the cylinders with an
inner stiff layer and amiddle one, there is an intersection point for
both the critical strain and the corresponding wavelength.

Finally we provide three numerical simulations for the
homogeneous hollow cylinders with an inner, a middle, and
an outer stiff layers, respectively, as shown in Figure 8. As
predicted in Figure 7B, there is an intersection point near the
modulus ratio Em/Eh = 103 for the critical wavelengths of the first
and second cases. The exact dimensionless wavelengths at Em/Eh
= 103 for the three cases are 18.41, 18.68, and 24.91, respectively.
Thus, there is an approximate common multiple for the three
wavelengths, such as 74.73. In the numerical simulation, the
lengths of cylinders are selected as 74.73 mm, equivalent to about
three times the critical wavelength for the cylinder with an outer
stiff layer, four times for the cylinder with an inner stiff layer or a
middle one. From the profiles of the numerical simulations in

FIGURE 4 | (A) The critical strain and (B) the corresponding wavelength for a soft cylinder covered by a bilayer with a varied Poisson’s ratio in the intermediate shell,
in comparison with the results with a fixed Poisson’s ratio (Han et al., 2017).

FIGURE 5 |Wrinkling patterns for a soft cylinder covered by a bilayer: (A) and (B) for the system with a varied Poisson’s ratio and the modulus ratios Ei/Es = 11.0
and 12.0, respectively; (C) and (D) for the system with a fixed Poisson’s ratio and Ei/Es = 16.5 and 17.5, respectively.
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FIGURE 6 | Cross-sections of a homogeneous soft hollow cylinder containing a linearly graded stiff (A) inner layer, (B) middle layer, and (C) outer layer with the
thickness hg.

FIGURE 7 | (A) The critical strain and (B) the corresponding wavelength for soft cylinders with a linearly graded stiff layer as the inner, the middle, and the outer
layers.

FIGURE 8 | Numerical simulations of instability for a hollow soft cylinder with: (A) an inner stiff layer, (B) a middle stiff layer, and (C) an outer stiff layer. The modulus
ratio of the stiff layer Em/Eh = 103, and Poisson’s ratio ]m = 0.4 and ]h = 0.48.
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Figure 8, it can be clearly identified that there are four, four, and
three wave numbers at the inner surface, middle face, and outer
surface of the cylinder.

It should be mentioned that in the above example analyses, the
circumferential instability has not been found. In the practical
numerical calculation, the critical strains for axial and
circumferential instabilities are obtained by taking wave
number ω1 = 0 and ω2 = 0 in Eq. 55, respectively. The critical
strain for onset of circumferential instibility is found to be much
greater than that of axial instability. Therefore, axial instability
always occurs earlier than circumferential instability for the
cylinder subjected to axial compression. We note that the
circumferential instability has been investigated in Zhao et al.
(2014) and Xu and Potier-Ferry (2016) for a stiff film on a soft
cylinder. In their works, the postbuckling was analyzed and the
circumferential instability was found to commonly occur after the
formation of axial wrinkling. By further analysis, we can realize
that when the cylinder wrinkles, the circumferential compressive
stress at the trough of the axial wrinkling turns to be larger and
larger with increasing of the axial deformation. Hence, it is not
hard to understand that the circumferential instability always
starts at the trough of the axial wrinkling. The relative
postbuckling analysis for graded elastic cylnders is left for
further studies.

6 CONCLUDING REMARKS

The critical condition for onset of instability of elastic cylinders was
analyzed for their Young’s modulus and Poisson’s ratio varying in
the radial direction. When the cylinder is subjected to an axial
loading, the radial and circumferential stresses will be produced
simultaneously due to the variation of Poisson’s ratio, and thus both
the axial and the circumferential instabilities may be caused
individually. A semi-analytical solution was obtained for the
prediction of instability in both the axial and the circumferential
directions. The critical strain for onset of the circumferential
instability is much greater than that of the axial instability, and
consequently the axial wrinkling often occurs before the

circumferential instability. For a soft cylinder covered by a bilayer
with varied and fixed Poisson’s ratios, the numerical results manifest
that their critical strains are very close to each other, but their
modulus ratios for critical wavelength switching are different
obviously. For the soft cylinder with a linearly graded stiff layer,
the critical wavelength for the varied Poisson’s ratio is slightly smaller
than that for the fixed one. Numerical examples show that the critical
condition is different for the radially graded elastic cylinder as its
Poisson’s ratio is assumed to be varied or fixed as a constant. The
results obtained may provide valuable reference for the design and
evaluation of the relevant cylindrical structures.
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