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Car-cabin thermal systems, including heated seats, air-conditioning, and radiant panels, use
a large proportion of the energy budget of electric vehicles and thus reduce their effective
range. Optimising these systems and their controllers might be possible with
computationally efficient simulation. Unfortunately, state-of-the-art simulators are either
too slow or provide little resolution of the cabin’s thermal environment. In this work, we
propose a novel approach to developing a fast simulation by machine learning (ML) from
measurements within the car cabin over a number of trials within a climatic wind tunnel. A
range of ML approaches are tried and compared. The best-performing ML approach is
compared to more traditional 1D simulation in terms of accuracy and speed. The resulting
simulation, based on Multivariate Linear Regression, is fast (5 microseconds per simulation
second), and yields good accuracy (NRMSE 1.8%), which exceeds the performance of the
traditional 1D simulator. Furthermore, the simulation is able to differentially simulate the
thermal environment of the footwell versus the head and the driver position versus the front
passenger seat, but unlike a traditional 1D model cannot support changes to the physical
structure. This fastmethod for obtaining computationally efficient simulators of car cabinswill
accelerate adoption of techniques such as Deep Reinforcement Learning for climate control.

Keywords: electric vehicle, thermal modeling, time series prediction, artificial neural networks (ANN), NARX, heating
ventilation and air conditioning systems (HVAC)

1 INTRODUCTION

According to the Financial Times, the United Kingdom is set to bring forward the ban on the sale of
new petrol and diesel cars to 2030 in order to accelerate the transition to electric vehicles (EVs)
(Campbell, 2020). In 2019, EVs accounted for just 2.6% of global car sales and about 1% of global car
stock (IEA, 2020). Although EVs save on fuel costs, range anxiety, or the fear of running out of charge
before arriving at the destination, is a major barrier to adoption. The heating and cooling system is
the largest auxiliary load and has a significant impact on range, especially during very hot or cold
weather (Farrington and Rugh, 2000). However, the climate control system remains essential for
maintaining reasonable comfort and defogging the windshield. Thus, if we minimise the energy cost
of delivering climate comfort and windshield clarity, we can expect to not only save energy but also
contribute to the uptake of EVs.

The first step towards optimising energy use is to accurately model the system. However,
optimisation of the cabin’s thermal system requires computationally fast simulation for several key
reasons:
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1. Rigorous assessment requires varied simulated environmental
conditions and the final optimised solution must work in the
full range of possible situations.

2. The duration distribution for simulation episodes needs to
align with the duration of typical car journeys [about 22 min,
according to the UK Government (2020)].

3. Optimisation approaches for the control logic, such as
Reinforcement Learning, need to experience each possible
environment for a typical journey many times to converge
on a solution.

4. Furthermore, if the cabin configuration were to be optimised
(e.g., changing the vent location or using a different type of
heating unit), the control logic may need to be re-optimised for
each new configuration.

In summary, the viability of such optimisation crucially
depends on the performance of the simulator and the
optimisation algorithm chosen.

The main point of this paper is to show that a computationally
fast and reasonably accurate simulation of the thermal
environment of a car cabin can be learned from experimental
data. Specifically:

1. A variety of ML approaches are compared with least-squares
regression showing the best one-step and longer term
performance (Section 3.1);

2. The ML approach is compared with a conventional lumped
thermal (or 1D) model (Section 2.5) with key benefits for the
MLmodel in terms of speed and simplicity while the 1Dmodel
is likely to be better for extrapolating to situations not seen
during tests 3.3.

2 METHODS AND MATERIALS

2.1 Climatic Wind Tunnel Trials
Five climatic wind tunnel (CWT) trials were performed at test
facilities using a Fiat 500e. Trials 1, 3, and 4 were done at one wind
tunnel facility, and trials 2 and 5 at another. The settings for each
of these five trials are shown in Table 1. For each trial, a

temperature, vent setting, and moisture level is specified. Trials
1 and 4 run the fresh distribution setting for 60 min with a car
velocity of 50 km h−1 before switching the car (and therefore the
HVAC) off for 120 min. Trials 2, 3, and 5 were conducted with a
car velocity of 100 km h−1 with the recirculation distribution
setting on for 30 min before switching to fresh distribution for
another 30 min. The car is then switched off for 120 min in trials 2
and 5, and 30 min in trial 3 (note this is the only trial with
moisture added into the cabin).

A total of 39 time series variables, measured at either 1 or 10 s
intervals depending on the test facility, are divided into control
(Table 2) and state (Table 3) vectors. Control variables are
considered to be exogenous inputs to the simulation and are

TABLE 1 | Specification of the CWT test settings.

Temp.
Setting

Vent
Setting

Moisture
(g h−1)

Distribution
setting

Time
(min)

Velocity
(km h−1)

CWT1 22°C Defrost/floor — Fresh 60 50
Off 120 0

CWT2 22°C Neutral — Recirc 30 100
Fresh 30 100
Off 120 0

CWT3 22°C Defrost/floor 140 Recirc 30 100
Fresh 30 100
Off 30 0

CWT4 Max cold Defrost/floor — Fresh 60 50
Off 120 0

CWT5 Max hot Neutral — Recirc 30 100
Fresh 30 100
Off 120 0

TABLE 2 | Measurement variables that comprise the control vector u. The air
temperatures (u1−u12) correspond to: vents at the side, central, floor, and near
duct for driver and front passenger; recirculation inlet; and left, right, and central
dashboard surface temperatures.

