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The subsurface elastic stress fields in plane and axisymmetric contacts with friction under
oscillating tangential loading are calculated via a very robust, high-precisionmethod, which
operates with appropriate superpositions of analytic solutions for the respective Hertzian
contact problems. Based on the stress fields, two critical plane fatigue crack initiation
criteria—the Smith-Watson-Topper (SWT) parameter and the Findley parameter—are
evaluated for three types of contact profile geometries: (unworn) parabolic contact, the
partial slip limiting wear profile of an initially parabolic contact, and truncated parabolic
contact. Appropriate scaling laws are introduced to formulate a general solution in terms of
non-dimensional variables. The crack initiation criteria are determined in the full subsurface
loading plane. It is found that the truncated profile—which may originate from sliding
wear—has practically the same local distribution of crack initiation criteria as the unworn
profile, despite the (weak) stress singularity at the edge of the flat face. The partial slip
limiting wear profile, on the other hand, exhibits a strong edge stress singularity at the
boundary of the permanent stick zone, the crack initiation criteria are drastically increased
(and theoretically infinite). Also, while for the unworn and truncated profiles high values of
the crack initiation criteria are extremely localized around “hotspots” at the surface, for the
partial slip limiting wear profile they reach much deeper into the subsurface material. This
offers a new explanation for the dominance of fatigue failure in the partial slip regime of
fretting. The differences between plane and axisymmetric cases are generally small. The
SWT parameter is generally more localized than the Findley parameter.

Keywords: fretting fatigue, critical plane approach, fretting wear, plane contacts, axisymmetric contacts, stress
superposition

1 INTRODUCTION

Fretting is a long-known source of damage and failure in various technical or biotechnological
tribosystems that are subject to small-amplitude oscillations, e.g., in prostheses (Collier et al., 1992),
electrical connectors (Antler, 1985) or dovetail joints (Ciavarella and Demelio, 2001). Depending on
the oscillation amplitude (compared to the characteristic contact length), and the resulting frictional
contact configuration, different fretting regimes can be distinguished (Vingsbo and Söderberg,
1988)—the partial slip regime, the gross sliding regime and a mixed regime between the former two.
Fretting causes different types of mechanical damage, mainly various forms of wear, as well as fatigue
cracking. While in the partial slip regime specimen lifetime is diminished mainly by fatigue, in the
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sliding regime the main damage phenomenon seems to be wear
(Vingsbo and Söderberg, 1988). Because of this, supposedly clear,
distinction and due to the computational difficulties in creating a
comprehensive model framework that incorporates both
phenomena, fretting wear and fretting fatigue had for a long
time been understood as competing, but more or less separate
processes (Berthier et al., 1989), until Madge et al. (Madge et al.,
2007) pointed out the critical role of fretting wear for the analysis
of the respective fatigue problem. That sparked a series of
publications by different research groups in recent years on
the influence of wear on fretting fatigue, especially in the
partial slip regime, using a combination of two-dimensional
finite element (FE) calculations with a local energy-based or
Archard wear law, and critical plane fatigue crack initiation
criteria (Madge et al., 2008; Zhang et al., 2011). The
corresponding models have been used to simulate, e.g., fretting
of hip implants (Zhang et al., 2013) or thin steel wires (Cruzado
et al., 2013). Implemented improvements of that approach
include the consideration of plasticity (Shen et al., 2015), the
use of critical distance theory (Cardoso et al., 2019; Llavori et al.,
2019) to account for the fact, that due to the high contact stress
gradients a strictly local formulation of crack initiation criteria
might be overly conservative (Gandiolle and Fouvry, 2016), and
the influence analysis of wear debris (Wang et al., 2022).

The main predictive “bottleneck” of the models cited above is
the wear law, as the appropriateness of a local Archard or energy-
based wear law in partial slip fretting conditions is debatable,
especially if the wear is predominantly adhesive (Fouvry et al.,
2007). That is why in the present manuscript a simplified problem
is analyzed in detail, that can still shed new light on the influence
of fretting wear on fretting fatigue, namely the question, how the
elastic “fields” of fatigue crack initiation criteria (to be more
precise, critical plane parameters) differ between an initial
unworn profile geometry and some representative, long-term
worn profiles, without specifying the concrete wear dynamics.

