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The fluctuation of product quality is closely related to the degradation of the equipment in
multi-stagemanufacturing systems. This paper proposes a critical measure approach for a
quality-reliability coupled network of multi-stage manufacturing systems via network
controllability. The impact of component degradation will be transmitted, expanded,
and accumulated in multiple manufacturing stages, leading to quality flaws or even
shutdowns of the entire system. An important measurement method via controllability
analysis is provided by quantifying the impact of attacking the quality-reliability coupled
network. By quantifying the control ability of the fault source node on the key quality
attribute node, the weakness that affects the processing accuracy of a production line is
identified. Case studies of real production lines are applied to verify the effectiveness, and
comparative results show the method can guide the quality-reliability improvement of
manufacturing systems.
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1 INTRODUCTION

A highly reliable production line requires the system to maintain the specified production
efficiency and the processed products to meet the quality inspection requirements. The quality-
reliability of the production line describes the ability of the index value of the workpiece quality
to keep in line with the technical requirements. The accuracy-reliability describes the ability of
the production line to maintain the machining accuracy. As time goes by, the performance
degradation of equipment parts will decrease machining accuracy. Although it may not be
enough to cause the accuracy of a single piece of equipment to fail, its impact will be transmitted
and expanded in multiple manufacturing stages. After accumulation, the production line will
not process qualified workpieces, which will cause unnecessary downtime for maintenance
activities and significantly reduce quality-reliability.

System reliability analysis identifies the impact of failures on the system. Its purpose is to measure
the weakness of a system so that improvement measures can be implemented. For a large-scale
processing system, accuracy fluctuations become extremely complicated after being transmitted in
multiple stages. Its topological structure presents the characteristics of a large-scale network, which
hides a wealth of uncertainty propagation information. Using graph theory or network knowledge to
analyze topological structure is a new development. Therefore, this article starts from the perspective
of the relationship of production line quality and reliability. By quantifying the control ability of the
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fault source node on the key quality attribute node, the weakness
that affects the processing accuracy of the production line is
identified to improve the quality reliability of the system
processing.

The paper is organized as follows. Section 2 presents the state
of this field. The logical flow of quality-reliability analysis via
network controllability is provided in section 3. Section 4 focuses
on establishing a reliability-quality coupled network modeling of
a production line. In section 5, based on the controllability
analysis of complex networks and identifying key attribute
nodes, the weakness that affects the processing accuracy of a
production line is identified. Section 6 shows two examples to
verify the algorithm proposed in this paper. Finally, concluding
remarks are summarized in Section 7.

2 LITERATURE REVIEW

At present, many scholars have gradually begun to study the
relationship between the quality and reliability of production
lines. Jiang and Murthy (Jiang and Murthy, 2009) measured the
impact of manufacturing system product quality on machining
process reliability. Jin et al. (Jin and Chen, 2001) first proposed
the interactive effect of quality and reliability. Chen and Jin (Yong
and Jin, 2005) proposed a QR chain (Quality-Reliability Chain) to
describe a process of multi-station transfer of component
reliability and workpiece quality along the production process.
Sun (Sun et al., 2009) proposed an integratedmodel of quality and
reliability for multi-station manufacturing systems. The model
usually sets the strength of interaction relationship between
quality and reliability as a certain interaction coefficient to
evaluate the reliability under this coefficient. He et al. (2014)
considered the interactive effects of quality and reliability, and
proposed a reliability evaluation model based on the probability
of product qualification and degradation of system components.
Chen et al. (2021) proposed a reliability evaluation method that
considers the quality-reliability dependency of a multi-state
system, and use the quality state-space model to quantify the
quality deviation. Zhou (Zhou and Lu, 2018) was focused on the
bidirectional interaction mechanism between station reliability
and product quality, and developed a station reliability evaluation
method. Regarding the predictive failure probability of each
machine and the production control policy, Wang et al. (2020)
proposed predictive maintenance. Although the predecessors
proposed appropriate reliability evaluation and design methods
for the production line, they believed that the equipment of the
production line was independent of each other, and each
manufacturing stage was equally important and did not
consider the impact of machining accuracy on the evaluation
and design. However, the performance degradation of different
equipment has different effects on the transmission of accuracy
fluctuations. In this context, measuring the weaknesses that affect
the quality-reliability of a production line from the perspective of
accuracy is particularly important.