Control Description Units

u1–u12 Air and surface temperatures °C
u13 Blower amperage A
u14 External roof temperature °C
u15 Ambient air temperature °C
u16 Ambient relative humidity %
u17 Car velocity km h−1

u18 Fresh or recirculation mode —

u19 Neutral or defrost/floor distribution —

TABLE 3 | Measurement variables comprising the state x. Personal variables (air
and mean radiant temperature and air velocity) are measured at the head,
torso, and foot locations for both driver (x1 − x3, x7 − x9, x15 − x17) and passenger
(x4 − x6, x10 − x12, x18 − x20).

State Description Units

x1–x6 Air temperatures °C
x7–x12 Mean radiant temperatures °C
x13 Windshield temperature (driver’s side) °C
x14 Relative humidity inside cabin %
x15–x20 Air velocities m s−1
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either controllable (blower amperage), uncontrolled but
measurable (car velocity), or indirectly controlled (vent
temperatures). State variables include personal temperatures to
allow estimation of thermal comfort (e.g., via ISO 7730 or ISO
14505) and estimation of windshield fogging. Rolling means of
window 50 and 5 were applied to the 1 and 10 s interval data
respectively and then the 1 s data was subsampled to 10 s intervals.

Figures 1, 2 show the locations for the vents and cabin sensors
respectively.

2.2 The Machine Learning Model
The machine learning model aims to provide a simulator that
is derived without knowledge of the physical system but
rather is entirely obtained from measurement data. When
formulated as differential equations, thermal systems are
(mainly) linear with respect to their inputs. Given a simple
thermal system that involves a body (such as a container full
of water) of temperature y(t), an external environment that
maintains a uniform temperature y0, and an insulating
barrier (the outer wall of the container) of coefficient k,
the rate of change of temperature of the body dy

dt is
proportional to the difference between the inside and
outside temperature

dy

dt
� −k y − y0( ). (1)

This is known as Newton’s model and forms the basis for
‘lumped’ thermal models (models where the components parts,
or lumps, are considered to have a single uniform temperature).
Note that the coefficient k might be expanded to consider the
surface area and the unit thermal resistivity of the dividing layer.
A transient simulation, given the current state y(t), must identify
y(t + Δt) for some small increment in time Δt (say 1 s). An Euler
simulation is a numerical approximation that assumes for a
small Δt,

Δy
Δt ≈

dy

dt
� −k y − y0( ). (2)

Given this approximation,

y t + Δt( ) ≈ y t( ) + Δy
Δt · Δt (3)

� y t( ) − kΔt · y t( ) + kΔty0 (4)
� 1 − kΔt( ) · y t( ) + kΔty0 (5)

which shows that y(t + Δt) is a linear function of y(t). Therefore,
assuming Δt is small, a simple linear regression between y(t) and
y(t + Δt) would yield the key coefficients in what otherwise
appears to be a complex relationship between the internal
temperature, the external temperature, and the thermal
resistivity of the dividing wall. In summary, the simple
thermal problem can be simulated using a linear
correspondence between the current state y(t) and the next
state y(t + Δt). Finding the coefficients for such a dynamical
system is termed system or model identification.

Although a simple linear correspondence may be sufficient
for a simple system as the complexity of the model increases,
non-linearities will appear. Furthermore, some effects, such
as radiative heat transfer, are proportional to the fourth
power of the difference in temperatures and thus seem to
demand a more flexible modeling method. As suggested by
work on non-linear autoregressive network systems, some
form of neural network (NN) or recurrent neural network
(RNN) may be appropriate (Ng et al., 2014a; Engel et al.,
2019).

A key insight in this work is the realisation that many physical
systems can be predicted using only the current state and control

FIGURE 1 | Vent outlets on instrument panel and in footwell.

FIGURE 2 | Sensors at the head, torso, and foot locations.
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inputs. In some cases, the prior state is also needed (e.g., as a
proxy for the velocity of a moving object where the state contains
just its position). Therefore, the structure of the simulator is a
transfer function of the form

xt+1 � f xt, ut, xt−1( ).
corresponding to a network structure as shown in Figure 3.

2.3 Model Learning
Having preprocessed the data, random hyperparameter search is
used to identify the best neural network or multilayer perceptron
(MLP) structure (Aureélien, 2019). The parameter space that we
have chosen to search over are:

• Number of hidden layers (0–4).
• Activation for hidden layers (ReLU, sigmoid, tanh, linear).
• Activation for final layer (linear).
• Number of nodes in each hidden layer (1–500).
• Whether a dropout regularisation, a technique where
randomly selected neurons are ignored during training
(Srivastava et al., 2014), is used (selected from the
set 0, 0.5).

The final activation layer is chosen to be linear as this is a
regression problem with real-valued outputs.

The network is learnt using TensorFlow (Abadi et al., 2015)
and Keras (Chollet, 2015) with the Adam optimizer (Kingma
and Ba, 2014) aiming at minimising the mean square error.
From the hyperparameter space given above, 200 variants are
selected at random (with uniform distribution for number of
nodes). Input and outputs are rescaled to a unit range using
min–max rescaling.

