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Linear solvers usually are the most time- and memory-demanding part of a full coupled
hydromechanical simulation. The typical block structure of the linearized systems arising
from a fully-implicit solution approach requires the development of specialized algorithms,
ensuring both robustness and computational efficiency. In particular, the design of the
preconditioner to accelerate iterative methods based on Krylov subspaces is key for the
overall model effectiveness. This work introduces a unifying framework for the
development of preconditioning techniques in multi-physics problems, and specifically
in coupled poromechanics, with the aim to provide existing methods with a novel
interpretation. Three approaches, namely explicit, implicit and reverse, are considered
and compared in real-world challenging benchmarks, identifying merits and drawbacks of
each strategy. The proposed framework can open the way to a systematic comparison of
available preconditioning tools for coupled poromechanics and help generalize the existing
methods for the introduction of additional physical processes in the simulation.
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1 INTRODUCTION

Hydromechanical processes in three-dimensional porous media are governed by the coupled
equations describing the matrix deformation and the fluid flow through the void spaces. Both
the mechanical and the flow phenomena can be highly non-linear, including the formation of
localized structures, such as fractures and channelization. Today, sophisticated real-world
hydromechanical simulations are routinely required in a broad range of applications, going from
geosciences, to petroleum, geotechnical, environmental and also biomedical engineering, see for
instance Ferronato et al. (2010); White and Borja (2011); Hu et al. (2013); Ouchi et al. (2015); Ma
et al. (2017); Gudala and Govindarajan (2021) for some applications. A key issue for the use of such
models in industrial problems is the computational efficiency, which mainly relies on the properties
of the resulting discrete algebraic formulation and the related linear and non-linear solvers. In this
work, we focus in particular on the linear solver, which usually is by far the most time- and memory-
demanding task of the entire simulation.

Several different discretization methods are available, ranging from finite difference (Gaspar et al.,
2003; Boal et al., 2012) to finite volume (Chen et al., 2011; Burger et al., 2012; Asadi et al., 2014), as
well as classical and mixed finite element methods (Ferronato et al., 2010; Chen Y. et al., 2018; Lee,
2018; Monforte et al., 2018; Yuan et al., 2019; Khan and Silvester, 2021; Niu et al., 2021). Despite this
large variety, from the algebraic viewpoint, and independently of the actual number of physical
processes accounted for, the coupled discretization of a set of partial differential equations leads to a
block-structured problem that cannot be efficiently addressed by standard black-box solvers, but
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requires the development of specialized strategies. In 3D large-
size applications, the use of sparse direct solvers is not an option,
hence iterative methods must be used. In the past 15 years, a
growing attention has been reserved to the iterative solution of
coupled hydromechanical problems, with many works devoted to
the development and implementation of both fully-algebraic
approaches and discretization-based strategies. Generally
speaking, solution algorithms can be grouped into two main
classes: (i) sequential-implicit methods, in which the primary
variables are updated one by one, iterating between the governing
equations, and (ii) fully-coupled or fully-implicit methods, which
solve the global system of equations simultaneously for all the
primary unknowns. Sequential-implicit methods exhibit a linear
convergence, but can take advantage of using distinct codes and
solvers for the single-physics models. Notable examples in
hydromechanics can be found in the works by Jha and Juanes
(2007); Girault et al. (2016); Almani et al. (2016); Borregales et al.
(2018); Dana et al. (2018), just to mention a few significant
studies. One of the main numerical issues of such approaches is
the stability and convergence of the overall scheme, which might
not be guaranteed in any condition. In contrast, fully-coupled
approaches ensure unconditional stability with a super-linear
convergence, but require the design of dedicated preconditioning
operators to accelerate Krylov subspace solvers such as the
Generalized Minimum Residual (GMRES, Saad and Schultz
(1986)) or the Bi-Conjugate Gradient Stabilized (Van der
Vorst, 1992)) algorithms. This is key for the solver robustness
and efficiency and has recently attracted an increasing interest
from the scientific community, with the introduction of a number
of different algorithms in the last years. Just to cite a few recent
examples, we mention parameter-robust and spectrally-
equivalent block strategies (Lee et al., 2010; Hong and Kraus,
2018), multigrid-based methods (Gaspar and Rodrigo, 2017;
Chen L. et al., 2018; Bui et al., 2020), or block preconditioners
based on Schur complement approximations (Castelletto et al.,
2016; Frigo et al., 2021) andmixed constrained approaches (Benzi
and Wathen, 2008; Bergamaschi and Martínez, 2012; Liu et al.,
2016). A specific application-based technique developed for
coupled poromechanics is the so-called fixed-stress split, used
as both nonlinear acceleration and linear preconditioner
(Castelletto et al., 2015b; Both et al., 2017; Gaspar and
Rodrigo, 2017; Both et al., 2019; Hong et al., 2020).

Despite the apparent differences among the several fully-
implicit algorithms, a unifying algebraic background can be
recognized. Recently, Ferronato et al. (2019) have formalized a
general framework to classify block preconditioners for coupled
multi-physics simulations. The application of such a framework
can help identify a unique basic idea underlying different
strategies and make it easier to generalize the algorithms to a
multiplicity of problems, possibly including an increasing
number of physical processes. In this work, we aim to review
from a novel and unified perspective a set of different
preconditioning algorithms for coupled poromechanics,
comparing their advantages and drawbacks in real-world
benchmarks. The paper is organized as follows. The unifying
framework developed by Ferronato et al. (2019) is first recalled
and recast from a physical perspective. Then, three different

approaches developed for the solution of coupled
hydromechanical problems written in a mixed form, namely
an approximate-inverse (Franceschini et al., 2021), a block
triangular (Castelletto et al., 2016) and relaxed factorization
(Frigo et al., 2019) method, are reformulated within the same
framework as different variants of the same strategy. Finally, the
reviewed methods are compared in a set of real-world
benchmarks. A few conclusive remarks close the presentation.

2 GENERAL FRAMEWORK

The fully-implicit simultaneous numerical simulation of different
physical processes, occurring at variable time and space scales, is
often a very challenging task. The discretization of coupled multi-
physics problems gives rise to systems of linearized equations
with an inherent block structure that reflects the nature of the
underlying governing equations. Assuming that n different
physical processes are simulated together, the Jacobian matrix
A can be generally written as:

A �

A11 B12 B13 . . . B1n

C21 A22 B23 B2n

C31 C32 A33 B3n

..

.
1 ..

.

Cn1 Cn2 Cn3 . . . Ann

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

where:

• Aii ∈ Rni×ni is the square sparse diagonal block referring to
the ith process described by ni inner variables, with i = 1,
. . . , n;

• Bji ∈ Rnj×ni and Cij ∈ Rni×nj , with i = 2, . . . , n and j = 1, . . . ,
i − 1, are the off-diagonal sparse rectangular blocks coupling
the variables associated to the ith and jth processes.

In general, Bji ≠ CT
ij and Aii ≠ AT

ii , so that A is non-symmetric
and indefinite. If Bji = 0 or Cij = 0, then the variables associated
with process j do not directly influence those associated with
process i and the physics are said to be uncoupled. The numerical
solution to the system of equations arising from matrix A in (1)
can be very time- and memory-demanding mainly because of the
coupling blocks. The basic idea underlying the development of an
effective solver for A should rely on decoupling the variables
associated to the different processes, so that each physics can be
tackled independently of the others.