Researchers usually establish corresponding network models
for large and complex systems to identify the quality-reliability
coupling relationship and measure importance nodes, thereby

indirectly performing reliability analysis. For example, Zhang
et al. (2013) proposed to use the in-degree, out-degree, and
shortest path of a complex network to identify the importance
of nodes in the material flow manufacturing network. Yang et al.
(2013) identified brittle points that affect the stability of multi-
product production lines by using network topology
characteristics such as utilization, shortest path, and clustering
coefficient. Haifeng (2010) used network to represent fault data
structure and introduced the modular concept of complex
network community structure analysis to diagnose compressor
fault. The popular method (Datta and Goyal, 2019) to evaluate
the network reliability is mostly through minimal paths (MP) or
minimal cuts (MC) of a network. Lin and Chen (Tan et al., 2017)
proposed a maximal flow method to research MP in a stochastic-
flow network. For the controllability of dynamic complex
networks, Zhou (Tan et al., 2017) selected an index to
measure the controllability of networks quantitatively.
According to this index, they compared the controllability
between different network structures. Zhou et al. (2013)
considered the role of nodes in network efficiency and degree
distribution and the importance of adjacent edges, then provided
a new method for measurement of node centrality in complex
directed networks and made the evaluation of node centrality
more accurate. Wang (Wang et al., 2016) introduced a new
structural controllability analysis approach based on the
reachability matrix to identify the minimum set of driver
nodes, which could further control complex networks. The
importance of nodes in a complex network has an important
impact on the stability of the network. Based on previous ideas,
Yang (Yang et al., 2019) considered degree centrality, tight
centrality, and intermediate centrality and proposed a method
for comprehensively evaluating the importance of nodes in
complex networks. The entropy weight method that
overcomes the influence of subjective factors is used to
calculate the weight of each index. Mousavi and Haeri, (2016)
introduced the zero expansion rule through the concept of a
balanced set, providing a sufficient number of control nodes to
ensure the controllability of some undirected networks. Chin
et al. (2017) defined the notion of super driver nodes and
discussed the effects that root and leaf nodes on driver and
super driver nodes. Then they distinguished driver nodes from
super driver nodes by calculating and evaluating node properties
to control a network. Xiang (Xiang et al., 2019) had made great
progress in the research of network controllability and has a
comprehensive understanding of network controllability from
many aspects, such as network topology and node-system
dynamics.

However, it is difficult for a complex coupling network to
summarize the importance of the fluctuation source node only
with topological network indicators such as degree, betweenness
centrality, and clustering coefficient. For example, the degree only
judges the importance of a node from the number of connected
edges. The clustering coefficient only determines its importance
from the number of edges of its neighbor nodes, which lacks the
overall consideration of the network. From the perspective of the
network topology, the ability of nodes to intervene in the network
is different, and attacks on different nodes have different effects
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on the network. This enlightens us to measure the importance of
fluctuation sources based on their ability to control the network to
overcome the limitations of the traditional degree, centrality, and
other topological characteristic indicators.

Therefore, on the basis of previous research results, from the
perspective of how to effectively control a network, this paper
proposes a method for evaluating the importance of fluctuation
sources based on network controllability analysis and then
proposes an accuracy-oriented method for identifying production
line weakness, and verifies the effectiveness of this method.

3 LOGICAL FLOW

In this section, the logic flow of the proposed method structure is
mainly introduced. As shown in Figure 1, the method contains
three parts, which are network modeling, network controllability
analysis, and importance measure.

Specifically, it includes the following:

Step 1: Network modeling. There is a coupling between quality
attributes of workpieces in the multi-manufacturing stages,
performance degradation of machining system components

(MSC), and deviation of quality characteristics of workpieces.
Based on this relationship, the nodes and directed edges of
the network can be abstracted, thereby constructing a
fluctuation propagation network model oriented to the
quality-reliability of the production line.

Step 2: Network controllability analysis. From the perspective of
the control network, the control ability of the node is
measured, and the maximummatching algorithm obtains
the driving control mode of the fluctuation source in
graph theory.

Step 3: Importance measure. According to the control method of
fluctuation, the source to quantify its ability to control key
quality attributes. Comprehensively considers the
probability of occurrence of accuracy failure to
determine weakness so as to guide the increase of
accuracy reliability or maintenance measures.

4 RELIABILITY-QUALITY COUPLED
NETWORK MODELING

The influencing factors that lead to poor quality characteristics of
workpieces in machining production lines have multiple sources.