In the following manuscript, the Sections 2–4 are devoted to
problem formulation and modelling. In the Sections 5–7 the
obtained results regarding two critical plane criteria, namely the
Smith-Watson-Topper and Findley parameters, for different
plane and axisymmetric profile geometries are shown. A
discussion and conclusive remarks finish the manuscript.

2 PROBLEM STATEMENT

2.1 General Assumptions
Let us consider single contacts of linearly elastic, homogeneous,
isotropic bodies with the shear moduli G1 and G2 and Poisson’s
ratios ]1 and ]2 under normal and tangential loading. For the
normal and tangential contact problems to be elastically
decoupled, the materials shall be elastically similar,

1 − 2]1
G1

− 1 − 2]2
G2

� 0, (1)

The contacting bodies are assumed to obey the restrictions of the
half-space approximation. Effects of surface roughness or
adhesion are neglected and friction is considered within the

framework of a local Amontons-Coulomb law with a constant
coefficient of friction µ. Within these assumptions, the contact is
equivalent to the one between an elastic half-space with the
effective modulus

Ep � [1 − ]1
2G1

+ 1 − ]2
2G2

]−1
, (2)

and a rigid indenter. The indenter shall be under a constant
normal load and an oscillating tangential load. If we introduce a
cartesian coordinate system with z being the normal axis pointing
into the elastic half-space, x being the direction of tangential
loading, and y being the remaining lateral direction, we can define
the indenter profile f as the gap between the two contacting bodies
in the moment of first contact,

f(x, y) � z1(x, y) − z2(x, y), (3)
We will consider plane profiles f2D = f2D(x) under plane strain

conditions, and axisymmetric profiles faxi = faxi(r), with r being
the polar radius in the {x, y} contact plane. For plane contacts,
the load is to be understood as per unit length in the lateral
direction. A scheme of the analyzed problem and further
notations for the contact solutions are given in Figure 1.
Note that—as the present manuscript is not concerned with
the possible crack propagation or arrest—no global prestresses
in the elastic half-space are considered, although large-enough
prestresses (which are comparable to the “pure” contact
stresses) can alter the contact solution and thus the
subsurface stress fields in a nontrivial manner. However, in
elastic half-space contact mechanics, these prestresses can be
incorporated analytically, at least in the case of plane contacts
(Hills and Nowell, 1994).

2.2 Analyzed Profile Geometries
2.2.1 The “Benchmark”: Parabolic Contact
First, the unworn parabolic (Hertzian) profile with the radius of
curvature R will be analyzed. Note that another very common
unworn profile in fretting contacts is the rounded flat punch;
nonetheless, for plane geometries, the differences regarding
fretting wear and fatigue between the parabolic and rounded
flat punch cases have already been studied in detail (Zhang et al.,
2011).

2.2.2 Partial Slip Limiting Wear Profiles of Initially
Parabolic Contact
In partial slip elastic fretting contacts, which are subject to some
form of local wear—with the local intensity of wear being a
function of the local contact pressure and the local slip
velocity—there generally exists a limiting no-wear state, if at
the beginning of the wear process a region of the contact area is
permanently stuck during the fretting oscillation. As wear will
only occur in the slip region, during the wear process normal load
is transferred to the permanent stick region, which therefore
remains stuck and hence unworn, until the slip region is free of
contact pressure (i.e., in incipient contact), and therefore does not
wear any further. From these considerations it is clear that the
worn profile in the limiting no-wear state is given by the elastic
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normal displacements due to the indentation in the permanent
stick area. As the latter are known from the respective normal
contact solution, this allows to determine the limiting no-wear
profile.

For a plane, initially parabolic contact, the limiting profile was
determined by Hills et al. (Hills et al., 2009). It is

f2D(x) � 1
2R

⎡⎢⎢⎣a20 ln⎛⎝ |x|
cmin

+
�������
x2

c2min

− 1

√ ⎞⎠ + x2

− |x|
�������
x2 − c2min

√ ⎤⎥⎥⎦, cmin ≤ |x|≤ a∞, (4)

where cmin is the half-width of the permanent stick region and a0
is the initial contact half-width. The final contact half-width a∞
follows from the condition that the profile coincides with the
unworn parabolic profile.

For an axisymmetric, initially parabolic contact, the limiting
profile was published by Popov (Popov, 2014),

faxi(r) � 1
πR

[r2 arcsin(cmin

r
) − cmin

�������
r2 − c2min

√
+ 2d∞R arccos(cmin

r
)], c≤ r≤ a∞, (5)

Here, the final indentation depth d∞ under force-controlled
conditions is easily determined from the corresponding normal
contact solution.