Formally, we aim to find a decoupling operator E written in the
factored form:

E � FG (2)
such that the matrix S:

S � GAF (3)
has no coupling blocks, i.e., it is block diagonal with non-zero
blocks Si ∈ Rni×ni , i = 1, . . . , n. The operative definition of the
decoupling factors can be easily obtained assuming that the block
LDU decomposition of A exists. In this case, F and G are the
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inverse of the upper and lower unitary block triangular factors of
A, while each diagonal block Si of S is the Schur complement
computed with respect to the first i physical processes. Denoting
by Ai the ith leading block of A, and by Bi, Ci, Fi, Gi the ith off-
block diagonal terms of the upper and lower parts of A, F, G,
respectively:

Ai �
A11 B12 . . . B1i

C21 A22 B2i

..

.
1 ..

.

Ci1 Ci2 . . . Aii

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, i � 1, . . . , n − 1, (4)

Bi �
B1i

B2i

..

.

Bi−1,i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Ci � Ci1 Ci2 . . . Ci,i−1[ ], i � 2, . . . , n,

(5)

Gi � Gi1 Gi2 . . . Gi,i−1[ ], Fi �
F1i

F2i

..

.

Fi−1,i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, i � 2, . . . , n.

(6)
the decoupling factors can be computed by solving the set of
multiple right-hand side systems (Ferronato et al., 2019):

AiFi+1 � −Bi+1
Gi+1Ai � −Ci+1
{ , i � 1, . . . , n − 1. (7)

Then, the overall system with A is decoupled with each diagonal
block Si given by:

Si � Gi I[ ] Ai−1 Bi

Ci Aii
[ ] Fi

I
[ ] � GiAi−1Fi + CiFi + GiBi + Aii.

(8)
The local solution of each single-physics problem with the matrix
Si provides simultaneously the set of unknowns associated to all
processes.

The general algebraic framework presented above can be also
interpreted from a physical viewpoint as a block-reduction
procedure, where the variables associated to each process are
progressively eliminated. For example, by eliminating the
variables associated to the first process the matrix A
becomes:

A 1( ) �

A11 B12 B13 . . . B1n

0 A 1( )
22 B 1( )

23 B 1( )
2n

0 C 1( )
32 A 1( )

33 B 1( )
3n

..

.
1 ..

.

0 C 1( )
n2 C 1( )

n3 . . . A 1( )
nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

where the new blocks read:

A 1( )
ii � Aii − Ci1A

−1
11B1i, i � 2, . . . , n (10)

B 1( )
ij � Bij − Ci1A

−1
11B1j, i � 2, . . . , n, j � i + 1, . . . , n

(11)

C 1( )
ij � Cij − Ci1A

−1
11B1j, i � 3, . . . , n, j � 2, . . . , i − 1

(12)
Then, the procedure continues with the elimination of the
variables associated to the second process:

A 2( ) �

A11 B12 B13 . . . B1n

0 A 1( )
22 B 1( )

23 B 1( )
2n

0 0 A 2( )
33 B 2( )

3n

..

.
1 ..

.

0 0 C 2( )
n3 . . . A 2( )

nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (13)

and so on. At the kth step of the multi-physics reduction
procedure, with k = 1, . . . , n − 1, Eqs. 10–12 can be easily
generalized as:

A k( )
ii � A k−1( )

ii − C k−1( )
ik A k−1( ),−1

kk B k−1( )
ki , i � k + 1, . . . , n (14)

B k( )
ij � B k−1( )

ij − C k−1( )
ik A k−1( ),−1

kk B k−1( )
kj , i � k + 1, . . . , n,

j � i + 1, . . . , n (15)
C k( )

ij � C k−1( )
ij − C k−1( )

ik A k−1( ),−1
kk B k−1( )

kj , i � k + 2, . . . , n,

j � 2, . . . , i − 1 (16)
with A(0) = A. Trivially, the existence conditions for Eqs. 14–16
are the same as for (7), and the final diagonal blocks A(i−1)

ii , i = 1,
. . . , n, coincide with Si of Eq. 8. From an engineering viewpoint,
the original multi-physics problem has been reduced to a
sequence of single-physics problems that can be handled one
at a time.

Of course, this general framework cannot be exactly applied to
real-world large-size problems, because both the decoupling
factors F, G, and the diagonal blocks of S are dense. However,
if their computation is carried out inexactly, we can use this
approach as a preconditioner to accelerate the convergence of a
non-symmetric Krylov subspace method, such as GMRES (Saad
and Schultz, 1986) or Bi-CGStab (Van der Vorst, 1992).
Effectiveness and computational efficiency of the
preconditioner basically depend on the level of approximation
for each block and the selected sequence of reductions.

3 COUPLED HYDROMECHANICS IN
POROUS MEDIA

Coupled hydromechanical simulations are typical examples of
multi-physics problems. For the sake of simplicity, in this work
we focus on a three-field mixed (displacement-velocity-pressure)
formulation of the classical linear poroelasticity (Biot, 1941;
Coussy, 2004), but this is not restrictive since similar
procedures can be extended to other formulations as well, also
including multi-phase flow and fractures. In particular, the
introduction of inelastic behaviors for the porous medium
does not impact on the general framework proposed herein
once the structural block is replaced by the tangent stiffness
matrix.
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Let Ω ⊂ Rd (d = 2, 3) and Γ be the domain occupied by the
porous medium and its Lipschitz-continuous boundary,
respectively, with x the position vector in Rd and the closure
�Ω � Ω ∪ Γ. We denote time with t, belonging to an open interval
I � (0, tmax). The boundary is decomposed as Γ = Γu ∪ Γσ = Γp ∪
Γq, with Γu ∩Γσ = Γp ∩Γq =∅, and n denotes its outer normal
vector. Assuming quasi-static conditions and saturated, single-
phase flow of a slightly compressible fluid, the set of governing
equations consists of the conservation laws for linear momentum
and mass expressed in mixed form, i.e., introducing Darcy’s
velocity as an additional unknown. The strong form of the
initial-boundary value problem (IBVP) consists of finding the
displacement u: �Ω × I → Rd, the Darcy velocity
q: �Ω × I → Rd, and the excess pore pressure p: �Ω × I → R

that satisfy:

∇ · Cdr: ∇
su − bp1( ) � 0 (equilibrium), (17)

μfκ
−1 · q + ∇p � 0 (Darcy’s law), (18)

b∇ · _u + Sϵ _p + ∇ · q � f (continuity), (19)
with: Cdr the rank-four elasticity tensor, ∇s the symmetric
gradient operator, b the Biot coefficient, and 1 the rank-two
identity tensor; μf and κ the fluid viscosity and the rank-two
permeability tensor, respectively; Sϵ the constrained
specific storage coefficient, i.e., the reciprocal of Biot’s
modulus, and f the fluid source term. The problem is
closed by prescribing the following set of boundary and
initial conditions:

u � �u on Γu × I , (20)
Cdr: ∇

su − bp1( ) · n � �t on Γσ × I , (21)
q · n � �q on Γq × I , (22)

p � �p on Γp × I , (23)
p x, 0( ) � p0 x ∈ �Ω, (24)

where �u, �t, �q, and �p are the prescribed boundary displacement,
traction, Darcy velocity and excess pore pressure, respectively,
whereas p0 is the initial excess pore pressure. The initial
displacement u0 and Darcy’s velocity q0 are selected so as to
satisfy the equilibrium Eq. 17 and Darcy’s law (18) for p = p0,
respectively.