FIGURE 1 | Quality-reliability oriented system importance measure process.
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The specific sources include uncertain factors in processing
equipment, measuring devices, personnel operations, external
manufacturing environment, processing methods, workpiece
materials, tools, fixtures, and so on (Riascos et al., 2007). When
the performance of MSC declines in a certain process, this decline
factor will become a source of fluctuations. It will not only cause
fluctuations in its own accuracy, but also affect the processing
accuracy of other processes related to it. Therefore, this section
focuses on the coupling relationship between MSC, such as
supporting fixtures, measuring devices, and tools of machining
equipment and the deviation of workpiece quality characteristics.

4.1 Relationship Between Quality-Reliability
and Error Fluctuation
In actual production, we hope that a highly reliable production
line will run for a long time and produce high-quality workpieces.
However, when the manufacturer configures the production line
in the design stage, it often ensures processing efficiency and line
balancing. With processing equipment as the main body,
continuous running time is measured under the no-failure
condition to evaluate the reliability of the production line.
After the production line is actually delivered to a user, the
reliability of use may be significantly lower than the reliability
index given by the manufacturer. One of the reasons for this
phenomenon is ignoring the coupling effect on MSC quality-
reliability. The hard faults of MSC directly lead to equipment shut
down for maintenance. Although MSC soft failure (decreased
machine tool accuracy, wear of fixtures or tools, etc.) does not
directly cause downtime, they cause poor product size, whichmay
also trigger downtime detection and need to diagnose quality
problems. Figure 2 shows the coupling relationship between
MSC soft failure, hard failure, and workpiece quality in the
machining process.

Workpieces usually need to be processed in multiple
manufacturing stages, as shown in Figure 3; they are affected
by the hard failure and soft failure of MSC at this stage and the
quality level of the upstream processing stage. Therefore, it is
necessary further to study the quality-reliability coupling
relationship after production line configuration.

The coupling relationship between quality-reliability and its
transmission process along multiple manufacturing stages is
shown in Figure 4. This effect can include the following aspects:

1) The effects of reliability factors on quality factors (Reliability-
Quality Effects, R-Q Effects): MSC’s soft failure and hard
failure cause product quality problems in this
manufacturing stage.

2) The effects of quality factors on reliability (Quality-Reliability
Effects, Q-R Effects): refers to the influence of product quality
problems on MSC reliability in the downstream
manufacturing stage.

3) Quality effects transfer process caused by datum constraint
(Datum Effects, DE): Refers to the processing of features in a
certain manufacturing stage based on features processed in the
upstream stage, resulting in error propagation.

4) Evolution Effects (ER): Refers to the process in which there is a
sequential relationship between processing procedures, which
leads to propagation of parts errors.

Figure 5 shows the structure of a pistonmachining production
line, which mainly completes rough and finished processes of
outer piston circles, ring grooves, combustion chamber, pinhole,
and valve pit. Machining equipment includes special CNC lathes,
vertical CNC milling machines, and precision combined boring
machines.

The coupling relationship between equipment accuracy
reliability factors of the piston production line and the error
transmission process of the workpiece is shown in Figure 6.
When degradation factors such as wear and fatigue occur in the
machine tool equipment layer, key accuracy indicators will be
unreliable, and fluctuations will be transmitted along multiple
manufacturing stages. When there is a continuous deviation of
critical workpiece dimensions, it needs to be shut down for
maintenance, triggering quality diagnosis and maintenance
activities. The sources of fluctuations are diverse, and network
propagation occurs along multiple transmission paths. This
relationship becomes more and more complex with the
increase in the manufacturing stage of the production line and
the types of workpieces to be processed.

FIGURE 2 | Coupling relationship between MSC reliability and workpiece quality.

Frontiers in Mechanical Engineering | www.frontiersin.org February 2022 | Volume 8 | Article 8137784

Zhang et al. Importance Measure and Controllability Analysis

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


FIGURE 3 | Quality-reliability coupling relationship of a machining stage.

FIGURE 4 | Quality-reliability coupling relationship of multi-stage processing.