2.2.3 Truncated Parabolic Contact
In sliding conditions one can imagine the result of wear being
that the complete tip of the parabolic indenter is worn off at a
specific height (although that is strictly correct within the
framework used only for displacement-controlled
conditions). Thus, let us introduce the truncated plane
parabolic profile,

f2D(x) � x2 − b2

2R
H(|x| − b), (6)

and the axisymmetric analogue,

faxi(r) � r2 − b2

2R
H(r − b), (7)

Here, b denotes the half-width or radius of the flat face of
the worn-off indenter tip and H() is the Heaviside step
function.

3 SUPERPOSITION PROCEDURE FOR THE
SURFACE AND SUBSURFACE STRESS
STATES
The determination of critical plane fatigue crack initiation criteria
is based on the knowledge about the full surface and subsurface
states of stress and deformation. A very fast and robust procedure
for the determination of subsurface stresses in elastic contacts,
which is based on the appropriate superposition of respective
solutions for the parabolic (i.e., Hertzian) contact, has been
proposed very recently by the author (Willert, 2021a), and will
in the following be laid out briefly.

3.1 Normal Contact
If the contacting bodies are elastically similar, the stress
contributions resulting from the normal and tangential
loadings can be separated. First, we consider the stress state
due to the normal load.

3.1.1 Plane Contacts
In plane normal contacts, the only well-defined macroscopic
contact quantities are the normal line load P and the contact
half-width a, because the displacements can only be defined
relative to an arbitrary reference. In the case of single
symmetric contacts of convex profiles, the function P(a) is
bound to the symmetric plane profile via the Abel-like integral
transform (Barber, 2018)

P(a) � Ep∫a
0

xf′2D(x)dx������
a2 − x2

√ , (8)

which can be written as an explicit convolution introducing the
substitutions

V � x2, U � a2, f2D(x) � f̂2D(V), P(a) � P̂(U), (9)
which via integrating by parts leads to

P̂(U) � 1
2
∫U
0

h(V)dV�����
U − V

√ � ∫U
0

h′(V) �����
U − V

√
dV,

h(V):� 2Ep
��
V

√
f̂′2D(V). (10)

This convolution can be evaluated in a very efficient manner with
the 1D Fast Fourier Transform (FFT), as has been demonstrated
recently for a similar transform arising in the case of

FIGURE 1 | Oscillating tangential contact between a rigid indenter and an elastic half-space. (A) plane contact (B) axisymmetric contact.
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axisymmetric contacts (see below) (Willert, 2021b). Once the
relation between P and a is known for a given profile, the
subsurface stress state due to the normal loading can be
determined from an appropriate superposition of stress states
for the plane Hertzian contact (Willert, 2022),

σNij,2D(x, z) �
4R
πEp

⎡⎢⎢⎢⎢⎢⎣σ̂H,N
ij,2D(x, z;U)P̂′(U)

− ∫U
0

σ̂H,N
ij,2D(x, z; u)P̂″(u)du⎤⎥⎥⎥⎥⎥⎦, (11)

where the stress field for the plane Hertzian contact, denoted by
the upper index “H,N”, can be referenced in Muskhelishvili’s
(Muskhelishvili, 1958) full solution of the plane parabolic normal
contact problem.

3.1.2 Axisymmetric Contacts
In the axisymmetric case, the indentation depth d is well-defined
and bound to the contact radius via the Abel-like integral
transform of the axisymmetric profile (Popov et al., 2019)

d � g(a) � a∫a
0

f′axi(r)dr������
a2 − r2

√ , (12)

which, similarly to the transform (8), can be written as an explicit
convolution and therefore very efficiently evaluated with the 1D-
FFT, using the substitutions U � a2 and g(a) � ĝ(U) (Willert,
2021b). The total normal force is given by the relation (Popov
et al., 2019)

FN(a) � 2Ep∫a
0

d − g(~a) d~a, (13)

and the full subsurface stress state due to the normal loading can
be determined from an appropriate superposition of stress states
for the axisymmetric Hertzian contact (Willert, 2021a),

σN
ij,axi(x, y, z) � R⎡⎢⎢⎢⎢⎢⎣σ̂H,N

ij,axi(x, y, z;U)ĝ′(U)
− ∫U

0

σ̂H,N
ij,axi(x, y, z; u)ĝ″(u)du⎤⎥⎥⎥⎥⎥⎦, (14)

where the stress field for the axisymmetric Hertzian contact,
denoted by the upper index “H,N”, has been given in explicit form
by Huber (Huber, 1904) and Hamilton (Hamilton, 1983).