Let us denote withH1(Ω) the Sobolev space of vector functions
with square-integrable first derivatives, i.e., they belong to the
Lebesgue space L2(Ω); and let H (div; Ω) be the Sobolev space of
vector functions with square-integrable divergence. Introducing
the spaces:

U � u ∈ H1 Ω( ) | u|Γu � �u{ }, (25)
U0 � u ∈ H1 Ω( ) | u|Γu � 0{ }, (26)
Q � q ∈ H div;Ω( ) | q · n|Γq � �q{ }, (27)
Q0 � q ∈ H div;Ω( ) | q · n|Γq � 0{ }, (28)

P � p ∈ L2 Ω( ){ }, (29)
the weak form of the IBVP (17)–(24) reads: find
{u(t), q(t), p(t)} ∈ U × Q × P such that ∀t ∈ I :

∇sη,Cdr: ∇
su( )Ω − div η, bp( )Ω � η, �t( )Γσ ∀η∈ U0, (30)

ϕ, μfκ
−1 · q( )Ω − div ϕ, p( )Ω � − ϕ · n, �p( )Γp ∀ϕ∈ Q0,

(31)
χ, b div _u( )Ω + χ, div q( )Ω + χ, Sϵ _p( )Ω � χ, f( )Ω ∀χ ∈ P,

(32)
where (·,·)Ω denote the inner products of scalar functions in
L2(Ω), vector functions in [L2(Ω)]d, or second-order tensor
functions in [L2(Ω)]d×d, as appropriate, and (·, ·)Γ* denote the
inner products of scalar functions or vector functions on the
boundary Γ*.

A widely-used discrete version of the weak form Eqs. 30–32 is
based on low-order elements, such as lowest-order continuous
(Q1), lowest-order Raviart-Thomas (RT0), and piecewise
constant (P0) spaces for the approximation of displacement,
Darcy’s velocity, and fluid pore pressure, respectively. The
attractive features of this choice are element-wise mass
conservation and robustness with respect to highly
heterogeneous hydromechanical properties, such as high-
contrast permeability fields typically encountered in real-world
applications. Other attractive features can arise from the
hybridized version of the three-field formulation, as proposed
for instance by Niu et al. (2019) and Frigo et al. (2021).

Let us consider a non-overlapping partition T h of the domain
Ω consisting of nT quadrilateral (d = 2) or hexahedral (d = 3)
elements. Let Eh be the collection of edges (d = 2) or faces (d = 3)
of elements T ∈ T h. Denote with ne the outer normal vector from
e ∈ zT, where zT is the collection of the edges or faces belonging to
T. Time integration is performed with the Backward Euler
method, with the interval I partitioned into N subintervals
I n � (tn−1, tn), n = 1, . . . , N, where Δt = tn − tn−1. With the
discretization defined above, the finite dimensional counterpart
of the spaces given in Eq. 25–29 read:

Uh � uh ∈ U | uh|T ∈ Q1 T( )[ ]d, ∀T ∈ T h{ }, (33)
Uh

0 � uh ∈ U0 | uh|T ∈ Q1 T( )[ ]d, ∀T ∈ T h{ }, (34)
Qh � qh ∈ Q | qh|T ∈ RT0 T( )[ ], ∀T ∈ T h{ }, (35)
Qh

0 � qh ∈ Q0 | qh|T ∈ RT0 T( )[ ], ∀T ∈ T h{ }, (36)
Ph � ph ∈ L2 | ph|T ∈ P0 T( )[ ], ∀T ∈ T h{ }, (37)

with Q1(T) the mapping to T of the space of bilinear
polynomials on the unit square (d = 2) or trilinear
polynomials on the unit cube (d = 3), RT0(T) the lowest-
order Raviart-Thomas space and P0(T) the space of piecewise
constant functions in T. Using the definitions above, the fully
discrete weak form of the governing IBVP can be stated as
follows: given {u0, q0, p0}, find {uhn, qhn, ph

n} ∈ Uh × Qh × Ph

such that for n = {1, . . . , N}

∇sηh,Cdr: ∇
suh

n( )Ω − div ηh, bph
n( )Ω � ηh, �tn( )Γσ ∀ηh ∈ Uh

0 ,

(38)
ϕh, μfκ

−1 · qhn( )Ω − div ϕh, ph
n( )Ω � − ϕh · n, �pn( )Γp ∀ϕh ∈ Qh

0 ,

(39)
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χh, b div uh
n( )Ω + Δt χh, div qhn( )Ω + χh, Sϵp

h
n( )Ω � χh, ~fn( )Ω ∀χh ∈ Ph,

(40)
where ~fn � b div uhn−1 + Sϵph

n−1 + Δtfn.
It is well-known that the selected spaces do not satisfy the

inf-sup stability constraint in the limit of incompressible
fluid and solid constituents (Sϵ → 0) and undrained
conditions (either κ → 0 or Δt → 0). In order to restore
the solvability conditions and avoid spurious
pressure modes, we introduce in the discrete mass
balance Eq. 40 the pressure-jump stabilization term
(Frigo et al., 2021):

J χh, ph( ) � ∑
M∈Mh

βM|M| ∑
e∈ΓM

[[χh]]e[[ph]]e (41)

where Mh is a partition of Ω into non-overlapping macroelements
M, which are generated by a patch of adjacent elements T, |M| is the
macroelementmeasure, βM is a stabilization term, and [ [·] ]e denotes
the jump across the edge/face e belonging to the internal boundary
ΓM of M. From a physical viewpoint, the stabilization contribution
(41) represents a fictitious flux introduced through the inner edges of
eachmacro-element so as to compensate the spurious fluxes induced
by the non-physical pressure oscillatory modes. Appropriate values
for βM as a function of the mechanical properties of the porous
medium are proposed, for instance, by Elman et al. (2014), Camargo
et al. (2021) and Frigo et al. (2021).

Let {ηi}i∈N u∪ �N u
be the standard vector nodal basis functions for

Uh, withN u and �N u the set of indices of basis function vanishing
on Γu and having support on Γu, respectively. Let {ϕj}j∈N q∪ �N q

be
the edge-/face-based basis functions forQh, withN q and �N q the
set of indices of basis functions vanishing on Γq and having
support on Γq, respectively. Notice that {ηi}i∈N u

and {ϕj}j∈N q
form

a basis also for Uh
0 andQh

0, respectively. Let {χk}k∈N p
be the basis

for Ph, with χk the characteristic function of the kth element
Tk ∈ T h such that χk(x) = 1 if x ∈ Tk, χk(x) = 0 if x∉Tk. Then,
discrete approximations for displacement, Darcy’s velocity, and
pressure belonging to the finite-dimensional spaces (33) (35) and
(37), respectively, read:

uh
n x( ) � ∑

i∈N u

ηi x( )ui,n︸�����︷︷�����︸
≔�uhn

+ ∑
i∈ �N u

ηi x( )�ui,n︸�����︷︷�����︸
≔�uhn

,

qhn x( ) � ∑
j∈N q

ϕj x( )qj,n︸�����︷︷�����︸
≔�qhn

+ ∑
j∈ �N q

ϕj x( )�qj,n︸�����︷︷�����︸
≔�qhn

,

ph
n x( ) � ∑

k∈N p

χk x( )pk,n. (42)

The unknown nodal displacement components {ui,n}, edge-/face-
centered Darcy’s velocity components {qj,n}, and cell-centered
pressures {pk,n} at time level tn are collected in vectors un ∈ Rnu ,
qn ∈ Rnq , and pn ∈ Rnp . Requiring that {uhn, qhn, ph

n} given in Eq. 42
satisfy the fully discrete weak formulation (38)–(40) with the
introduction of the stabilization (41) for each basis function of
Uh

0, Qh
0, and Ph yields the final matrix form of the variational

problem:

Ax � b with A �
Auu 0 Aup

0 Aqq Aqp

Apu ΔtApq App

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, x �
un

qn

pn

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
b �

fu
fq
fp

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (43)

where Apu � −AT
up and Apq � −AT

qp. Note that Auu ∈ Rnu×nu and
Aqq ∈ Rnq×nq are symmetric and positive definite (SPD) matrices,
whereas App ∈ Rnp×np is symmetric positive semi-definite
(SPSD). The explicit expressions of matrices in Eq. 43 are
given below:

Auu[ ]ij � ∇sηi,Cdr: ∇
sηj( )Ω, i, j � 1, . . . , nu, (44)

Aup[ ]
ij
� − div ηi, bχj( )Ω, i � 1, . . . , nu, j � 1, . . . , np,

(45)
Aqq[ ]

ij
� ϕi, μfκ

−1 · ϕj( )Ω, i, j � 1, . . . , nq, (46)
Aqp[ ]

ij
� − div ϕi, χj( )Ω, i � 1, . . . , nq, j � 1, . . . , np,

(47)
Apu[ ]

ij
� χi, bdiv ηj( )Ω, i � 1, . . . , np, j � 1, . . . , nu, (48)

Apq[ ]
ij
� χi, div ϕj( )Ω, i � 1, . . . , np, j � 1, . . . , nq, (49)

App[ ]
ij
� χi, Sϵχj( )Ω+ ∑

M∈Mh

βM|M| ∑
e∈ΓM

[[χi]]e[[χj]]e, i, j � 1, . . . , np. (50)

The final matrix A of Eq. 43 has the multi-physics block
structure (1), where n = 3 physical processes are coupled together.
According to the definitions given above, displacements and
Darcy’s velocities are uncoupled processes. In the sequel, we
discuss the development of effective solvers for the
hydromechanical problem in the form Eq. 43. The focus is on
the preconditioning technique used in a non-symmetric Krylov
subspace method based on the general framework described in
Section 2. According to the different strategies used to
approximate the decoupling factors and the resulting Schur
complements, we distinguish among three different
approaches: the explicit, implicit and reverse methods.

3.1 Explicit Approach
Using the definitions introduced in Section 2, the decoupling
operators G and F for the multi-physics problem Eq. 43 read:

G �
Iu 0 0
Gqu Iq 0
Gpu Gpq Ip

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, F �
Iu Fuq Fup

0 Iq Fqp

0 0 Ip

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (51)

where Iu, Iq, and Ip are the identity operators inR
nu×nu ,Rnq×nq , and

Rnp×np , respectively. The application of Eq. 7 straightforwardly
yields:

Fuq � 0
Fup � −A−1

uuAup

Fqp � −A−1
qqAqp

⎧⎪⎨⎪⎩ ,
Gqu � 0
Gpu � −ApuA

−1
uu

Gpq � −ΔtApqA
−1
qq

⎧⎪⎨⎪⎩ . (52)

Recalling from Eqs. 38–40 thatApu � −AT
up andApq � −AT

qp, and
that Auu and Aqq are SPD, we have Gpu � −FT

up and
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Gpq � −ΔtFT
qp. Hence, Eq. 52 shows that only Fup and Fqp needs

to be computed as the solution of multiple right-hand side
systems with Auu and Aqq. Here, the idea relies on computing
explicit sparse approximations of Fup and Fqp.

The explicit sparse computation of the decoupling factors,
say ~Fup and ~Fqp, can be carried out by using the ideas
originally introduced for the computation of sparse
approximate inverses (Kolotilina and Yeremin, 1993; Grote
and Huckle, 1997; Janna et al., 2010; Ferronato et al., 2014).
For the sake of generality, let us consider the solution to the
system Cf = b, where C ∈ Rn×n and b ∈ Rn are sparse. If we
want to retain a prescribed sparsity for the solution vector
f ∈ Rn, we can define a set J ⊂ {1, 2, . . . , n} of positions of the
non-zeroes of f (Figure 1), with |J |≪ n. Hence, only the
columns of C with index j ∈ J are needed to compute the
product Cf. A further restriction can be enforced to the rows
where at least a non-zero entry lies in one of the selected
columns. Denoting as I ⊂ {1, 2, . . . , n} the set of indices of
such rows (Figure 1), the native system Cf = b can be
reduced to:

C|I ,J f |J � b|I , (53)
where C|I ,J , f |J , and b|I are the restrictions of C, f, and b to the
sets of components with indices in I and J , respectively. Since
|J |, |I |≪ n, the solution to system (53) is practically inexpensive
if compared to the full problem Cf = b.

In order to avoid the solution to over- or under-determined
rectangular systems, we define the sets:

K k( )
r � I k( )

r ∪ J k( )
r , r � u, q, k � 1, . . . , np, (54)

where J (k)
r ⊂ {1, 2, . . . , nr} is the set of positions of the non-zero

entries retained in the kth column of the sparse decoupling block
~Frp, and I(k)

r ⊂ {1, 2, . . . , nr} is the corresponding set of row
indices with at least a matrix non-zero entry in the columns
j ∈ J (k)

r . With the definition (54), the sparse columns of ~Fup and
~Fqp can be explicitly computed as the solution to the set of
independent systems:

Auu|K k( )
u ,K k( )

u

~Fup|K k( )
u ,k � −Aup|K k( )

u ,k

Aqq|K k( )
q ,K k( )

q

~Fqp|K k( )
q ,k � −Aqp|K k( )

q ,k

⎧⎨⎩ , k � 1, . . . , np,

(55)
Notice that the implementation of Eq. 55 is trivially amenable for
high-performance parallel computations. Then, the diagonal
blocks of S can be explicitly computed as well:

Su � Auu, Sq � Aqq,

Sp � App + ~F
T

upAuu
~Fup + Δt~FT

qpApp
~Fqp. (56)

The blocks Su, Sq, and Sp, which can be regarded as the result of
the reduction to a sequence of SPD single-physics problems, are
also inverted inexactly for the sake of preconditioning by
introducing three approximations M−1

u , M−1
q , and M−1

p . These
approximations can be obtained by using inner single-block
preconditioners, such as well-established algebraic tools like
incomplete factorizations, approximate inverses and multi-grid
strategies. The final explicit preconditioning operator M−1

exp for A
of Eq. 43 reads:

M−1
exp �

Iu 0 ~Fup

0 Iq ~Fqp

0 0 Ip

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ M−1
u 0 0
0 M−1

q 0
0 0 M−1

p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ Iu 0 0
0 Iq 0

−~FT

up −Δt~FT

qp Ip

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(57)

The key factors for the quality and effectiveness of M−1
exp are: (i)

the choice of M−1
u , M−1

q and M−1
p , and (ii) the selection of the sets

K(k)
u and K(k)

q for the sparse explicit computation of ~Fup and ~Fqp,
respectively. In particular, the second point turns out to be essential
for building Sp as an actually representative operator of the physical
properties of the pressure equation. Following the ideas introduced
by Franceschini et al. (2021) and Nardean et al. (2021), we use a
dynamic approach that starts from physically-based static patterns
K(k),0

u and K(k),0
q and builds K(k)

u and K(k)
q by selecting and

computing the most significant entries in each column.
A natural choice for K(k),0

u and K(k),0
q is the set of non-zero

entries of the kth column of Aup and Aqp, respectively, which can be
immediately derived from the grid topology and the relation tables
node-to-element and face-to-element (Vassilevski, 2002). In fact, the
kth column of Fup can be regarded as the discrete displacement
arising in the solid body with stiffness matrix Auu because of the
loads defined in the kth column of Aup—namely, loads produced by
a unit pressure change at the kth pressure degree of freedom (DoF)
pk and applied to mesh nodes associated with displacement DoFs
coupled to pk. Similarly, the kth column of Fqp is the discrete Darcy
velocity in the porous volume with conductivity matrix Aqq

generated by the pressure gradients defined in the kth column of
Aqp—namely, pressure gradients due to a unit pressure change at pk
and applied to mesh faces associated with velocity DoFs coupled to
pk. Hence, we expect the larger entries in the kth column of Fup and
Fqp to be located on the loaded nodes and faces, with progressively
decaying values as we move farther in the surroundings. Possible
expansions toK(k),0

u andK(k),0
q are topologically based, by collecting

neighbors and neighbors of neighbors for a (small) given number of
levels.