Two considerations are made when performing the
hyperparameter search. First, the data comes in the form of
groups due to the presence of five different CWT trials with
varying settings. Second, shuffling in cross validation is not
appropriate for time series data. In order to address these, we
make use of a Time Series Group Split cross-validator. This
requires that each successive training set is a superset of those
before it for each of the five groups.

Model training is done in open loop, meaning the true output
rather than the predicted one is used for the next step prediction
(Menezes and Barreto, 2008). In order to measure the

performance of our model, we utilise the mean squared error
(MSE) loss function.

2.4 Linear Regression
Alongside the more complex MLPs, linear (least-squares)
regression (LR) is also be considered. LR is a closed form
solution to the least-squares problem whereas stochastic
gradient descent (SGD) used for the MLP is iterative and
approximate and thus can have a performance advantage. As
with the perceptron, LR uses a minimal set of coefficients to
model the system. This means that overfitting is unlikely although
there may be some possibility of underfitting (not providing
sufficient flexibility in the model). The simplicity of LR tends to
make it robust to measurement noise although noise in sensor
readings used as the independent variables causes LR to
underestimate the gradient. Time series noise reduction is
used to reduce this effect.

2.5 State of the Art 1D Model
Alongside the ML model, we use AMESim version 17 software
(Siemens, 2018) to model the North America Fiat 500 BEV
climate system. It is a programming environment developed
for the object-oriented modeling of complex physical systems.
The main libraries used are: thermal, thermo-hydraulic, two-
phase flow, heat, and air-conditioning.

The modeling has been carried out using the bottom-up
approach: starting from the basic components, the different
subsystems have been assembled and then connected to each
other until reaching the final system configuration. The climate
system includes the following sections:

1. HVAC system, which includes the evaporator, air ducts, and
Positive Temperature Coefficient electric heater, and is
connected to the cabin.

2. Two-phase flow loop, which includes the compressor, the heat
exchangers, and the thermal expansion valves.

3. Battery and Power Train (PWT) coolant loops which provide
battery and PWT thermal management.

Each component model (i.e., compressor, evaporator,
condenser, etc.) has been made filling the AMESim template
with the geometrical data available from the datasheet. The
template has some parameters that are calibrated using the
data test recovered from the datasheet itself (i.e., the heat
exchange coefficient derives from the Nusselt number
calibration among the power exchanged by the heat
exchanger). The developed cabin model consists of several
thermal masses corresponding to the main inertial masses that
interact between them by conduction and radiation and with the
air by convection. The heat exchange by convection with the air
depends on the air speed on the single surface. The heating and
cooling modes have different airflow distributions, tri-level and
only vent respectively, therefore, separate models are realized for
these two functional modes. The heat exchange coefficients on
surfaces are calibrated using measured data collected during the
standard procedure of cabin warm-up and cooldown. Along the
cabin air path (from the HVAC to the cabin), no pressure drop is

FIGURE 3 | Simulator is phrased as a recursive function, which is trained
with one-step examples.
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considered than the airflow is imposed at the inlet of HVAC. The
airflow rate is variable according to the thermal strategy adopted.
The model is suitable to evaluate the electrical power
consumption of the different actuators (blowerend fan on the
low voltage net; the compressor and the Positive Temperature
Coefficient on the HV net).

3 RESULTS

3.1 Hyperparameter Search
The top performer is LR with MSE 0.000 047 ± 0.000 005 7 for
next step (10 s) predictions of min-max rescaled data. Due to the
rescaling required for the neural network, the MSE is already
normalised. Thus, it translates to a NRMSE of

�������
0.000 24

√
100
1 % =

0.68% over 10 s. Note that the prediction error for several hours of
simulation is likely to be larger.

Figure 4 provides an overview of the results from the
hyperparameter search, detailed in Section 2.3. The main
results shown here are that for those network structures that
perform poorly, dropout helps considerably. Dropout is a
regularisation technique that disables connections in the
network with a fixed probability. This approach is often helpful
in dealing with large, highly correlated inputs by making the
network less reliant on individual inputs and thus more robust.

The top 10 performers of the hyperparameter search are
shown in Table 4. The MSE is given as mean ± standard
deviation over the Time Series Group Split cross-validation.
One of the top performers is a simple perceptron system
(single layer of linear activation). This is equivalent to a linear
function between inputs and outputs, which thus suggests that
linear regression (LR) may also be effective.

Linear regression does not require rescaled data but, for the
purposes of comparison, cross validation LR on rescaled data

gave an MSE of 0.000 047 ± 0.000 005 7 which outperforms the
top performing MLP. Due to LR being a more robust model and
the fact that thermal systems are mainly linear, LR is chosen as the
model for this data.

3.2 Evaluation as Long-Run Simulator
3.2.1 Simulation Results Comparing Simulator With
Original Data
Figure 5 shows a comparison of simulation output with
measurement data for the air temperature at the driver’s head
position during CWT1. The correspondence is remarkable since
there is no divergence between two curves - there is only a small error
between them - even over the extended period of the test (around
3 h). Furthermore, the temperatures vary over a large range during
the trial from almost 0°C at the beginning to a peak of nearly 30°C.

Other sensor modalities are reproduced with similar accuracy.
Again, this is striking as the relative humidity varies over a wide
range during the trial. The simulator manages to track it almost
perfectly just on the basis of the initial state and the control inputs.