3.2 Cattaneo’s Problem
Let us now focus on the tangential loading contributions to the
subsurface stress state. In general, the contact configuration, and
therefore obviously also the subsurface stresses, in tangential
contact problems depend on the loading history. In this
subsection the superposition procedure of the subsurface
stresses is shown for Cattaneo’s (Cattaneo, 1938) problem,

i.e., the simplest loading history of a constant normal load and
a subsequently applied increasing tangential load. Fretting
configurations in the form of an oscillating tangential load are
considered in the next subsection. As Cattaneo’s problem, within
the framework of the assumptions stated before, can be reduced
to the pure normal contact problem via the principle of Jäger
(Jäger, 1998) and Ciavarella (Ciavarella, 1998a; Ciavarella,
1998b), the stress superposition works similarly as in
Equations 11, 14.

3.2.1 Plane Contacts
In single symmetric plane contacts, the principle of Jäger and
Ciavarella states, that the tangential line load Q and the frictional
shear tractions in the contact, q(x), are given by

Q(a, c) � μ[P(a) − P(c)],
q(x; a, c) � μ[p(x; a) − p(x; c)], (15)

with the pressure distribution p(x). Here, c < a denotes the half-
width of the inner stick region. If c is used as a parameter for the
normal contact solution, it refers to a (fictious) normal contact
configuration with the contact half-width c. As is Equation 11,
because of the reduction of the tangential contact problem with
friction to the normal contact problem, the subsurface stress state
due to the tangential loading can be obtained by an appropriate
superposition of stresses arising from the tangential loading
under a sliding plane Hertzian contact (Willert, 2022),

σCij,2D(x, z) �
4R
πEp

⎡⎢⎢⎢⎢⎢⎢⎢⎣σ̂H,C
ij,2D(x, z; a2)P̂′(a2) − σ̂H,C

ij,2D(x, z; c2)P̂′(c2)
− ∫a2

c2

σ̂H,C
ij,2D(x, z; u)P̂″(u)du⎤⎥⎥⎥⎥⎥⎥⎥⎦,

(16)
where the stress field arising from the shear tractions in the
sliding plane Hertzian contact, denoted by the upper index “H,C”,
can be easily determined fromMuskhelishvili’s full solution of the
plane parabolic normal contact problem (Willert, 2022).

3.2.2 Axisymmetric Contacts
For axisymmetric contacts the principle of Jäger and Ciavarella is
exactly correct only for materials without transverse strain,
i.e., with ] = 0. However, the error made by applying the
principle for general materials has been shown to be usually
small (Munisamy et al., 1994). The relations for the total
tangential force and the shear tractions in the contact are
completely analogous to the plane case,

Fx(a, c) � μ[FN(a) − FN(c)],
q(r; a, c) � μ[p(r; a) − p(r; c)]. (17)

Again, c (physically being the radius of the inner stick area) as a
parameter of a normal contact solution corresponds to a (fictious)
normal contact problem with the contact radius c. In complete
analogy to Equation 16, the subsurface stress state due to the
tangential loading can be obtained by an appropriate
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superposition of stresses arising from the tangential loading
under a sliding axisymmetric Hertzian contact (Willert, 2021a),

σC
ij,axi(x, y, z) � R

⎡⎢⎢⎢⎢⎢⎢⎢⎣σ̂H,C
ij,axi(x, y, z; a2)ĝ′(a2)

− σ̂H,C
ij,axi(x, y, z; c2)ĝ′(c2)

− ∫a2
c2

σ̂H,C
ij,axi(x, y, z; u)ĝ″(u)du⎤⎥⎥⎥⎥⎥⎥⎥⎦, (18)

where the stress field arising from the shear tractions in the
sliding axisymmetric Hertzian contact, denoted by the upper
index “H,C”, has been given in explicit form by Hamilton
(Hamilton, 1983).