FIGURE 1 | Schematic representation of the restriction applied to
system (53).
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After setting the initial patterns, successive expansions are
governed by an adaptive algorithm built on the one introduced by
Janna and Ferronato (2011) and Janna et al. (2015b). We
compute ~Fup|K(k),0

u ,k and ~Fqp|K(k),0
q ,k by solving systems (55) and

then obtain the residuals:

r k( ),0
u � Auu|: ,K k( ),0

u

~Fup|K k( ),0
u ,k + Aup|: ,k

r k( ),0
q � Aqq|: ,K k( ),0

q

~Fqp|K k( ),0
q ,k + Aqp|: ,k

⎧⎨⎩ , k � 1, . . . , np,

(58)
The non-zero pattern K(k),0

r , r = u, p, is enlarged by adding ρr
positions corresponding to the largest components of r(k)r , thus
obtaining the augmented patternK(k),1

r . The procedure is iterated
by computing the new columns ~Frp|K(k),1

r ,k and the residuals (58),
so as to build K(k),2

r , and so on. The column-wise search can be
stopped when either a maximum number of entries are added or
some norm of r(k)r is smaller than a prescribed tolerance. This
approach has the advantage of adapting automatically column-
wise the density of the decoupling factors so as to obtain a
prescribed quality of the approximations. By contrast, its cost
can rapidly increase with the number of computed entries, so that
the need for high-quality decoupling factors and the number of
enlarging steps to achieve the target are contrasting requirements
that should be properly balanced.

3.2 Implicit Approach
The exact decoupling factors Fup and Fqp are dense and their
explicit computation assumes that they can be well-approximated
by a sparse operator. This might not be the case in complex
problems, and especially where strongly coupled conditions add
to grid distortion and medium heterogeneity. This limitation can
be overcome by using an implicit approximation, where Fup and
Fqp of Eq. 52 do not need to be formed and their application to a
vector is carried out by a matrix-by-vector product and an inexact
application of either A−1

uu or A
−1
qq , e.g., by the same operators M−1

u
or M−1

q used to replace the application of S−1u and S−1q . However,
the pressure-equation Schur complement Sp now reads:

Sp � App + AT
upM

−1
u AuuM

−1
u Aup + ΔtAT

qpM
−1
q AqqM

−1
q Aqp

≃ App + AT
upM

−1
u Aup + ΔtAT

qpM
−1
q Aqp � App + S u( )

p + ΔtS q( )
p ,

(59)
that can be neither computed nor inverted in simple and efficient
ways. This limitation can be bypassed by defining explicit
physics-based approximations ~S

(u)
p and ~S

(q)
p of S(u)p and S(q)p ,

respectively, thus preventing from the direct use of Eq. 59.
The contribution ~S

(u)
p can be computed by replacing the mass

balance Eq. 19 with the flow equation in saturated porous media
traditionally used in hydrogeology. The classical claim is that the
medium deformation can be decoupled from the flow and
lumped in a single material parameter, denoted as specific
elastic storage coefficient, with no significant detrimental
effects for the overall solution at large space and time scales.
For example, it is well-known that decoupling takes place
rigorously if the deformation evolves with no variation in time
of the total volumetric stress σvol (Rice and Cleary, 1976):

_σvol � Kb∇ · _u − b _p � 0 (60)
with Kb the volumetric bulk modulus. Under this hypothesis, the
continuity Eq. 19 reads:

∇ · q + Sϵ + b2

Kb
( ) _p � f (61)

The same occurrence takes place if the deformation occurs in
oedometric conditions with prevented lateral deformations,
where we have (Verruijt, 1969):

Kv∇ · u � bp (62)
with Kv the vertical uniaxial bulk modulus. Again, we have the
same expression as in (61) where Kb is replaced by Kv. Therefore,
the idea is to replace the mass balance Eq. 19 with:

∇ · q + Sϵ + b2

�K
( ) _p � f (63)

for preconditioning purposes only, where �K is some lumped
parameter accounting for the bulk modulus. In the fully discrete
weak form Eq. 40, the functional (χh, b div uhn)Ω is replaced by
the bilinear form:

S χh, ph( ) � χh, b2/ �Kph( )Ω, ∀χh ∈ Ph (64)
Introducing in (64) the discrete approximation (42) for the
pressure and the basis {χk}k∈N p

of Ph, produces the matrix form:

~S
u( )
p[ ]

ij
� χi, b

2/ �Kχj( )
Ω
, i, j � 1, . . . , np. (65)

Following the algebraic interpretation of ~S
(u)
p given by Castelletto

et al. (2016), �K can be computed locally for every pressure DoF pk,
for instance as a measure of an appropriate sub-matrix of Auu.
Denoting asR(k)

u the set of indices of the non-zero entries in the kth
column of Aup, the corresponding local value �K(k) can be set to:

�K
k( ) � Auu|R k( )

u ,R k( )
u

))))) )))))2, k � 1, . . . , np. (66)
The operator defined in Equation 65 was also used to obtain the
so-called fixed-stress splitting scheme for the sequential solution
of a finite element coupled poromechanical model (Kim et al.,
2011; White et al., 2016). For this reason, ~S

(u)
p is also referred to as

fixed-stress matrix.
The computation of ~S

(q)
p usually poses less difficulties. In fact,

this issue has been already addressed in the context of the
preconditioning for mixed finite element discretization of
Darcy’s flow. Bergamaschi et al. (1998) propose to use a
matrix derived from the discretization of the pressure
Laplacian weighted by the Euclidean norm of the rows of Aqq.
To this purpose, we define the diagonal matrix:

D � diag ~a1, ~a2, . . . , ~anq( ), ~ai � ∑nq
j�1

Aqq[ ]2
ij

⎛⎝ ⎞⎠1/2

,

i � 1, . . . , nq (67)
The contribution S(q)p is then approximated by:
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~S
q( )

p � AT
qpD

−1Aqp. (68)
The final implicit preconditioning operator M−1

imp for A reads:

M−1
imp �

Iu 0 −M−1
u Aup

0 Iq −M−1
q Aqp

0 0 Ip

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ M−1
u 0 0
0 M−1

q 0
0 0 M−1

p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Iu 0 0
0 Iq 0

AT
upM

−1
u ΔtAT

qpM
−1
q Ip

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (69)

whereM−1
p denotes the operator that inexactly applies the inverse

of App + ~S
(u)
p + Δt~S(q)p . Since the application of M−1

imp to a vector
requires twice the application of M−1

u and M−1
q with respect to

M−1
exp, either the rightmost or the leftmost block triangular factors

can be neglected, thus giving rise to an overall block triangular
preconditioner. This kind of approximation is widely used in
several problems, e.g., (Murphy et al., 2000; Benzi et al., 2005),
because it reduces the application cost usually without a
significant detrimental effect on the solver convergence rate.