FIGURE 5 | Piston production line. (A) Production line workshop (B) Machining process.
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4.2 Construction Steps of Fluctuation
Transmission Network
According to the processing information, processing
characteristics of workpiece and equipment accuracy factors
that affect processing characteristics are abstracted into nodes,
and the relationship between them is abstracted into edges. Then
fluctuation transmission network of production line processing
can be constructed. The specific modeling steps are as follows:

Step 1: Construct a network of machining feature nodes. Given
production line workpiece set P � {P1/Pi/PNP}, the
machining feature set of workpiece Pi is Fi �
{Fi1, Fi2/Fini} (ni represents the number of Pi features,
Fini represents the machining feature of the workpiece Pi).
The machining feature is defined as network nodes, and
the relationship between features (benchmark, etc.) is
defined as edges. Then the feature nodes network for
workpiece Pi processing can be described as:

GPi � 〈Fi, EFi〉 (1)
Where EFi represents the edges set of machining feature nodes on Pi.

Step 2: Construct a network of accuracy reliability factors based
on machining characteristics. Given machining feature

Fij(i � 1, 2,/, NP, j � 1, 2,/, ni), accuracy reliability
factor nodes set Rij � {rij1, rij2,/, rijs} (s represents
the number of nodes of accuracy reliability factor of
machining feature Fij). Accuracy reliability factor is
defined as network nodes, and the relationship between
the accuracy reliability factor and machining feature is
defined as edges. Then the network of machining feature
Fij and accuracy reliability factor Rij can be described as:

GRij � 〈{Fij, Rij}, Eij〉 (2)
where Eij represents edges set of accuracy reliability factor and
processing feature.

Step 3: Construct a network of quality attributes based on
machining characteristics. Given machining feature
Fij(i � 1, 2,/, NP, j � 1, 2,/, ni), quality attribute
nodes set Dij � {dij1, dij2,/, dijh} (h represents the
number of quality attribute nodes of the processing
feature Fij). The quality attribute is defined as network
nodes, and the corresponding relationship between
quality attribute and processing feature is defined as
edges. Then the network can be described as:

GDij � 〈{Fij, Dij}, EDij〉 (3)

FIGURE 6 | Fluctuation propagation effect of MSC performance degradation.
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EDij represents edges set corresponding to fluctuation source and
accuracy reliability factor.

Step 4: Combine workpiece processing feature network, accuracy
reliability factor network, and quality attribute network.
The edges GPi, GRij and GDij do not intersect each other
but contain the same network nodes. By merging the
same nodes of three networks, the fluctuation
transmission network can be obtained:

G′ � 〈{Fi, Rij, Dij}, EFi ∪ Eij ∪ EDij} (4)

5 IMPORTANCE MEASURE VIA NETWORK
CONTROLLABILITY

Some nodes seem to have a specific ability to control the network,
and the fluctuation in their functions will cause a series of chain
reactions, which will affect the state of other nodes. Therefore,
based on network controllability analysis, this section quantifies
the control ability of nodes on crucial quality attributes to
measure its importance.

5.1 Network Controllability Analysis
Watts and Strogatz, (1998) reported the phenomenon of small-
world networks in 1998. Barabasi and Albert (Barabasi et al.,
1999) led the scale-free properties of complex networks in 1999.
Liu et al. published an article on the controllability of complex
networks in Nature in 2011. Combining complex networks with
control theory opens new avenues for the controllability of
networks (Diao et al., 2014). Since then, many scientific
researchers have researched network controllability and have
achieved fruitful results (Sorrentino et al., 2007; Pedro et al.,
2014; Hou et al., 2015; Gao et al., 2016; Hou et al., 2016).

Nonlinear processes drive most real complex systems, but the
literature (Ching-Tai, 1974; Liu et al., 2011) proved that its
controllability is similar to linear systems in many aspects
structurally. The elements of a complex system are abstracted
as nodes, and the connection relationship between nodes is
directed edges, which can construct a network model.
According to control theory, given a linear steady system:

dX(t)
dt

� AX(t) + BX(t) (5)
Y(t) � CX(t) (6)

X(t) � (x1(t),/, xN(t))T represents the state of N nodes at
time t. The system matrix A represents the connection
relationship between nodes. If there is an interaction between
node i and node j, then aij ≠ 0, otherwise aij � 0. B �
(bij)R×N(M≤N) is the input matrix that nodes controlled by
an external signal. C � (cij)R×N is the output matrix, and its
output vector is Y(t) � (y1(t),/, yR(t))T .