3.3 Oscillating Tangential Loading
As stated, the superposition rules in Equations 16, 18 are valid
only for the simplest loading history of a constant normal load
and a subsequently applied increasing tangential load. For the
slightly more complicated case of a constant normal load with an
oscillating tangential load we will apply yet another superposition
idea, which was first used by Jäger (Jäger, 1993) for the tangential
contact of spheres under arbitrary oblique loading.

Just before reversing the direction of tangential loading, the
half-width (or radius) of the inner stick zone reaches its
minimum value, cmin. When reversing the loading direction,
there is a spontaneous moment of complete stick (because,
according to the friction law, all slipping points are in the
“limiting state of stick”, |q| = µp), after which a new slip area
propagates from the contact edge, with the slip direction reversed.
Due to the specific form of the Equations 15, 17, the shear
tractions after reversing the loading direction are for the plane
contact

q(x; a, c) � μ[p(x; a) − p(x; cmin)] − 2μ[p(x; a) − p(x; c)],
(19)

and similarly, for the axisymmetric case. As all underlying
equations are linear, the same superposition will be correct for
the subsurface stress state arising from the tangential loading.
Hence, for the full stress state resulting from the tangential
loading, we have

σT
ij(x, y, z; a, c, cmin) � ± σCij(x, y, z; a, cmin) ∓ 2σCij(x, y, z; a, c),

(20)
where the different signs correspond to the first and second half-
cycles of the loading oscillation, respectively. The current half-
width (or radius) of the stick zone, c, can be easily determined
from the current value of the tangential load; integrating
Equation 19 over the contact area gives

Q(a, c) � ± μ[P(a) − P(cmin)] ∓ 2μ[P(a) − P(c)], (21)
and similarly, for the axisymmetric case. Finally, the complete
stress state is given by the sum of σNij—as in Equations 11, 14 and
σTij – as in Equation 20 with Equations 16, 18.

4 DETERMINATION OF MULTIAXIAL
CRITICAL PLANE FATIGUE CRACK
INITIATION CRITERIA
Critical plane fatigue crack initiation criteria consider the stresses
and deformations in specific planes at specific points, which are
identified as critical, depending on the dominant cracking failure
mode of the material. In the previous section, a fast, precise and
robust procedure has been presented to determine the elastic
stress tensor in and under the surface. From Hooke’s law, the
corresponding strain tensor εij can be immediately deduced. To
reduce the number of free parameters and to allow for a concise
representation of the problem solution, we will make the
reasonable assumption that the critical point and the normal
vector of the critical plane are in the {x, z} loading plane (for plane
problems that is true by symmetry). Hence, to determine the
scalar values of normal and tangential stresses and strains in
specific planes, we introduce the normal and tangential vectors of
the plane as

n � −sin θ ex + cos θ ez, t � cos θ ex + sin θ e, θ ∈ [0; π[.
(22)

The normal stresses and strains, and the tangential stress in the
corresponding plane are

σn � (σ · n) · n, εn � (ε · n) · n, τ � (σ · n) · t . (23)

4.1 Smith-Watson-Topper Parameter
The SWT parameter (Smith et al., 1970) is a crack initiation
criterion that is based on the normal strain energy. It is defined as

SWT � [σmax
n

Δεn
2
]
max

. (24)

Here, the upper index “max” of the stress and the amplitude of
the deformation are to be understood as over one cycle of the
fretting oscillation. The lower index “max” indicates
maximizing with respect to the orientation of the plane, for
which the expression in brackets is evaluated (Socie, 1987). The
SWT parameter can be connected to the specimen lifetime
(measured in oscillation cycles to initiate a crack of given
length) (Szolwinski and Farris, 1996). If for that procedure a
strictly local value of the SWT is used, the lifetime estimates are
usually conservative, because the contact stresses vanish rapidly
in the material within a characteristic length, which is of the
same order as the characteristic contact size. That is why, for
lifetime estimates often parameter values are used, which are
“averaged” in some sense over a given volume (Araújo et al.,
2004), or which are evaluated in some critical distance from the
hotspot (Gandiolle and Fouvry, 2016). However, as the present
manuscript is not concerned with lifetime estimates, but only
with the influence of the profile geometry on the behavior of the
crack initiation criteria, nonetheless only strictly local
parameters will be considered. The characteristic gradients of
the parameters, which might be of interest for the choice of the
“averaging volume”, can be calculated easily from the strictly
local results.
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4.2 Findley Parameter
The Findley parameter (Findley, 1959) is based on the shear stress
amplitude on the critical plane, but also considers the maximum
normal stress acting on that plane. It is defined as

FP � [Δτ
2

+ kσmax
n ]

max
. (25)

As before, the upper index “max” of the normal stress and the
amplitude of the shear stress are to be understood as over one
cycle of the fretting oscillation. The lower index “max”
indicates maximizing with respect to the orientation of the
plane, for which the expression in brackets is evaluated. The
parameter k, characterizing the influence of the maximum
normal stress, depends on the material. For ductile materials
one should expect k to be small. Although originally not
intended as such, the Findley parameter, too, can be used to
calculate lifetime until crack initiation (Bhatti and Abdel
Wahab, 2018).