Air velocity measurements tend to vary considerably. These
measurements are smoothed during processing and thus the
simulator produces a smooth estimate of the air velocity. The
correspondence here is quite consistent through the whole period.

3.2.2 Differences Between Head, Torso, and Foot
Temperatures
A key benefit of the ML-based simulation approach is the ability
to differently estimate different parts of the cabin space. For
example, the temperature at the head may be much hotter than
the footwell and this difference affects thermal comfort.
Therefore, it is interesting to see whether the simulation is
able to independently and differently track the air temperature
(for example) at the head, torso and foot. Figures 6, 7
demonstrate that this tracking is very good. In particular,

FIGURE 4 | Overview of hyperparameter search.
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notice that the footwell is higher than the head and torso locations
during the first part of the trial while the long term progression
(where the HVAC was turned off after 4,000 s) ended with clearly
separate temperatures for the three locations and that all were
correctly predicted by the simulator.

The temperature predictions in the footwell are not quite as
accurate as the predictions for the head and torso during the
beginning of the trial (0, − , 4,000 s). A reason for this may be that
the model has not captured some characteristics of the footwell,
such as the fact that the area is more enclosed and therefore may
be more insulated. This may not be detrimental as a perfect
simulation may not be needed (Ha and Schmidhuber, 2018).

3.2.3 Examples Showing Room for Improvement
Figure 8 shows some response differences for air temperature at the
driver’s head in the simulator compared to the data from CWT3.
Note that the vertical range is small and this may appear to magnify

errors. A striking aspect of this result is that the final temperature
converged upon is very close to the true final temperature. Another
example is the windshield temperature simulation for CWT3, shown
in Figure 9. Here the temperatures are quite stable during the CWT
trial but vary considerably in the simulation. Again, the vertical range
is small but the error is up to 3 K.

For Figures 8, 9, recall that CWT3 is the only trial with
moisture added into the cabin. The average NRMSE across all
sensors for the full trial duration is 0.16 (or 16%) for CWT3,
whereas the other four CWT trials are in the range of 0.041 (4.1%)
to 0.082 (8.2%). It is possible that providing more CWT trial data
where moisture is added into the cabin to train the model on may
help to improve these predictions.

3.2.4 NRMSE Results
Rather than trying to understand the accuracy of the simulation
based on examining individual graphs, it is generally more

TABLE 4 | Linear regression and the top 10 MLP from the hyperparameter search results where the final activation is linear and there is no dropout.

Model Hidden nodes Hidden activation Hidden layers MSE

LR — — — 0.000 047 ± 0.000 005 7
MLP 95 Linear 1 0.002 8 ± 0.000 31
MLP 38 Linear 4 0.002 9 ± 0.000 69
MLP — — 0 0.002 9 ± 0.000 85
MLP 41 Linear 4 0.003 2 ± 0.000 81
MLP 286 Sigmoid 1 0.003 3 ± 0.000 32
MLP 191 Linear 1 0.003 3 ± 0.000 35
MLP 248 Linear 1 0.003 3 ± 0.000 94
MLP 498 Sigmoid 1 0.003 3 ± 0.000 67
MLP 361 Linear 1 0.003 5 ± 0.000 28
MLP 69 Linear 4 0.003 5 ± 0.000 83

FIGURE 5 |Comparison of simulation produced curve for the air temperature at the driver’s head versusmeasurement data from CWT1 (without smoothing) giving
an RMSE of 0.78. The trial settings are 22°C on defrost/floor with fresh distribution at 50 km h−1 for 60 min, then all settings are switched off for 120 min.
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appropriate to summarise the error in terms of the RMSE or
NRMSE. Table 5 shows results obtained by running the simulator
for each of the CWT trials. The RMSE and NRMSE shown here is
the mean ± the standard deviation over the 5 trials. Note that
NRMSE is shown as a proportion rather than a percentage. For
example, an NRMSE of 0.004 corresponds to 0.4%. The RMSE

and NRMSE values here are for the full trials (around 3 h) and
thus will be somewhat larger than the 10 s prediction RMSE or
correspondingMSE used during training. The units for the RMSE
depend on the sensor, as specified in Table 3. Note that the
displayed decimal places are adjusted according to the standard
deviation.

FIGURE 6 | ML-simulator correctly and independently tracks driver’s head, chest, and foot temperatures over a 3 h trial (CWT2) with only small errors. The trial
settings are 22°C with vents set to neutral and recirculated distribution at 100 km h−1 for 30 min, then switching to fresh distribution for 30 min, before switching all
settings off for 120 min.

FIGURE 7 | Passenger side air temperatures are reasonably accurately tracked with clear differences during the early phase between head, torso, and foot for trial
CWT1. The trial settings are 22°C on defrost/floor with fresh distribution at 50 km h−1 for 60 min, then all settings are switched off for 120 min.
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The average NRMSE performance over all sensors over the full
trial duration is 0.018 (or 1.8%), which is comparable but slightly
larger than the 10 s NRMSE (1.5%). The average air temperature
RMSE is 0.4 K or 0.8%.