If given any initial state x(t) � x0 and the desired state xf,
there is a control input u(t) � (u1(t),/, yM(t))T that can make
x(t) � xf within a finite time t, then the system is said to be
controllable. According to Kalman’s controllability rank

condition, the necessary and sufficient condition of system
controllability is that its controllability matrix QC is full rank,
namely:

rank(QC) � rank[B, AB,A2B,/, AN−1B] � N (7)
Similarly, if for any given initial state x(t) � x0, which can be

determined in finite time t by measuring output vector. Then this
system is completely observable. The necessary and sufficient
condition of system observability is that its observability matrix
QO is full rank, namely:

rank(QO) � rank[[C]T, [CA]T, [CA2]T,/, [CAN−1]T] � N

(8)
The simple network with four nodes shown in Figure 7A,

matrix A can be expressed according to connection relationship
between nodes:

A � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
a21

0
0

0
0

0
0

a31
a41

0
0

0
0

a34
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (9)

There are two input signals u1 and u2, and the input matrix B
is expressed as:

B � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b1
0
0
0

0
b2
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (10)

According to Eq. 7, QC is a representation of the
controllability matrix:

QC � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b1
0
0
0

0
b2
0
0

0
a21b1
a31b1
a41b1

0
0
0
0

0
0

a34b1
0

0
0
0
0

0
0
0
0

0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

The network is fully controllable, not only depending on the
input of external signal but closely related to weight between
directed edges, according to the new concept of structural
controllability proposed by Lin in 1974 (Hopcroft and Karp,
1971), for different weight combinations of matrix A and matrix
B, which are structurally controllable except for some extreme
cases (such as all zeros). This structure controllability ignores
weight value, which greatly reduces the difficulty of actual
calculations and makes any networks controllability analysis
based on Kalman ranks possible.

In Eq. 11, the elements of matrix QC can have different values
according to weight values. Except for some extreme cases, it can
be determined that rank(QC) � N � 4. Then the network can be
controlled by controlling nodes x1 and x2, that is, the system can
be transformed from the initial state to any desired state within a
finite time through input signals u1 and u2 (as shown in Figure 7).

However, this is only one of many control input methods. At
this time, each node has two choices of control and non-control.
If a brute-force search is used to obtain all possible ranks of the
controllability matrix, then a total of 2n − 1 different type is
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needed. This is a difficult task as the number of network nodes
increases.

To avoid the brute-force search for driver nodes, Liu et al.
(Liu and Jiang, 2010) creatively combined network
controllability analysis with graph theory analysis and
proved that the number of minimum driver nodes could be
obtained by a maximum matching algorithm, which solved
the calculation problem of minimum driver nodes. For a
directed network, if all directed edges in directed edges set
M don’t share the starting and ending nodes, then set M is a

matching of network. The end node of matched edge is called
matched node. Matching nodes and matching edges can be
found using a bipartite graph corresponding to the network.
Figure 8 includes a simple network with three nodes and its
bipartite graph. The red edges are matched edges, green nodes
are matched nodes, and white nodes are nonmatched nodes. It
can be seen from the bipartite graph that the three edges have
only one matching method so that these edges do not share an
intersection point, that is, the maximum matching
represented by the red edge. Figure 9 shows a simple

FIGURE 7 | Network controllability diagram (Liu and Jiang, 2010). (A) Four-node network (B) State evolution path.

FIGURE 8 | Schematic diagram of three-node network maximum matching.

FIGURE 9 | Schematic diagram of five-node network maximum matching. (A) Maximum matching one (B) Maximum matching two.
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network with five nodes and its bipartite graph. It can be
known that it has two maximum matchings.

Liu et al.(Liu and Jiang, 2010) pointed out that if want to
control nodes state fully, the minimum number of Driver Nodes
required as the following formula:

ND � max{N − |M|, 1} (12)
As nodes and edges increase, the number of maximum

matchings will increase so that the minimum driver nodes
control methods will also increase. For complex networks,
there are algorithms such as Hopcroft-Karp that can solve the
maximum matching of the bipartite graph within O(n3) time
complexity (Hopcroft and Karp, 1971), whichmakes it possible to
solve the control of complex networks.

We can construct a cactus structure similar to graph theory
through the maximum matching algorithm and select the root of
the independent disjoint cactus structure as the input node to
completely control the entire network.

5.2 Driving Control Ways of Key Quality
Characteristics
The structure of a fluctuation transmission network makes many
possible ways to cause quality deviation, as shown in Figure 5.
Although the deterministic relationship (weight) of the mutual
influence between network nodes is unknown, the directed edges
can be constructed to indicate a mutual relationship between
them. The external signals of u1 and u2 in Figure 6A can be
understood as performance degradation of nodes x1 and x2. And
the weights b1 and b2 can be understood as the degree of
degradation. The node can be used as a driver node if an
external input signal directly controls it. The in-degree of
fluctuation source is zero. According to network
controllability, if you want to control network fluctuation, the
fluctuation source must be the driver node (Liu and Jiang, 2010).
Controllability analysis of network can measure control mode
and control ability of node whose in-degree is zero, so it can be
applied to evaluate the importance of fluctuation sources.