3.3 Reverse Approach
As in any preconditioning method based on Schur
complement approximations, the implicit approach requires
some specific trick to define Sp in an amenable way. The main
limitation of physics-based strategies, such as the one
described in Section 3.2, is that they are usually very
problem-dependent and do not provide the user with
operative tools for improving the approximation. For
example, the surrogate contributions ~S

(u)
p and ~S

(q)
p depend

on the material and discretization properties and their
accuracy cannot be controlled by the user. For this reason,
we would like to develop a strategy that does not rely on
accurate sparse approximations of the Schur complements.

The idea is to properly permute the block rows and columns so
as to avoid the computation of Sp. This can be done, for instance,
by eliminating the pressure variables first, then Darcy’s velocities,
and finally reducing to a single-physics displacement problem.
For this reason, we denote this strategy as a reverse
preconditioning approach. Let us first permute the matrix A as:

�A �
App ΔtApq Apu

Aqp Aqq 0
Aup 0 Auu

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (70)

and eliminate the pressure variables from the second and third
block rows by using the multi-physics reduction procedure
described in Section 2. The matrix App, however, is SPSD,
hence it cannot be safely inverted in any circumstances. To
avoid such an inconvenience, we replace App in Equation 70
with αIp, where α ∈ R is an appropriate relaxing parameter, then
we eliminate the pressure variables:

�A
1( ) �

αIp ΔtApq Apu

0 A 1( )
qq A 1( )

qu

0 A 1( )
uq A 1( )

uu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (71)

with:

A 1( )
qq � Aqq − Δtα−1AqpApq, (72)
A 1( )

qu � −α−1AqpApu, (73)
A 1( )

uq � −Δtα−1AupApq, (74)
A 1( )

uu � Auu − α−1AupApu. (75)
The next step should include the elimination of Darcy’s
velocity from the third block row, thus implying the use of
the inverse of A(1)

qq and the generation of other Schur
complements. A simplifying assumption that avoids the
possibly troublesome computation of A(2)

uu � A(1)
uu −

A(1)
qu A

(1),−1
qq A(1)

uq relies on neglecting at least one of terms
coupling Darcy’s velocities with displacements. For
example, in their pioneering work Ferronato et al. (2010)
simply neglected both the A(1)

qu and A(1)
uq blocks, with a

simultaneous solution for Darcy’s velocity and
displacement DoFs. More recently, Frigo et al. (2019)
suggested to neglect the A(1)

uq block alone and found a
robust and cheap algorithm to compute an optimal value
for the relaxing parameter α. In essence, they operated a
multi-physics reduction procedure on the approximate
block matrix �A:

�A �
αIp ΔtApq Apu

Aqp Aqq 0
Aup

~Auq Auu

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ (76)

where ~Auq � Δtα−1AupApq and the optimal α value reads:

α �
..
Δt

√
np

.........................
trace diag ~S

u( )
p( ) · diag ~S

q( )
p( )[ ]√

. (77)

By permuting the sequence of variables back to the original
displacement-velocity-pressure ordering, the resulting
preconditioner reads:

M−1
rev �

Iu 0 α−1Aup

0 Iq 0
0 0 Ip

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ A 1( )
uu 0 0
0 Iq 0

Apu 0 Ip

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ Iu 0 0
0 A 1( )

qq Aqp

0 0 αIp

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ Iu 0 0
0 Iq 0
0 Δtα−1Apq Ip

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠−1

, (78)

and was denoted as Relaxed Physical Factorization in order to
recall a similar strategy previously introduced for Navier-Stokes
equations (Benzi et al., 2011, 2016).

The reverse preconditioning approach does not require the
computation and the inversion of the classical Schur complement
Sp, but needs inner solves, that are carried out inexactly, with A

(1)
uu

and A(1)
qq . Since np is smaller than both nu and nq, A

(1)
uu and A(1)

qq
have the form:

C 1( ) � C + βFFT, (79)
with β > 0, C a regular SPD matrix, and FFT a rank-deficient
contribution. The inexact application ofC(1),−1 may easily become
an issue for large values of β, with a progressive deterioration of
theM−1

rev effectiveness. In order to avoid this difficulty, the inexact
solution to the system:

C 1( )v � b, (80)
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with C(1) defined as in (79), is carried by setting the auxiliary
variable w = βFTv. System (80) then reads:

C F
FT −β−1Ip[ ] v

w
( ) � b

0
( ). (81)

Eliminating v from the second equation we obtain:

w � β Ip + βFTC−1F( )−1FTC−1b, (82)
which substituted in the first equation gives:

v � C−1 b − βF Ip + βFTC−1F( )−1FTC−1b[ ]. (83)

Eq. 83 is nothing but the Sherman-Morrison-Woodbury formula.
The use of Eq. 83 for computing the solution to system (80) is
generally more stable, because it avoids the inversion of the
nearly-singular matrix C(1). Frigo et al. (2022) suggests to use
Eq. 83 for the application of M−1

rev. In particular, for the inexact
solution to A(1)

rr vr � br, r = u, q, we use the relationship:

vr � M−1
r br + βrArp Ip + βrdiag ~S

r( )
p( )[ ]−1AprM

−1
r br{ }, (84)

where βu = α−1 and βq = Δtα−1. In this way, for the application of
M−1

rev we need the inner approximations M−1
u and M−1

q as with
both the explicit and implicit approaches.

4 NUMERICAL RESULTS

In order to compare the proposed algorithms and assess their
numerical performances, we select four real-world test cases.
They are different in terms of: (i) nature of the applications,
ranging from a geotechnical problem to a deep reservoir and a
regional hydrogeological model; (ii) grid type, which can be either
structured or unstructured; and (iii) material properties, with a
variable heterogeneous and anisotropic behavior for both the
intrinsic permeability and the mechanical parameters. The test
cases are as follows.

• Treporti: this model is used to reproduce the consolidation
conditions of shallow heterogeneous sediments due to the
presence of a trial embankment in the Venice lagoon. The
surface loading/unloading process lasts 5 years, with the main
purpose of characterizing the geomechanical properties of the
sedimentary deposits and was developed to support the
analyses for the construction of the mobile barriers located
at the Venice lagoon inlets (Castelletto et al., 2015a). The
porous formation consists of a sequence of alternating sandy,
silty and clayey layers down to 60-m depth (Figure 2A), with a
vertical intrinsic permeability and Young modulus varying in
the ranges [5.1 × 10–16, 5.1 × 10–15] m2 and [2.5, 44.0] MPa,
respectively. The Poisson ratio is ] = 0.15. The model
represents one fourth of the embankment, thus boundary
conditions are set to honour the symmetry. The only fully
constrained surface is the bottom. Further details on the model
can be found in Castelletto et al. (2015a).

• SPE10-16: the top 16 layers of the SPE10 Comparative
Solution Project (Christie and Blunt, 2001) are used to
model a compacting reservoir subject to a single-phase
flow. The computational domain includes 60, ×, 220, ×,
16 hexahedral elements in the x-, y- and z-direction,
respectively (Figure 2B). The reservoir is a well-known
benchmark for industrial reservoir simulators, being
representative of a shallow-marine Tarbert formation
characterized by severe permeability and porosity
variations, as shown in the figure. While the intrinsic
permeability is derived from the SPE10 dataset,
homogeneous mechanical properties are defined for the
entire domain. In particular, we have E = 8.3 × 103 MPa
and ] = 0.3. Roller boundary conditions are imposed on all
boundaries, except for the top one that is traction-free.

• SPE10-35: the model is built on top of the SPE10-16 test case
by extending the simulation to the first 35 layers of the
SPE10 benchmark and including the related intrinsic
permeability and porosity distribution maps (Figure 2C).
Mechanical properties and boundary conditions are the
same as in SPE10-16.