3.2.5 Compute Performance
Calculating a single time step (10 s) with the simulator developed
in this work is extremely fast. The reason for this fast performance

is that the calculation can be performed with a single matrix
multiplication. Also, LR, unlike the neural network, does not
require rescaling of inputs and outputs. On a PC with Intel(R)
Core(TM) i7-4790 CPU at 3.60 GHz processor, 1,000, ×, 3 h
simulations were calculated in 59.3 s. This corresponds to
0.005 44 ms s−1 (elapsed time per simulation second).

Compute performance becomes critical when attempting to
use machine learning to optimise a control algorithm. In past

FIGURE 8 | Comparison of measurement and simulated data for CWT3 air temperature at the driver’s head. The trial settings are 22°C with vents set to defrost/floor
with recirculated distribution and 140 g h−1 of moisture at 100 km h−1 for 30 min, then switching to fresh distribution for 30 min, before switching all settings off for 30 min.

FIGURE 9 | Comparison of measurement and simulated data for CWT3 windshield temperature driver’s side. The trial settings are 22°C with vents set to defrost/floor
with recirculated distribution and 140 g h−1 of moisture at 100 km h−1 for 30 min, then switching to fresh distribution for 30 min, before switching all settings off for 30 min.
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work, around 9 years of simulated time was required to find the
optimal control strategy. The time to compute 9 years of
simulated time using this simulator is around 25 min.

3.2.6 Discussion
These results show high accuracy for this simulator over all the
sensors. The smallest errors are less than the expected error in the
thermocouple sensor while the largest errors (around 0.04m s−1

or 4% of the range) are within 5% of the accuracy of the high-level
model. The results reflect that short-term errors tend to disappear
over time. This is surprising because, in many simulations, small
errors accumulate when producing a simulation that runs over an
extended period. This reflects the relative simplicity of the model
causing it to be extremely robust. Possible threats to validity of the
LR simulation results are as follows:

• These results are specific to the range of parameters varied
during the CWT trials. For example, only 2 distribution
modes were switched between—it would not be possible to
use this simulator to simulate other distribution modes.

• Similarly, it is expected to add radiant panels and other
options that will impact the thermal dynamics. These trials
do not include such features and thus could not be used to
simulate them. The aim, however, is to apply this method to
CFD-based data, which would allow the inclusion of these
extra features.

• A better estimate of the performance on unseen data might
be possible using k-fold cross-validation. Since the full data-
set was used to both learn the linear regression coefficients
and to assess performance, the true performance on unseen
data may be slightly worse than estimated here. Note,
however, that overfitting is unlikely for this method.

3.3 Comparative Performance of 1D and
Machine Learning Models
3.3.1 Accuracy
The average NRMSE over all sensors being estimated for the ML-
based simulator is 1.8%. The best estimated sensor (mean radiant
temperature at passenger’s torso) has an NRMSE of 0.4% while
the worst (air velocity at passenger’s torso) has a 4.0% NRMSE.
The error of the estimate of the average air temperature over the
front bench of the car cabin is 0.4 K (0.8%).

The 1D model NRMSE is 1.5% for the temperature. When the
AC loop is on, the model performs about 3% for the high pressure
and 6% for the low pressure.

3.3.2 Computational Speed
To compare the computational speed, we look at the amount of
elapsed time to compute 1 s of simulated time. The results for 1D
simulation models are:

• 7.6 ms s−1 in warm up protocol.
• 250 ms s−1 in cool down protocol.

The result for the ML model is:

• 0.005 44 ms s−1.

Note that the ML-based simulation does not attempt to
simulate the cooling loop but does simulate different parts of
the car cabin (driver and passenger’s head, torso and foot).

Based on the above results, the speed-up for the ML-based
simulator compared with the 1D simulation (during warm up) is
1400-fold.

3.3.3 Capability
The two simulators have different sets of capabilities and this
should be taken into account when considering other
performance aspects.

The ML-based simulator has certain capabilities that are not
available in the 1D simulator:

• It can provide properties needed to make use of a holistic
comfort model for both front bench occupants.
Specifically, it estimates temperature, mean radiant
temperature, and air velocity at the head, torso, and
foot positions for both occupants.

• It can provide properties needed for estimating safety in
terms of windshield fogging. Specifically, it estimates
windshield glass temperature and relative humidity.

The 1D simulator, on the other hand, has capabilities not
available in the ML simulator:

• It simulates the HVAC systemmore fully, including the AC
loop, rather than requiring the air vent temperature as
input. Note that theML simulator does simulate the blower.

• It is a physics-based simulation and thus is likely to generalise
more readily to circumstances not seen in the CWT trials.

• It supports additional components, such as the radiant
panels.

TABLE 5 | Performance of ML model in terms of error for each sensor ordered
according to mean NRMSE. Average air temperature (avg_air) is based on
comparing the average of head, torso and foot air temperatures for driver and front
passenger with that of the simulated values.