The combination of different fluctuation sources determines
the state space of the system. That is, the degraded state of
different equipment components will ultimately be represented at
a level of accuracy reliability. As shown in Figure 10, by applying
external control signals (different degradation states of
equipment) to these driver nodes, the key quality attribute
nodes (also referred to as target nodes in this section) can be
controlled.

Assuming that network has H fluctuating sources, it can
correspond to 2H different fluctuating sources with different
combinations. At the same time, there are multiple maximum
matchings for each type of fluctuating source combination,
resulting in a wide variety of network drive control ways. This
is also consistent with the diversity of error transmission paths
that lead to deviations in the final quality attributes. Take the five-
node network in Figure 9. There are two matchings for network
structure. The driver node corresponding to x3 is x1.And the
driver node corresponding to x5 is x4 in Figure 7A; in Figure 7B,
the driver node corresponding to x3 is x4.And the driver node
corresponding to x5 is x1. External input of driver nodes x1 and
x4 will dominate state changes of x3 and x5. If x1 and x3

correspond to performance degradation factors of fluctuation
source, x3 and x5 correspond to the critical quality characteristics
to be controlled, then control capabilities of x1 and x3 on the
entire network are equal.

5.3 Accuracy-Reliability Oriented
Importance Measure
The network controllability analysis provides a way to quantify
the control ability of fault source nodes on key quality
characteristics nodes (target nodes) and then measure the
importance that affects the accuracy reliability of the
production line.

The focus of this section is not to use a maximum matching
algorithm to find the least set of driver nodes, but to identify the
control ability of fluctuation source on target nodes, thereby
identifying its importance. Several key quality characteristics
often determine the quality of the workpiece. In the

FIGURE 10 | Drive control of fluctuation sources.
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fluctuation transmission network, some nodes can always appear
as the root of the cactus structure, controlling key quality
characteristics nodes. And the other nodes have never been
able to control key quality characteristics nodes, and most
nodes are in between. Given this, the importance of the
fluctuation source node can be measured by the frequency of
occurrence of cactus root in the maximum matching.

Some scholars have proposed measures of the importance of
node Control capacity index and Control centrality. The control
ability is defined as the probability of appearing in a set of all
minimum driver nodes. In the network structure of this section,
the fluctuation source node that represents a degrading factor of
equipment always acts as driver nodes, so this method cannot be
used to distinguish importance. In addition, control centrality
measures a node’s control ability over an entire network, but it
fails to measure its control ability over target nodes.

In summary, this section proposes the concept of Target
Control Capacity (TCC). In Figure 11, the algorithm for
control ability of fluctuation source node xk to target node
can be described as follows:

Step 1: Given fluctuation transmission network G’, determine
key quality characteristics node set Q{q1, q2,/, qt},
and initialize = 0;

Step 2: Apply the Hopcroft-Karp algorithm to randomly sample
to obtain the largest matching and determine a fully
controllable subgraph of each matching plan. Find the
root of the cactus structure of key quality characteristics
node (target node), and determine the set of roots D, if
xk ∈ D, then add 1, otherwise do not add.

Step 3: Calculate the frequency of fluctuation source node xk in
fully controllable subgraph to which the key quality
characteristics node belongs during the sampling process.

Step 4: When frequency change stabilizes (less than or equal to
0.001), or the algorithm has traversed all matchings,
obtain the importance of xk according to Eq. 13, and
determine weaknesses that affect accuracy reliability.

The importance of fluctuation source node xk can be
calculated as follows:

Ixk � [1 − R(xk)] o(xk)∑all ko(xk) (13)

Among them, 1 − R(xk) is the probability of accuracy failure
of the fluctuation source node xk, o(xk) is the frequency of
occurrence of xk in the fully controllable subgraph of crucial
quality characteristics node.

6 CASE STUDIES

In this section, we give two examples to illustrate the developed
methodology. The results show that network reliability can
effectively measure the importance of fluctuation sources,
thereby identifying the weak links that affect accuracy and
reliability.