• Chaobai: this is a regional-size hydrogeological model with
the purpose of simulating land subsidence and possible
ground ruptures caused by the over-exploitation of a
shallow multi-aquifer system in the Chaobai River
alluvial fan, North of Beijing in China. The study area
has an overall extent of 1,155 km2. To account for the
strongly heterogeneous nature of the sediments, a
statistical inverse framework in a multi-zone transition
probability approach is adopted (Zhu et al., 2016, 2020).
The aquifer system is confined by an irregular bedrock
located at about 550 m below the top surface
(Figure 2D). More details on the model implementation
and porous rock parameters are provided in Ferronato et al.
(2017).

For each problem, which is generally characterized by non-
linear constitutive laws, we select the Jacobian matrix arising at
some representative steps of a full simulation. The objective is to
test the proposed linear solvers in different regimes of a hydro-
mechanical problem, so as to investigate the robustness of the
proposed preconditioners and in which conditions they can work
best. Moreover, the selected test cases have also a different
practical nature, thus involving a wide range of mechanical
and hydrological parameter values. Treporti and Chaobai test
cases consider shallow environments, with the former
reproducing the consolidation of a soft and very low
permeable layered material lying on a lagoon deposition and
the latter studying the behavior of a mostly gravel aquifer with the
insertion of sand and clay lenses. By distinction, the SPE10-based
problems focus on a stiff and deep rock environment, where the
flow dynamics typically prevails over mechanics. Table 1
summarizes the number of displacement, Darcy’s velocity and
pressure DoFs, nu, nq and np, respectively, for the four test cases.
Here, n and nnz represent the total number of unknowns and the
global number of non-zero entries, respectively, for the Jacobian
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matrix of Eq. 43. It can be noticed that the models range from
about 0.5 to five million unknowns.

A restarted GMRES (250) has been chosen as Krylov iterative
method. The iterations start from the zero initial guess and are
stopped when either the residual norm is reduced by eight orders of
magnitude or the iteration count exceeds 1,000. In the latter case, we
assume the solver fails to converge. The right-hand side is artificially
generated by computing the product of A by a random vector, so
that the real solution error can be also checked for consistency. The
numerical results are obtained with the original (not scaled) matrix.
The code is written in Fortran90 and the simulations are run using
the GNU Fortran compiler (version 9.3.0). Computational
performances are evaluated on a local server equipped with an
Intel(R) Xeon(R) CPU E5-2643 at3.30 GHz (quadcore) and 256 GB
of DIMM RAM. For all tests, a shared-memory OpenMP paradigm
is used with four computing cores.

Independently of the selected explicit, implicit or reverse
approach, inner preconditioners M−1

u and M−1
q are required to

apply inexactly A−1
uu and A−1

qq , respectively. With the explicit and
implicit approach also M−1

p is needed to approximate the
application of S−1p . In order to emphasize the respective
behavior of each algorithm, we use the same inner
preconditioning strategy for each block. In particular, we elect
to use the Adaptive Block Factorized Sparse Approximate Inverse
(ABF, (Janna and Ferronato, 2011)), which is an efficient parallel
black-box strategy for SPD matrices. Of course, the presented
approaches are fully flexible with respect to the choice of the inner
preconditioners and more effective, or specifically tailored,
techniques can be used straightforwardly. For example, if a
non-associative elastoplastic law is required by the mechanics,
i.e., producing a non-symmetric stiffness matrix Auu, a different
inner preconditioner is required. However, the overall
effectiveness of the block preconditioning framework is not
affected. For the present test cases, the setup parameters for
the inner ABF preconditioners are tuned following the
indications provided in the original papers by Janna and
Ferronato (2011) and Janna et al. (2015a). In any case, the
setup parameters are tuned so as to optimize the total solution
time. Typically, we observe that M−1

u is the most expensive inner
preconditioner impacting in a more significant way on the overall
algorithm performance. Some offline tests with the structural
block alone Auu might be advisable for the user to acquire some
confidence about the block properties. By distinction, the inexact
solves with Aqq and Sp do not create difficulties in any approach,
independently of the actual heterogeneous distribution of the

FIGURE 2 | Meshes used for the numerical test cases. (A) Treporti case, showing the values of Young modulus. (B) SPE10-16, with the horizontal intrinsic
permeability distribution κx = κy. (C) SPE10-35, displaying the vertical intrinsic permeability distribution κz. (D) Chaobai case, showing the vertical intrinsic permeability
distribution Kz. For Chaobai, a vertical exaggeration factor of 25 is used.

TABLE 1 | Number of unknowns and matrix size for the four test cases.

Case nu nq np n nnz

Treporti 178 923 170 257 55 368 404 548 19 002 784
SPE10-16 687 531 651 280 211 200 1 550 011 72 632 161
SPE10-35 1 455 948 1 409 000 462 000 3 326 948 157 588 514
Chaobai 2 152 683 2 132 612 707 600 4 992 895 239 269 789
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hydraulic parameters. Hence, M−1
q and M−1

p can be usually set as
light preconditioners with no detrimental effects for the overall
convergence properties.

Tables 2–5 show the numerical results obtained with the four
test cases. In particular, we analyze the following parameters:

• the density μ of the preconditioner, defined as the ratio
between the number of non-zero entries stored for the
preconditioner and the block matrix A. This number
provides a measure of the memory footprint of the
preconditioner and a rough estimate of the expected
application cost;

• the iteration count nit to achieve convergence. Absence of
this value means that convergence was not achieved within
1,000 iterations and a failure is accounted for;

• the setup time Tsetup in seconds, accounting for the cost to
compute all the terms required for the preconditioner
construction. This has to be taken as the maximum setup
cost needed to build the full preconditioner from scratch. Of
course, in a full transient simulation even significant parts of
the preconditioner can be recycled with this cost largely
amortized;

• the solution time Tsol in seconds, spent by preconditioned
GMRES (250) to complete the iterations;

• the total time Ttot = Tsetup + Tsol. This value has to be regarded
as the maximum total time spent for the solution of a single
systemwith thematrixA, neglecting the setup portion that can
be recycled during a full transient simulation.

For each test case, three different values of the time step Δt
are considered. This allows to consider the robustness and
efficiency of every approach in different regimes of the hydro-
mechanical problem at hand. The solver performance at each
Δt value is representative of the behavior expected in three
different stages of a full transient simulation. Typically, small
time steps are required at the early simulation stage, so as to
capture at a better detail the initial evolution, while larger and
larger time steps can be safely used towards the steady state
when mechanics decouples from the fluid flow. Herein we use
a “small” (first line), “intermediate” (second line), and “large”
(third line) time step size for each test case with respect to the
characteristic consolidation time of the problem. The
intermediate time step size has the order of the
characteristic consolidation time, hence a time step is
regarded as small or large if it is two orders of magnitude
lower or higher, respectively.

In each table, bold values highlight the best performances
in terms of total time. We notice that the three approaches can
solve all the cases at every consolidation stage, except for the
combination M−1

exp/Chaobai. In this case, the explicit
procedure fails to produce effective decoupling blocks at a
workable sparsity and the convergence profile stagnates
around 10–1, without reaching convergence. In particular,
the exact decoupling blocks turn out to be populated by a
huge amount of (relatively small) entries having
approximately the same size, so that recognizing the most

TABLE 2 | Treporti test case: computational performance.