5 CRITICAL PLANE FATIGUE CRACK
INITIATION CRITERIA FOR PARABOLIC
CONTACT
In this section, the results obtained with the model described
above will be shown for the parabolic contact profile. First, to
allow for a general solution representation, the relevant scaling
laws are given, after which the correctly scaled results for plane
and axisymmetric contacts are shown.

5.1 Scaling Laws
Both the SWT and Findley parameters have physical dimensions.
Hence, the number of free influencing variables can be reduced by
introducing non-dimensional quantities and formulating
appropriate scaling laws. The characteristic scale of
deformation in the Hertzian contact is aH/R. The SWT
parameter is a strain energy, the Findley parameter a
characteristic stress. We therefore can introduce the scales

ε0 � aH
R
, SWT0 � Epε20, FP0 � Epε0. (26)

Note that ε0 is a non-dimensional measure of the constant normal
load. Hence, the correct non-dimensional versions of the fatigue
crack initiation criteria are

SWT � SWT
SWT0

� SWT(μ, ], T), FP � FP
FP0

� FP(μ, ], T, k),
(27)

where the loading ratio T has been introduced, which is Qmax/
(µP) for plane contacts and Fx,max/(µFN) for axisymmetric
contacts. The dependence on Poisson’s ratio is relatively weak,
and the dependencies on the friction coefficient and loading ratio
are quite simple: increasing µ or T will increase the crack
initiation parameters. For all simulations k = 0.2, ] = 0.3, and
µ = 0.7 were chosen. In plane contacts, a loading ratio of T = 0.5
was chosen, while for axisymmetric contacts T = 0.65—both

correspond to a relative extent of the minimum stick zone in
parabolic contact of cmin/a ≈ 0.7. Note that this loading ratio was
also used for the truncated profiles to retain comparability of the
results. The plane orientation angle θ was always resolved in
quarters of a degree.

5.2 Results for Plane Contact
In Figure 2 the contour line diagrams of the scaled SWT and
Findley parameters are shown in the subsurface loading plane
for the case of plane parabolic contact. Both fatigue
parameters have extremely localized maxima at the contact
edge and are vanishing inside the material with a
characteristic length that is well below the characteristic
contact size. The SWT parameter is even more localized
than the Findley parameter, and it is negative in and below
the permanent stick area. The hotspot for the SWT parameter
is at x = aH and z = 0, i.e., the contact edge, with a maximum
scaled SWT parameter of 0.24 at a critical angle θ = 90.5π/
180, i.e., the critical plane is oriented basically perpendicular
to the contact plane. The hotspot for the Findley parameter is
at x = 0.995aH and z = 0, with a maximum scaled Findley
parameter of 0.30 at a critical angle θ = 54.25π/180.
These results are in reasonable agreement with
experimental data from the literature (Bhatti and Abdel
Wahab, 2018).

5.3 Results for Axisymmetric Contact
In Figure 3 the contour line diagrams of the scaled SWT and
Findley parameters are shown in the subsurface loading plane
for the case of axisymmetric parabolic contact. The results are
very similar to the plane case. Both parameters have extremely
localized maxima at the contact edge and are vanishing inside
the material with a characteristic length that is well below the
characteristic contact size. The SWT parameter is even more
localized than the Findley parameter, and it is negative in and
below the permanent stick area. The hotspot for the SWT
parameter is, again, at x = aH and z = 0, with a maximum scaled
SWT parameter of 0.42 at a critical angle θ = 90.5π/180. The
hotspot for the Findley parameter is at x = 0.96aH and z = 0,
with a maximum scaled Findley parameter of 0.38 at a critical
angle θ = 61π/180.