Sensor RMSE NRMSE

x11 0.3 ± 0.1 0.004 ± 0.001
x7 0.35 ± 0.09 0.005 ± 0.001
x5 0.3 ± 0.1 0.005 ± 0.002
x10 0.4 ± 0.1 0.005 ± 0.002
x8 0.35 ± 0.08 0.005 ± 0.002
x2 0.3 ± 0.1 0.005 ± 0.001
x1 0.4 ± 0.1 0.007 ± 0.002
x4 0.5 ± 0.2 0.007 ± 0.003
avg_air 0.4 ± 0.2 0.008 ± 0.003
x13 0.6 ± 0.3 0.009 ± 0.004
x12 0.8 ± 0.4 0.016 ± 0.007
x9 0.8 ± 0.4 0.016 ± 0.008
x14 0.7 ± 0.2 0.017 ± 0.005
x3 0.8 ± 0.4 0.019 ± 0.009
x6 1.1 ± 0.5 0.02 ± 0.01
x15 0.04 ± 0.03 0.03 ± 0.03
x20 0.040 ± 0.009 0.029 ± 0.007
x16 0.03 ± 0.01 0.04 ± 0.02
x18 0.04 ± 0.01 0.04 ± 0.02
x17 0.032 ± 0.007 0.043 ± 0.01
x19 0.03 ± 0.01 0.04 ± 0.02
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Due to these differences in capabilities, the choice of simulator
will depend on the application.

4 DISCUSSION

The primary aim of simulation models for car HVAC systems is
to ensure that components are sufficiently powerful to cope with
the expected range of conditions and to ensure that the cabin is
cooled or warmed sufficiently quickly. For this reason, relatively
simple 1D thermal models are commonplace in industry (Doyle
andMuneer, 2019; Marcos et al., 2014). More recently, the energy
cost of the climate system has become more important (Lajunen,
2017; Kambly and Bradley, 2014) along with the realisation that
thermal comfort is not simply a function of air temperature. As a
result, other measurements have been considered, such as mean
radiant temperature (Khatoon and Kim, 2020) and air velocity
Kamar et al. (2013).

There is an abundance of research on thermal models for
commercial or residential buildings (Afram et al., 2017; Kusiak
et al., 2014), with other similar applications including personal
space heaters (Katić et al., 2018), high performance computers
(Zhang et al., 2018), and water heating systems (Kalogirou et al.,
1999). Work has also been done using artificial neural networks
in automotive applications with the focus mainly on the
automotive air conditioning system. Some models are used to
predict system performance and cooling capacity (Hosoz and
Ertunc, 2006; Kamar et al., 2013; Datta et al., 2019). Other work,
such as that by Ng et al. (2014b), makes use of MLP and radial
basis network with experimental data to predict average cabin
temperature. Our purpose is to estimate thermal comfort using
the ISO 14505 model, which requires 3 modalities (temperature,
mean radiant temperature, and air velocity) for at least 3 locations
(head, torso, foot) for each passenger (a total of 3 × 3 × 4
variables). Furthermore, we need to check if the windows get
fogged and so we also need cabin relative humidity and
windshield temperature. Predicting so many variables is a big
step up from predicting a single average cabin temperature but
this work shows that it is possible.

5 CONCLUSION

The key results are:

1. The ML cabin model has an average NRMSE over all sensors
of 1.8%. The RMSE for the average air temperature for the
front bench is 0.4 K (0.8%) over all trials.

2. The ML cabin model computes a second of simulation time in
0.005 44 ms.

3. The 1D cabin model predicts the cabin average air
temperature within ±1 K (1.52%).

4. The 1D cabin model predicts AC pressure with an average
error less than 0.6 bar (3%) at high pressure and 0.1 bar (6%)
(steady state) at low pressure. The 1D cabin model computes a
second of simulation time in 0.25 s (worst case—when the AC
compressor is on) or 0.0076 s (AC compressor off).

The best performing machine-learnt simulator is based on linear
regression and gives an average, whole trial NRMSE of 1.8%. The
simulator closely tracks thermal, relative humidity, and air velocity
dynamics within the cabin and clearly demonstrates the viability of
themethod. This simulator provides a solid basis for work where it is
not necessary to add components, such as radiant panels.
Furthermore, this work is remarkable in that it provides a
simulator that is capable of accurately simulating the thermal
dynamics at multiple car seating positions and to do so with a
compute performance that is much faster than traditional 1D
approaches. This opens the way for numerical optimisation
approaches that were previously considered infeasible to build car
cabin HVAC controllers and redesign the car cabin features. Future
work is required to provide data that can enable simulation of
optional components including radiant panels, heated seats, and
special glazing.

The ML-based simulator is sufficiently fast and accurate to
suggest that this is a promising method. The 1D simulator, being
physics-based, may still be preferred for some applications.

In order to make use of the ML-based simulator, additional
work is needed, as follows:

1. A separate simulation of the HVAC system is needed to
provide vent outlet temperatures.

2. To properly simulate components, such as the radiant panels,
further simulation data are needed. This data might be
produced based on the computational fluid dynamics
simulation, for example.

3. More information could also be included in the model such as
contact heat (i.e., heated seats) and the accumulation of CO2 in
the cabin (Angelova et al., 2019).

Minimising unnecessary energy consumption is central to the
design of modern electric vehicles and the car cabin’s heating and
cooling system is the car’s largest auxiliary load. However,
personal comfort depends on this HVAC system and is critical
to customer satisfaction, while some of this functionality is also
needed for safety (such as defogging the windscreen). Therefore,
it is important to minimise energy use under the constraint of
maintaining acceptable comfort and safety. The methods
presented in this paper model the thermal environment within
a car cabin to help identify whether comfort and safety
requirements can be met and at what energy cost.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because it is private data from CRF. Requests to access the datasets
should be directed to Brandi Jess, jessb@uni.coventry.ac.uk.