Approach Δt [day] μ nit Tsetup [s] Tsol [s] Ttot [s]

M−1
exp

100 0.85 443 3.85 28.63 32.48
102 0.84 183 3.11 13.76 16.87
104 0.84 104 3.09 6.06 9.15

M−1
imp

100 0.65 169 1.54 8.22 9.76
102 0.65 146 1.55 6.94 8.49
104 0.65 83 1.59 4.01 5.60

M−1
rev

100 0.72 144 1.40 7.72 9.12
102 0.72 178 1.85 8.98 10.83
104 0.75 127 1.94 5.99 7.93

TABLE 3 | SPE10-16 test case: computational performance.

Approach Δt [day] μ nit Tsetup [s] Tsol [s] Ttot [s]

M−1
exp

10–2 0.88 84 45.57 17.17 62.74
100 0.89 92 35.23 15.40 50.63
102 0.89 97 53.19 23.81 77.00

M−1
imp

10–2 0.91 149 7.03 30.70 37.73
100 0.91 118 7.21 25.72 32.93
102 0.91 86 7.85 19.07 26.92

M−1
rev

10–2 0.97 79 7.32 17.90 25.22
100 0.97 120 8.32 25.59 33.91
102 0.97 95 8.91 26.50 35.41

TABLE 4 | SPE10-35 test case: computational performance.

Approach Δt [s] μ nit Tsetup [s] Tsol [s] Ttot [s]

M−1
exp

10–1 1.12 119 94.86 104.36 199.22
101 1.12 116 137.45 94.91 232.36
103 1.12 114 118.46 64.26 182.72

M−1
imp

10–1 0.82 198 39.39 84.85 124.24
101 0.82 203 37.97 90.43 128.40
103 0.85 209 38.08 93.71 131.79

M−1
rev

10–1 0.87 134 40.56 63.87 104.43
101 0.89 238 40.85 113.18 154.03
103 0.89 287 40.40 133.17 173.57

TABLE 5 | Chaobai test case: computational performance. — means that
convergence is not achieved within 1,000 iterations.

Approach Δt [day] μ nit Tsetup [s] Tsol [s] Ttot [s]

M−1
exp

10–1 — — — — —

101 — — — — —

103 — — — — —

M−1
imp

10–1 1.13 253 45.67 221.99 267.66
101 1.13 291 46.06 262.38 308.44
103 1.13 99 46.79 89.80 136.59

M−1
rev

10–1 1.43 180 42.63 238.02 280.65
101 1.43 352 43.36 470.74 514.10
103 1.43 290 43.24 389.11 432.35

Frontiers in Mechanical Engineering | www.frontiersin.org April 2022 | Volume 8 | Article 83719611

Ferronato et al. Efficient Solvers for Coupled Hydromechanics

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


significant ones is not possible. This is a typical limitation of
the explicit approach, i.e., the fact that a good sparse
approximation of Fup and Fqp does not exist, which can
become more and more evident as the overall problem size
increases. Notice also that the explicit approach is never the
best method from the total time viewpoint, even if it shows in
most occurrences the fastest convergence rate at a
comparable, or even lower, preconditioner density with
respect to the other method. The weakest point appears to
be the setup time, which includes the computation of the
approximate decoupling factors ~Fup and ~Fqp in addition to
M−1

u , M−1
q and M−1

p . This task can need a cost that is
comparable to that required for the three inner
preconditioners and tends to increase in a super-linear way
with the model size. Indeed, the sparse non-zero patterns of
~Fup and ~Fqp do not change too much from one time step to
another, thus they can be recycled for several steps just with a
coefficient update. This trick can significantly decrease the
actual the setup time in a full transient simulation, with the
most expensive part possibly amortized in several steps. The
same does not hold for the other two approaches, thus making
the explicit approach interesting anyway.

Tables 2–5 show that M−1
imp prevails 9 times and M−1

rev 3 times
out of a total of 12 combinations. Here, the upper block triangular
version of the implicit approach is used in order to have a
comparable application cost with the other approaches. This
implies that M−1

imp appears to perform generally better for both
shallow and deep hydro-machanical problems, as well as in
different consolidation regimes, even though a clear winner
does not stand. We can observe that the implicit and the
reverse approaches are usually quite similar in terms of
density, computational times, and convergence rate. The main
advantage of the reverse approach relies on its bigger flexibility of
use, which can make it preferable for the implementation in
general-purpose hydro-mechanical software. Indeed, while the
implicit preconditioner uses fixed physics-based approximations
for ~S

(u)
p and ~S

(q)
p , which cannot be controlled or improved by the

user, the reverse approach overcomes this limitation and at the
same time it is easier to setup, requiring the construction of M−1

u
and M−1

q only. By distinction, this is compensated by a generally
slightly larger preconditioner density to obtain a similar
convergence rate.

Finally, we observe that the selected test cases are meant to
provide representative information as to the linear solver
performance in different consolidation regimes, physical
conditions and spatial scales, but of course they cannot cover
the entire spectrum of applications. However, these different
situations are expected to impact more on the parameters
controlling the quality associated to the inner solvers, than on
the overall decoupling effectiveness of the proposed methods.

5 CONCLUSION

The development of robust and efficient solvers for the linearized
discrete problems arising from coupled hydromechanical
applications is an important field of research. In recent years,

several different algorithms for preconditioning purposes have
been proposed, relying on either algebraic or physical or
discretization-based considerations. In this work, we attempt
to introduce a unifying framework and recast apparently
different approaches within similar underlying ideas. We
focus, in particular, on coupled hydromechanical problems
written in a mixed form.

Based on the general algebraic framework introduced by
Ferronato et al. (2019) for coupled multi-physics applications,
we define a decoupling operator whose action can recast a block-
structured problem into a set of independent single-physics
problems. The same holds true if a standard block-reduction
procedure is carried out, being only a part of the overall
decoupling operator computed explicitly. According to the
way such a decoupling operator is approximated, different
algorithms can arise. In particular, we have investigated three
approaches.

• Explicit algorithm: sparse approximations of the factors of
the decoupling operator are computed explicitly with the aid
of techniques borrowed from approximate-inverse
preconditioners. The method is flexible and able to adapt
to the different features of the problem under consideration,
allowing for a straightforward computation of the Schur
complement matrices. Difficulties might arise, however,
when sparse approximations of the decoupling factors do
not exist. In these cases, the preconditioner cost and density
can increase too much, also showing a possible lack of
robustness.

• Implicit algorithm: the factors of the decoupling operator
are not computed explicitly, but applied to a vector by a
matrix-vector product and an inexact solve with an inner
single-physics block. This allows for inherently keeping a
much denser, hence more effective, decoupling operator,
but the resulting Schur complement matrix cannot be
computed explicitly. Very effective results are obtained by
introducing physics-based approximations, which typically
yield efficient results in a scalable and parallel-friendly
environment. However, physics-based Schur complement
approximations are not flexible and do not leave control to
the user.

• Reverse algorithm: the reduction sequence used in the
implicit approach is reversed so as to avoid the
computation of troublesome Schur complement matrices.
This is carried out by replacing the pressure block with a
relaxed mass matrix, where the relaxation parameter is set
optimally in order to cluster the eigenspectrum of the
preconditioned matrix. This approach is generally more
expensive and possibly prone to near-singularity of the
inner single-physics blocks, but enables the user with an
important flexibility and is generally more efficient than the
explicit approach.

The proposed methods can integrate each other, overall
proving robust and efficient in real-world challenging
applications. The present work can also open the path to a
more systematic interpretation and organization of other
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algorithms for the linear solution to coupled hydromechanical
applications, yielding to a definition of common benchmarks
and a thorough comparison of algorithms.
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