6.1 Case Study of a Launcher Part
Machining Line
In order to verify the effectiveness of weakness identification, this
section takes a launcher part machining line (Liu and Jiang, 2007)
as a case and compares the method in this paper with it.

The coaxiality of hole A of the launcher part is a key quality
characteristic, and the specification value of the shaft diameter of
hole A is 2 − ϕ250+0.0720 . The coaxiality does not exceed 0.02 mm.
Three processes process it (rough boring, semi-finish boring, and
finish boring). Figure 12 shows the fluctuation transmission
network of these three processes. The bottom surface, process
holes E1 and E2, left side surface, and hole D are used as the
positioning datum. There is a benchmark relationship with hole
A. Hole A has a precision evolution relationship between features
with different precisions formed in different processes.

In Figure 12, the physical meaning of MSC and accuracy
reliability factor nodes are shown in Table 1.

Therefore, this article modifies the probability of Eq. 14 as
follows:

IxkB � Vk
o(xk)∑allk
o(xk) (14)

FIGURE 11 | Target node xk control ability quantification algorithm flow.
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The literature (Liu and Jiang, 2007) determines important
nodes by measuring the fluctuation transmission effect of nodes
on key quality characteristics. The conclusion is that the finish
boring process e101 and e102 have a greater impact on coaxiality.
Using the algorithm in this article, measure the ability of each
MSC node to control key quality characteristics of coaxiality on
hole A, and the results obtained are shown in Table 2. It can be
seen from Table 2 that it is determined that e103, e101, and e102
have a greater impact on quality characteristics, and the wear of
fine boring tools has the most significant impact. Both methods
show that when improving coaxiality quality characteristics of
hole A, the e101 and e102 of MSC need to be adjusted. That is, to

improve rotation accuracy of table and spindle of the horizontal
boring machine to improve system accuracy reliability.

This case shows that the method in this paper can effectively
obtain the importance of fluctuation sources, thereby identifying
the weakness that affects accuracy and reliability.

6.2 Case Study of a Piston Production Line
Figure 13 shows the structural model of the fluctuation
transmission network of a piston production line. The
network has six characteristic processing nodes, two key
quality characteristic nodes, and 32 precision reliability
factor nodes.

The in-degree of accuracy reliability factor node (the
fluctuation source node in Figure 13) representing
performance degradation of machine tool components is 0,
which must be the driver nodes of the network. Over time,

FIGURE 12 | Launcher part machining error propagation network (Liu and Jiang, 2007).

TABLE 1 | The MSC and accuracy reliability factors of hole a

MSC Accuracy reliability

horizontal boring machine (e51) Spindle vibration (e511)
back engagement (e512)

Boring tool (e52) Cutting hot distortion (e521)
Fixture (e53) —

horizontal boring machine (e81) Spindle rotation accuracy (e811)
worktable rotation accuracy (e812)

Boring tool (e82) Tool wear (e821)
Fixture (e83) —

horizontal boring machine (e101) worktable rotation accuracy (e1011)
Spindle rotation accuracy (e1012)

Fixture (e102) fixture positioning components Wear (e1021)
Finish Boring Tool (e103) Tool wear (e1031)

Because the literature (Liu and Jiang, 2007) doesn’t give the probability of each accuracy
reliability factor but gives grading grade Vk of its fluctuation level.

TABLE 2 | Algorithm result of nodes control ability.

MSC Vk IxkB

Value Sequence

e101 6 0.582 2
e102 5 0.485 3
e103 8 0.776 1
e51 6 0.390 6
e52 5 0.325 7
e81 6 0.450 4
e82 6 0.450 4
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FIGURE 13 | Piston Production Line error propagation network.

TABLE 3 | Accuracy Reliability Oriented system weakness identification.

MSC Accuracy reliability factors o(xk) 1 − R(xk) Importance

End lathe slide rails Wear 652 1.12 × 10−4 4.40 × 10−6

Spindle manufacturing accuracy failure 652 1.05 × 10−4 4.12 × 10−6

Spindle bearing wear 652 2.02 × 10−4 7.93 × 10−6

Thrust bearing wear 652 2.65 × 10−4 1.04 × 10−5

End lathe tool Tool wear 652 5.52 × 10−3 2.17 × 10−4

End lathe fixture Fixture wear 652 2.13 × 10−3 0.84 × 10−4

Rough boring machine Bad gear meshing 458 1.94 × 10−4 5.35 × 10−6

Spindle bearing wear 458 1.52 × 10−4 4.19 × 10−6

Loose connection sleeve 458 2.36 × 10−4 6.51 × 10−6

Rough boring tool Tool wear 458 3.25 × 10−3 8.97 × 10−5

Rough boring fixture Fixture wear 458 2.13 × 10−3 5.88 × 10−5

Combustion chamber lathe slide rails Wear 0 3.12 × 10−4 0
Spindle manufacturing accuracy 0 5.05 × 10−4 0
Spindle bearing wear 0 2.25 × 10−4 0
Manufacturing thrust bearing wear 0 2.90 × 10−4 0