AUTHOR CONTRIBUTIONS

MR and AM built the 1D model. BJ, JB, and KG contributed to
the ML model. JB wrote the first draft of the manuscript. BJ reran
analysis and wrote sections of the manuscript. EG provided

Frontiers in Mechanical Engineering | www.frontiersin.org March 2022 | Volume 8 | Article 75316910

Jess et al. ML Simulation of Car-Cabin

mailto:jessb@uni.coventry.ac.uk
https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


feedback on writing. All authors contributed to manuscript
revision, read, and approved the submitted version.

FUNDING

This research is a part of the DOMUS project, which received
funding from the European Union’s Horizon2020 research
and innovation programme under Grant Agreement No.

769902. Further information can be found here: DOMUS
project.

ACKNOWLEDGMENTS

We would like to thank Fabrizio Mattiello (CRF) for his
supervision of the experimental work in the CWT on the
baseline vehicle which provided the data used in this work.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv,
1–19. arXiv:1603.04467.

Afram, A., Janabi-Sharifi, F., Fung, A. S., and Raahemifar, K. (2017). Artificial
Neural Network (ANN) Based Model Predictive Control (MPC) and
Optimization of HVAC Systems: A State of the Art Review and Case Study
of a Residential HVAC System. Energy and Buildings 141, 96–113. doi:10.1016/
j.enbuild.2017.02.012

Angelova, R. A., Markov, D. G., Simova, I., Velichkova, R., and Stankov, P. (2019).
Accumulation of Metabolic Carbon Dioxide (CO2) in a Vehicle Cabin. IOP
Conf. Ser. Mater. Sci. Eng. 664, 012010. doi:10.1088/1757-899x/664/1/012010

Aureélien, G. (2019). Hands-on Machine Learning with Scikit-Learn and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.
Sebastopol, California, United States: OReilly.

Campbell, P. (2020). Uk Set to Ban Sale of New Petrol and Diesel Cars from 2030.
Auto Express. 14-Nov-2020.

Chollet, F. (2015). Keras. San Francisco, California, United States: GitHub.
Available at: https://github.com/fchollet/keras.

Datta, S. P., Das, P. K., and Mukhopadhyay, S. (2019). An Optimized ANN for the
Performance Prediction of an Automotive Air Conditioning System. Sci.
Technol. Built Environ. 25, 282–296. doi:10.1080/23744731.2018.1526014

Doyle, A., and Muneer, T. (2019). Energy Consumption and Modelling of the
Climate Control System in the Electric Vehicle. Energy Exploration &
Exploitation 37, 519–543. doi:10.1177/0144598718806458

Engel, P., Meise, S., Rausch, A., and Tegethoff, W. (2019). “Modeling of Automotive
HVAC Systems Using Long Short-Term Memory Networks,” in Proceedings of
the ADAPTIVE 2019: The Eleventh International Conference on Adaptive and
Self-Adaptive Systems and Applications, Venice, Italy, May 2019, 48–55.

Farrington, R., and Rugh, J. (2000). “Impact of Vehicle Air-Conditioning on Fuel
Economy, Tailpipe Emissions, and Electric Vehicle Range,” in Earth Technologies
Forum (Washington DC: GRSS). National Renewable Energy Laboratory, 1–10.

Ha, D., and Schmidhuber, J. (2018). “Recurrent World Models Facilitate Policy
Evolution,” in Proceedings of the Advances in Neural Information Processing
Systems 31,Montréal, Canada, December, 2018 (NewYork, United States: Curran
Associates, Inc.), 2451–2463. Available at: https://worldmodels.github.io.

Hosoz, M., and Ertunc, H. M. (2006). Artificial Neural Network Analysis of an
Automobile Air Conditioning System. Energ. Convers. Manage. 47, 1574–1587.
doi:10.1016/j.enconman.2005.08.008

IEA (2020). Global EV Outlook 2020. Tech. Rep. Paris: IEA.
Kalogirou, S. A., Panteliou, S., and Dentsoras, A. (1999). Modeling of Solar

Domestic Water Heating Systems Using Artificial Neural Networks. Solar
Energy 65, 335–342. doi:10.1016/S0038-092X(99)00013-4

Kamar, H. M., Ahmad, R., Kamsah, N. B., and Mohamad Mustafa, A. F. (2013).
Artificial Neural Networks for Automotive Air-Conditioning Systems
Performance Prediction. Appl. Therm. Eng. 50, 63–70. doi:10.1016/j.
applthermaleng.2012.05.032

Kambly, K. R., and Bradley, T. H. (2014). Estimating the HVAC Energy
Consumption of Plug-In Electric Vehicles. J. Power Sourc. 259, 117–124.
doi:10.1016/j.jpowsour.2014.02.033

Katić, K., Li, R., Verhaart, J., and Zeiler, W. (2018). Neural Network Based
Predictive Control of Personalized Heating Systems. Energy and Buildings
174, 199–213. doi:10.1016/j.enbuild.2018.06.033

Khatoon, S., and Kim, M.-H. (2020). Thermal Comfort in the Passenger
Compartment Using a 3-D Numerical Analysis and Comparison with
Fanger’s Comfort Models. Energies 13, 690. doi:10.3390/en13030690

Kingma, D. P., and Ba, J. (2014). Adam: A Method for Stochastic Optimization.
arXiv, 1–15. arXiv:1412.6980.