6 CRITICAL PLANE FATIGUE CRACK
INITIATION CRITERIA FOR PARTIAL SLIP
LIMITING WEAR PROFILES
6.1 Scaling Laws
Due to the strong edge stress singularity that emerges at the
boundary of the permanent stick region, for the partial slip
limiting wear profile the critical plane crack initiation criteria
are, theoretically, divergent in the whole vicinity of the contact,
with the respective maximum values depending on the resolution
of the simulation. However, if the resolution is fine enough, the
scaled variables
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FIGURE 2 |Contour line diagrams of critical plane fatigue crack initiation criteria, normalized for their characteristic scales, in the loading plane for a partial slip plane
parabolic contact under oscillating tangential load. (A) Smith-Watson-Topper parameter (B) Findley parameter.

FIGURE 3 | Contour line diagrams of critical plane fatigue crack initiation criteria, normalized for their characteristic scales, in the loading plane for a partial slip
axisymmetric parabolic contact under oscillating tangential load. (A) Smith-Watson-Topper parameter (B) Findley parameter.

FIGURE 4 | Contour line diagrams of critical plane fatigue crack initiation criteria, normalized for their maximum values, in the loading plane for the plane partial slip
limiting wear profile under oscillating tangential load. (A) Smith-Watson-Topper parameter (B) Findley parameter.
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SWT � SWT
SWTmax

� SWT(μ, ], T), FP � FP
FPmax

� FP(μ, ], T, k),
(28)

are unique, i.e., independent of the model discretization. The
maximum values of the parameters scale very roughly with the
maximum contact pressure pmax at the edge of the permanent
stick area, obtained in the simulation, SWTmax ~ (pmax)

2/E* and
FPmax ~ pmax. In reality, the stress singularity is bound by
plasticity or material strength. If we assume that yield is
highly localized around the singular point and not affecting
the elastic stress fields in most of the subsurface regions, the
scaled elastic solution can still be used to estimate the range
behavior of the fatigue parameters. Note however, that plasticity
might allow for the wear to penetrate the permanent stick region
(Hu et al., 2016).

6.2 Results for Plane Contact
In Figure 4 the contour line diagrams of the scaled SWT and
Findley parameters are shown in the subsurface loading plane for the
case of plane contact. Their maxima are significantly less localized
than in the unworn case, the “fields” of the fatigue parameters range
significantly deeper into the material. Also, the Findley parameter
takes its maximum value in almost the whole contact area, while in
the unworn case, the critical point is clearly only the contact edge.
The hotspot for the SWT parameter is at x = 1.165aH = a∞ and z = 0,
i.e., at the edge of the limiting contact area, with a critical angle θ =
92.5π/180. Stating a “hotspot” for the Findley parameter does not
make too much sense, as the parameter assumes its maximum value
almost everywhere in the slip area.

6.3 Results for Axisymmetric Contact
In Figure 5 the contour line diagrams of the scaled SWT and
Findley parameters are shown in the subsurface loading plane for
the case of axisymmetric contact. The results are, once again,
qualitatively very similar to the plane case. The hotspot for the
SWT parameter is at x = 1.22aH = a∞ and z = 0, i.e., at the edge of
the limiting contact area, with a critical angle θ = 93π/180. Stating

a “hotspot” for the Findley parameter, again, does not make too
much sense, as the parameter assumes its maximum value almost
everywhere in the contact area.

7 CRITICAL PLANE FATIGUE CRACK
INITIATION CRITERIA FOR TRUNCATED
PARABOLIC PROFILES
7.1 Scaling Laws
Although the truncated indenter also creates a pressure
singularity at the edge of the flat face, the fatigue parameters
remain finite in the whole simulation area, because the singularity
is sufficiently weak. Note that a detailed FE-based discussion of
the wear-induced stress singularities in partial slip and sliding
fretting contacts has been given by Yue and Wahab (Yue and
AbdelWahab, 2014). Hence, we can introduce the same scaling as
for the parabolic indenter profile,

SWT � SWT
SWT0

� SWT(μ, ], T, β), FP � FP
FP0

� FP(μ, ], T, k, β), β � b

aH
, (29)

where the characteristic scales of the fatigue initiation criteria
have been introduced in Equation 26 and aH is the contact radius
(or half-width) for the Hertzian contact under the given normal
load. For the simulations β = 1 was used. As the results for plane
and axisymmetric contact configurations, once again, are very
similar, only the axisymmetric case will be shown.

