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Acoustic insulation in ventilated structures is an important problem in acoustic engineering with
many potential practical applications, such as the noise control for ventilating ducts of buildings,
vehicles, or air conditioners. Acoustic metamaterial is a good candidate for the design of
acoustic insulation for ventilated channel (AIVC) because the structural design with hard
boundary has longer lifetime than conventional sound-absorbing cotton. In this paper, an
AIVCwith an open region and narrow channels of different lengths is proposed.We numerically
and experimentally demonstrate its acoustic insulation larger than 20 dB (T < 0.01) within
approximately 500–1,200Hz with a subwavelength channel length of λ/6. The parameter
dependence and air flow effect are numerically studied. Our findings show an alternative design
of AIVC that may have applications in noise control and architectural acoustics.
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INTRODUCTION

In acoustic engineering, it is a key scientific problem to achieve low frequency and broadband noise
control by sound absorptions or sound insulations. In the past decades, acoustic metamaterials
(Cummer et al., 2016; Ma and Sheng, 2016)and acoustic metasurfaces (Assouar et al., 2018) have
become the most promising candidates for noise control engineering and advanced acoustic material
design and manufacture, due to their physical characteristics, shape controllability and small volume/
size. Acoustic metamaterial/metasurface-based absorbers have been designed for ultra-broadband
working bandwidth (Jiang et al., 2014; Yang et al., 2017; Zhu et al., 2019; Huang et al., 2020; Kumar and
Lee, 2020; Zhu et al., 2021), ultra-light mass (Yang et al., 2008; Yang et al., 2010; Yao et al., 2010; Mei
et al., 2012; Fan et al., 2015; Huang et al., 2016; Gao et al., 2017; Gao et al., 2018; Li et al., 2020; Zhang
et al., 2020) and ultrathin sample thickness (Li and Assouar, 2016; Donda et al., 2019; Donda et al.,
2021), which benefit the development of conceptual acoustic device called acoustic meta-absorber.

Acoustic absorption (Li et al., 2018; Wu et al., 2018) and insulation (Yang et al., 2018) by acoustic
metamaterials in ventilated structures is another important problem in acoustic engineering with many
potential practical applications, such as the noise control for the ventilating ducts of buildings, vehicles, or air
conditioners. In previous works, acoustic insulation ventilated channels (AIVC) have been designed with the
help of acoustic metamaterials (Zhang et al., 2017; Lee et al., 2019; Sun et al., 2020; Dong et al., 2021; Shen
et al., 2021). Considering the tradeoff between sample size and working efficiency, previous balanced designs
always have an average absorptionwithin approximately 0.85–0.95 (Jiang et al., 2014; Yang et al., 2017; Zhang
et al., 2017; Lee et al., 2019; Zhu et al., 2019; Huang et al., 2020; Dong et al., 2021; Shen et al., 2021; Zhu et al.,
2021). However, high-efficient sound insulation is very important and significant for acoustic engineering
applications. A high sound insulation index (close to 1) is highly desirable for many practical cases when the
intensity of noise source is very large, such as the noises from construction sites or large-scale vehicles.
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In this paper, an AIVC with an open region and narrow channels
of different lengths is proposed. We numerically and experimentally
demonstrate its acoustic insulation larger than 20 dB (meaning sound
intensity transmission T < 0.01) within approximately 500–1,200 Hz
with a subwavelength channel length of λ/6. This high transmission
loss is very important in many practical sound insulation occasions.
We have designed the channel lengths with different distributions,
such as the linear one and the optimized one. More parameter
dependence of the AIVC is studied, such as the different open region
widths from 15 to 40mm, and different narrow channel widths from
6 to 9mm. Our findings show an alternative design for perfect sound
insulation with a high sound reduction index, that may have
applications in environmental acoustics and architectural acoustics.

DESIGN METHOD

The method reported in this paper enables the design of open-type
acoustic metamaterials consisting of narrow Fabry-Pérot (FP)
channels (Jiang et al., 2014; Yang et al., 2017; Xiao et al., 2021)
with open region that provide high sound attenuation and adequate
ventilation performance. Inspired by previous work (Deng et al.,
2017; Ghaffarivardavagh et al., 2019; Shi et al., 2021), the FP channels
are used as a side branch, which greatly improve the sound
insulation performance of the structure, while retaining the
opening part to ensure its ventilation performance. The
schematic diagram of the designed AIVC is shown in Figure 1.
The parameters are marked in the figure. For an original design,
the total length of AIVC is l = 120 mm. The diameter of open
region W = 20 mm, the width of FP channels d = 7 mm, the
difference between the lengths of adjacent numbered channels is
n, n = 8 mm for the original design. t is the interval between

channels and the sum of d and t is a constant value. As shown in
Figure 1A, the sound wave passes through the open region with
the periodically arranged side branches, the walls of the side
branches can be assumed to be rigid, and the medium in the
channels is air. Distributing the narrow tubes on both sides not
only saves space, but also enhances coupling and improves
sound insulation performance. The incident acoustic wave
will be coupled with different FP channels and dissipated
inside. In Figure 1B, the length of the channels varies
linearly (relative to the number i). The number i annotated
in Figure 1B from 1 to 12 denotes the cells with first-order peak
frequency from lower to higher. It is noted that Figure 1B shows
a periodic arrangement (1–11 and 1′-11′) which is an original
design but not necessary in our work. We will show other non-
periodic designs in the following.