Kusiak, A., Xu, G., and Zhang, Z. (2014). Minimization of Energy Consumption in
HVAC Systems with Data-DrivenModels and an interior-pointMethod. Energ.
Convers. Manage. 85, 146–153. doi:10.1016/j.enconman.2014.05.053

Lajunen, A. (2017). Energy Efficiency and Performance of Cabin ThermalManagement
in Electric Vehicles. Technical Papers 2017-01-0192. Warrendale, Pennsylvania,
United States: SAE International. doi:10.4271/2017-01-0192

Marcos, D., Pino, F. J., Bordons, C., and Guerra, J. J. (2014). The Development and
Validation of a thermal Model for the Cabin of a Vehicle. Appl. Therm. Eng. 66,
646–656. doi:10.1016/j.applthermaleng.2014.02.054

Menezes, J. M. P., and Barreto, G. A. (2008). Long-term Time Series Prediction
with the NARX Network: An Empirical Evaluation. Neurocomputing 71,
3335–3343. doi:10.1016/j.neucom.2008.01.030

Ng, B. C., Darus, I. Z. M., Jamaluddin, H., and Kamar, H. M. (2014a). Application of
Adaptive Neural Predictive Control for an Automotive Air Conditioning System.
Appl. Therm. Eng. 73, 1244–1254. doi:10.1016/j.applthermaleng.2014.08.044

Ng, B. C., Darus, I. Z. M., Jamaluddin, H., and Kamar, H. M. (2014b). Dynamic
Modelling of an Automotive Variable Speed Air Conditioning System Using
Nonlinear Autoregressive Exogenous Neural Networks. Appl. Therm. Eng. 73,
1255–1269. doi:10.1016/j.applthermaleng.2014.08.043

Siemens (2018). Simcenter Amesim 17. Munich, Germany: Seimens.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
J. Machine Learn. Res. 15, 1929–1958. doi:10.5555/2627435.2670313

UK Government (2020). 2019 National Travel Survey Factsheets. Tech. Rep.
Horseferry Road, London: Department for Transport. Available at:
https://www.gov.uk/government/statistics/national-travel-survey-2019.

Zhang, K., Guliani, A., Ogrenci-Memik, S., Memik, G., Yoshii, K., Sankaran, R.,
et al. (2018). Machine Learning-Based Temperature Prediction for Runtime
Thermal Management across System Components. IEEE Trans. Parallel
Distrib. Syst. 29, 405–419. doi:10.1109/TPDS.2017.2732951

Conflict of Interest:MR and AMwere employed by the company Centro Ricerche
Fiat S.C.p.A.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Jess, Brusey, Rostagno, Merlo, Gaura and Gyamfi. This is an open-
access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Mechanical Engineering | www.frontiersin.org March 2022 | Volume 8 | Article 75316911

Jess et al. ML Simulation of Car-Cabin

https://doi.org/10.1016/j.enbuild.2017.02.012
https://doi.org/10.1016/j.enbuild.2017.02.012
https://doi.org/10.1088/1757-899x/664/1/012010
https://github.com/fchollet/keras
https://doi.org/10.1080/23744731.2018.1526014
https://doi.org/10.1177/0144598718806458
https://worldmodels.github.io
https://doi.org/10.1016/j.enconman.2005.08.008
https://doi.org/10.1016/S0038-092X(99)00013-4
https://doi.org/10.1016/j.applthermaleng.2012.05.032
https://doi.org/10.1016/j.applthermaleng.2012.05.032
https://doi.org/10.1016/j.jpowsour.2014.02.033
https://doi.org/10.1016/j.enbuild.2018.06.033
https://doi.org/10.3390/en13030690
https://doi.org/10.1016/j.enconman.2014.05.053
https://doi.org/10.4271/2017-01-0192
https://doi.org/10.1016/j.applthermaleng.2014.02.054
https://doi.org/10.1016/j.neucom.2008.01.030
https://doi.org/10.1016/j.applthermaleng.2014.08.044
https://doi.org/10.1016/j.applthermaleng.2014.08.043
https://doi.org/10.5555/2627435.2670313
https://www.gov.uk/government/statistics/national-travel-survey-2019
https://doi.org/10.1109/TPDS.2017.2732951
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles

	Fast, Detailed, Accurate Simulation of a Thermal Car-Cabin Using Machine-Learning
	1 Introduction
	2 Methods and Materials
	2.1 Climatic Wind Tunnel Trials
	2.2 The Machine Learning Model
	2.3 Model Learning
	2.4 Linear Regression
	2.5 State of the Art 1D Model

	3 Results
	3.1 Hyperparameter Search
	3.2 Evaluation as Long-Run Simulator
	3.2.1 Simulation Results Comparing Simulator With Original Data
	3.2.2 Differences Between Head, Torso, and Foot Temperatures
	3.2.3 Examples Showing Room for Improvement
	3.2.4 NRMSE Results
	3.2.5 Compute Performance
	3.2.6 Discussion

	3.3 Comparative Performance of 1D and Machine Learning Models
	3.3.1 Accuracy
	3.3.2 Computational Speed
	3.3.3 Capability


	4 Discussion
	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