7.2 Results for Axisymmetric Contact
In Figure 6 the contour line diagrams of the scaled SWT and
Findley parameters are shown in the subsurface loading plane for the
case of axisymmetric truncated parabolic contact. Interestingly, the
results are qualitatively very similar to the unworn parabolic case.
This suggests, that completely wearing off the tip of the indenter has
only little influence on the formation of fatigue cracks (at least, on the
macroscopic level of elastic stress fields).

FIGURE 5 | Contour line diagrams of critical plane fatigue crack initiation criteria, normalized for their maximum values, in the loading plane for the axisymmetric
partial slip limiting wear profile under oscillating tangential load. (A) Smith-Watson-Topper parameter (B) Findley parameter.
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The hotspot for the SWTparameter is at x = 1.14aH = a and z= 0,
i.e., the contact edge, with a maximum scaled SWT parameter of
0.44 at a critical angle θ = 91.75π/180. The hotspot for the Findley
parameter is at x = 1.12aH and z = 0, i.e., just on the inner side of the
contact edge (like in the parabolic case), with a maximum scaled
Findley parameter of 0.41 at a critical angle θ = 60.25π/180.

8 DISCUSSION

The solutions obtained above are based on a set of simplifying
assumptions to allow for a fast, comprehensive and numerically
robust treatment of the problem, most prominently linear elasticity
and the Amontons-Coulomb friction law. That is why the results
shown are not necessarily to be understood in a quantitative sense,
although they can, of course, be used also quantitatively, if the stated
simplifications are met sufficiently. Plastic deformations will mainly
play a role in relaxing possible stress concentrations, as (long-cycle)
fatigue is usually only a relevant failure mode, if average stresses are
below the yield limit, so the macroscopic fields of stress and
deformation without stress concentrations are, in fact,
predominantly elastic. In a similar sense, surface roughness or
other tribological properties—which in the model have been
subsumed in the form of a local-global “coefficient of
friction”—or elastic coupling can have a bigger or smaller
influence on the precise values of the critical plane parameters,
depending on the system. Moreover, the analysis has been strictly
“contact mechanical”, that is to say, tribological phenomena, like
tribolayer formation and others, which are, without doubt, highly
important when discussing the influence of fretting wear on fretting
fatigue, have been neglected, as their consideration for the
calculation of macroscopic, continuum mechanical fields requires
a type of multi-scale simulation, which, in tribology, still is work-in-
progress (Vakis et al., 2018; Meng et al., 2020).

However, the main finding of the present manuscript is of
qualitative nature: On the level of the subsurface elastic stress
fields, wear in partial slip fretting contacts has a significantly
stronger impact on the formation of fatigue cracks in the vicinity

of the contact than sliding wear—whose influence on fatigue in the
described framework is basically negligible. Not only are the
maximum values of the critical plane parameters severely
increased for the partial slip limiting wear profile—which is
logical, because of the edge singularity at the boundary of the
permanent stick zone—but the “fields” of the crack initiation
criteria also reach far deeper into the contact and into the
subsurface material, compared to the unworn or truncated profiles
with the same loading conditions. Hence, one might conclude, that it
is actually thewear, which facilitates the crack nucleation in the partial
slip regime of fretting contacts.

9 CONCLUSION

Based on a recently developed method for the fast, high-precision
calculation of subsurface elastic stresses in plane and
axisymmetric tangential contacts of elastically similar
materials, which operates with appropriate superpositions of
analytic solutions for the respective parabolic contact problem,
the influence of wear profile geometry on critical plane fatigue
crack initiation criteria has been analyzed on the level of the stress
fields in partial slip fretting contacts. The main findings are as
follows:

• the differences between plane and axisymmetric contact
configurations are small for all analyzed profile geometries

• profile truncation, e.g., due to sliding wear, has almost no
influence on the critical plane parameters

• for the partial slip limiting wear profile, the critical plane
parameters are severely increased and reach far deeper into
the contact and into the subsurface material

• the SWT parameter is generally more localized than the Findley
parameter

The proposed method can also be used to analyze other fretting
modes, e.g., superpositions of normal and tangential fretting
oscillations.

FIGURE 6 | Contour line diagrams of critical plane fatigue crack initiation criteria, normalized for their characteristic scales, in the loading plane for a partial slip
axisymmetric truncated parabolic contact under oscillating tangential load. (A) Smith-Watson-Topper parameter (B) Findley parameter.
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