Combustion chamber lathe tool Tool wear 0 4.51 × 10−3 0
Combustion chamber lathe fixture Fixture wear 0 2.03 × 10−3 0
Milling machine Rail wear 389 5.25 × 10−4 1.23 × 10−5

Increased screw backlash 389 2.26 × 10−4 5.30 × 10−6

Spindle bearing wear 389 2.85 × 10−4 6.68 × 10−6

Milling machine tool Tool wear 389 2.81 × 10−3 6.58 × 10−5

Milling machine fixture Fixture wear 389 2.03 × 10−3 4.76 × 10−5

Finish boring machine Bad gear meshing 871 3.02 × 10−4 1.58 × 10−5

Spindle bearing wear 871 3.25 × 10−4 1.71 × 10−5

Loose connection sleeve 871 2.98 × 10−4 1.56 × 10−5

Finish boring tool Tool wear 871 4.36 × 10−3 2.29 × 10−4

Finish boring fixture Fixture wear 871 3.03 × 10−3 1.59 × 10−4

Special-shaped cylindrical lathe Three-knife servomechanism wear 820 6.85 × 10−4 3.38 × 10−5

Worn screw connection thrust bearing 820 3.60 × 10−4 1.78 × 10−5

Spindle bearing wear 820 1.90 × 10−4 0.94 × 10−5

Special-shaped cylindrical tool Tool wear 820 2.51 × 10−3 1.23 × 10−4

Special-shaped cylindrical fixture Fixture wear 820 2.09 × 10−3 1.03 × 10−4
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these nodes will experience varying degrees of performance
degradation during their life cycle. This performance degradation
can be understood as the network is controlled by “external input
signals” and the driving state of the network can fully control the
accuracy of the production line. The combination of different
fluctuation source nodes corresponds to different precision states
of the production line, and each state has a variety of network drive
control methods. The maximum matching algorithm can be used to
search for control methods to identify system weaknesses. The
piston’s compression height and the maximum outer diameter are
two key quality characteristics, as shown in Figure 13. Different drive
control methods can be used to control these two target nodes
through the maximum matching algorithm.

According to the algorithm in Figure 11, the accuracy
reliability factor nodes of equipment can be determined to
control compression height and maximum outer diameter.
Through the maximum matching of a network, control
methods of these nodes can be found. Among many control
methods, finding a driver node that is reachable to the node of
compression height and maximum outer diameter and traversing
all maximum matchings will quantify the control ability of the
fluctuation source. The results obtained are shown in Table 3.

It can be seen from Table 3 that the node with the greatest
control capability for two key quality characteristics is the source
of fluctuations for the boring finish machines. These fluctuation
source nodes have the same value o(xk) of 871, which indicates
that among all control methods, these nodes act as the roots of a
fully controllable subgraph more frequently. Due to the wear of
tools and fixtures of the production line, failure is higher. So its
importance ranking is generally higher than the fluctuation
source of machine tool functional parts. The higher-ranking
fluctuation sources should be focused on accuracy, reliability,
and maintenance measures.

7 CONCLUSION

The accuracy of the production line puts forward higher
requirements from the perspective of the workpiece processing
process. This paper proposes a method for importance measure

in production line system based on network controllability
analysis. The performance degradation of the production line
equipment will spread along the multi-stage manufacturing
process. When the network scale is large, it is difficult to
establish a complex coupling relationship among many nodes
by using quantitative analysis methods such as FT and BN. The
evaluation results are not ideal due to simulation accuracy or lack
of training data. In a directed network, applying external control
signals can effectively drive the state evolution of the entire
network. Inspired by this, the use of network controllability
analysis to quantify the control ability of networks can achieve
the purpose of identifying a weakness. This paper provides a new
idea for reliability analysis of machining systems and has certain
reference significance for quality-reliability analysis and
importance measure of a complex system.
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