The first-order resonance frequency is determined by the
length of the FP resonance channel, and their relationship can
be described as

fi � c0/4Li (1)
where c0 is the sound speed in the air, and Li is the length of FP
channel, fi is the resonant frequency corresponding to the
channel length. Thermal viscous effects in the channels need
to be considered, especially at resonant frequencies. The
attenuation coefficient α in the channel is

α ≈
2
dc0

���
ηω

2ρ0

√
(2)

where ω is the angular frequency, η and ρ0 are the viscosity
coefficient and mass density of air, respectively. Due to the
existence of resonance, the thermal viscous loss in the channel

FIGURE 1 | (A) The schematic diagram of the ventilation and sound insulation of AIVC. The total length of AIVC l = 120 mm. (B) The two-dimensional structure
diagram of the designed AIVC, the diameter of open region W = 20 mm, the width of FP channels d = 7 mm, and the difference between the lengths of adjacent
numbered channels is n, n = 8 mm for the original design, Li = L1-(i-1) × n (such as L1 = 160 mm, L2 = 152 mm), the channel numbered i’ is the same length as the
channel numbered i, t is the interval between channels.
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will be greatly enhanced, and the coupling of the two effects
enhances the sound insulation capability of the structure.

NUMERICAL SIMULATIONS

To verify the sound insulation effect of the structure,
numerical simulations have been performed by the
commercial finite element software COMSOL. The Viscous
effect has been considered in the simulations in the
Thermoviscous Acoustics Module and the results are shown
in Figure 2. To understand completely the mechanism of the

broadband acoustic insulation, Figure 2A shows the sound
transmission loss (STL) curves for a single resonator, two
coupled resonators with slightly different lengths, and 12
coupled resonators, respectively. The results suggest that the
coupling of the unit cells leads to the connection of STL
spectrum. From Figure 2B, an ultra-broadband sound
isolation of more than 20 dB can be observed,
approximately from 520 to 1,280 Hz, over an octave. The
sound transmission loss band consists of 12 peaks, which
correspond to 12 FP resonant channels of different lengths.
The lengths of the channels and their corresponding resonant
frequencies calculated by Eq. 1 are shown in Figure 2C.

FIGURE 2 | (A) Resonance characteristics of single resonator, 2 coupled resonators and 12 coupled resonators. (B) Simulation curve of sound transmission loss.
(C) The length of and the first-order resonant frequency of the channels calculated by Eq. 1. (D) Simulated sound field distribution at 520 and 1,130 Hz.
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By comparing Figures 2B,C, it can be clearly seen that the
resonant frequency at the peak of the sound transmission loss
band is observed not exactly at the resonant frequency of the
single resonant channel, owing to the coupling effects of the
whole structure. To further explain this phenomenon, Figure 2D
shows the simulated acoustic pressure amplitude field at 520 and
1,130Hz, respectively. These two frequencies correspond to the first
and 12th (last) peaks, respectively. Different from the traditional FP
resonance channels, the staggered arrangement makes the FP
resonance channels no longer act individually, but the adjacent
numbered channels act simultaneously, thus resulting in the shift
of the peak frequency to low frequency. As can be seen in Figure 2D,
at 520 Hz, the dominant channels are 1, 2 and 1′, not just 1 and 1′.
After passing through the 1′ channel, there is no high sound pressure
distribution in the rear channels, which proves the effectiveness of the
sound insulation of the structure. The same effect can also be
observed in the sound field distribution diagram at 1,130 Hz. A
higher sound pressure appears in the 12th channel, which blocks the
sound from propagating backwards, so a lower sound pressure
distribution appears in the rear channels.

To further improve the performance of the structure, the
channel length and distribution were changed from linear to
nonlinear, and the symmetry is changed for the bottom narrow

channels, as shown in Figure 3. The sound insulation
performance has dropped slightly, for which some valley
values are below 20 dB. Interestingly, the STL bandwidth
covers the frequency range from 490 to 1,330 Hz. Compared
to the design in Figure 2, the bandwidth for sound insulation is
increased, due to the fact that the resonant absorption frequencies
are optimized, and the change of the symmetry for bottom
narrow channels can alter the coupling effects between
adjacent unit cells.

PARAMETER DEPENDENCES AND AIR
FLOW EFFECT

We further investigated the dependence of the sound insulation
effect on the diameter of the open region and the FP resonant
channel width. In practice, there should be reasonable structural
dimensions while maintaining the performance of sound insulation.

Figure 4A shows the sound transmission loss of AIVC as a
function of frequency with different d values from 6 to 9 mm. The
simulation results prove that the broadband characteristics of
AIVC are hardly affected by the variation of channel width, and
the apparent difference only appears at the peaks as shown in the

FIGURE 3 | (A) Simulation curve of sound transmission loss. (B) The length of and the first-order resonant frequency of the channels calculated by Eq. 1. (C)
Simulated sound field distribution at 495 and 1,220 Hz.
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inset of Figure 4A. The larger d value has higher sound insulation
because of the better coupling at the opening of the narrow
channel. The changing the diameter of the FP resonant channel
will only affect the performance at the peak frequency, and has little
effect on the bandwidth and performance at other frequencies.

Figure 4B shows the sound transmission loss curves with
different open region widths. The four curves correspond to four
different open region widths of 15mm, 20mm, 30mm and 40mm,
respectively. It can be observed that as the open region width is
significantly reduced, the acoustic transmission is effectively
suppressed, and at the same time, an improvement in
performance over the entire frequency band is achieved. This
result indicates that there is a tradeoff between the ventilated area
and sound insulation efficiency.

We also study the influence of air flow effects in the ventilated
channel for sound insulation. Aeroacoustics Module of the
COMSOL software is used to study the air flow effect in AIVC.
The corresponding simulated results are shown in Figures 4C,D
with positive and negative airflows, respectively. The results show
that the airflow effect has an obvious influence on sound insulation.
When the velocity of themedium v (backgroundmean flow velocity)
is 0 m/s, the STL curve is in high agreement with Figure 2B. As the
medium velocity increases, the peaks at low frequencies and the
sound insulation decreases slightly.

EXPERIMENT DEMONSTRATION OF A 3D
DESIGN

In order to experimentally verify the performance of AIVC in
terms of sound insulation, an experimental sample is fabricated
via a 3D printing technique in Figure 5. As shown in Figure 5A,
the sample is designed as a ventilation structure with folded
channels and a circular cross section (diameter = 10 cm) whose
size agrees with standard acoustic impedance tube. We use folded
channels in 3D case to replace straight channels in 2D case for the
convenience of sample fabrications and experimental
demonstration. The centre portion of the designed structure is
a completely open region which yields a high degree of airflow. To
be consistent with the 3D simulation, we fabricated the sample
with PLA as the 3D printing material, which can be regarded
as a hard boundary. The arrangement of the side branches is
the same as in Figure 2, and the structure size is slightly
changed, where d = 8.75 mm, t = 3.75 mm, l = 150 mm, Dc =
100 mm, W = 25 mm, dc = 8.75 mm, b = 3.75 mm, L1 =
200 mm, Li = L1-(i-1) × n, n = 10 mm.

The experimental setup is shown in Figure 5B. The four
microphones method is adopted to measure the transmission loss
of the AIVC. A loudspeaker is placed at one end of the impedance
tube. Termination is set as sound absorption termination for

FIGURE 4 | (A) Sound transmission loss of different side branch width d. The inset shows the zoom-in curves. (B) Sound transmission loss for different open region
diametersW. (C) Sound transmission loss for different airflow velocity for positive direction with v ≥ 0 (D) Sound transmission loss for different airflow velocity for negative
direction v < 0.
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sound insulation measurement. The sample is placed in the
middle.

The experimental results are shown in Figure 5C. The numerical
(experimental) STL for sound insulation is large than 40 dB (25 dB)
within 400–1,400Hz, and the averaged STL in this band is
approximately 55 dB (35 dB). The sound insulation effect for 3D
design is better than 2D ones. This is probably because the 3D one
makes full use of the space, and the coupled effect between unit cells
for 3D case is better. The difference between numerical and
experimental STL is approximately 20 dB. This value difference
seems to be large with exponential units (dB), but the STL of both
exceeds 20 dB, which means that more than 99% of the sound energy
is blocked. So the experimental one has a high-efficient insulation as
well as the numerical one. The averaged error between numerical and
experimental ones is less than 0.06, whichmay be due to the imperfect
of sample fabrications and slight leakage of sound.

CONCLUSION

In summary, we have theoretically demonstrated a broadband
low-frequency soundproof ventilation channel with a structural
thickness of only 120 mm (about λ/6), which can effectively block
more than 99% of the incident sound energy in the range of about
500–1,200 Hz and have experimentally verified our proposal. The
ventilation channel consists of a central open region and 12 kinds
of side branches consisting of different length narrow channels.
By adjusting the distribution of side branch channels, high sound

insulation performance is achieved, and the simulation and
experimental results successfully verified our theory. At the
same time, we also considered the influence of the width of
the opening region, the width of the side branch channel and air
flow effect (including flow speed and direction) on the sound
insulation performance. Our work proposes a design concept of
low-frequency broadband, low-thickness and high-efficient
ventilation channel structure, which can help noise control
and could be widely used in architectural acoustics through
the reasonable design of dimensions.
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FIGURE 5 | (A) AIVC isometric 3D schematic diagram (left), front view (middle), and the photograph of sample (right). (B) Schematic of the experimental setup. (C)
Comparison between the numerical and experimental results of the sound transmission loss.
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